1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "gc/shared/c2/barrierSetC2.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "opto/ad.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/connode.hpp"
  36 #include "opto/inlinetypenode.hpp"
  37 #include "opto/loopnode.hpp"
  38 #include "opto/machnode.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/regmask.hpp"
  43 #include "opto/rootnode.hpp"
  44 #include "opto/type.hpp"
  45 #include "utilities/copy.hpp"
  46 #include "utilities/macros.hpp"
  47 #include "utilities/powerOfTwo.hpp"
  48 #include "utilities/stringUtils.hpp"
  49 
  50 class RegMask;
  51 // #include "phase.hpp"
  52 class PhaseTransform;
  53 class PhaseGVN;
  54 
  55 // Arena we are currently building Nodes in
  56 const uint Node::NotAMachineReg = 0xffff0000;
  57 
  58 #ifndef PRODUCT
  59 extern uint nodes_created;
  60 #endif
  61 #ifdef __clang__
  62 #pragma clang diagnostic push
  63 #pragma GCC diagnostic ignored "-Wuninitialized"
  64 #endif
  65 
  66 #ifdef ASSERT
  67 
  68 //-------------------------- construct_node------------------------------------
  69 // Set a breakpoint here to identify where a particular node index is built.
  70 void Node::verify_construction() {
  71   _debug_orig = nullptr;
  72   // The decimal digits of _debug_idx are <compile_id> followed by 10 digits of <_idx>
  73   Compile* C = Compile::current();
  74   assert(C->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  75   uint64_t new_debug_idx = (uint64_t)C->compile_id() * 10000000000 + _idx;
  76   set_debug_idx(new_debug_idx);
  77   if (!C->phase_optimize_finished()) {
  78     // Only check assert during parsing and optimization phase. Skip it while generating code.
  79     assert(C->live_nodes() <= C->max_node_limit(), "Live Node limit exceeded limit");
  80   }
  81   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (uint64_t)_idx == BreakAtNode)) {
  82     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT, _idx, _debug_idx);
  83     BREAKPOINT;
  84   }
  85 #if OPTO_DU_ITERATOR_ASSERT
  86   _last_del = nullptr;
  87   _del_tick = 0;
  88 #endif
  89   _hash_lock = 0;
  90 }
  91 
  92 
  93 // #ifdef ASSERT ...
  94 
  95 #if OPTO_DU_ITERATOR_ASSERT
  96 void DUIterator_Common::sample(const Node* node) {
  97   _vdui     = VerifyDUIterators;
  98   _node     = node;
  99   _outcnt   = node->_outcnt;
 100   _del_tick = node->_del_tick;
 101   _last     = nullptr;
 102 }
 103 
 104 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
 105   assert(_node     == node, "consistent iterator source");
 106   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
 107 }
 108 
 109 void DUIterator_Common::verify_resync() {
 110   // Ensure that the loop body has just deleted the last guy produced.
 111   const Node* node = _node;
 112   // Ensure that at least one copy of the last-seen edge was deleted.
 113   // Note:  It is OK to delete multiple copies of the last-seen edge.
 114   // Unfortunately, we have no way to verify that all the deletions delete
 115   // that same edge.  On this point we must use the Honor System.
 116   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 117   assert(node->_last_del == _last, "must have deleted the edge just produced");
 118   // We liked this deletion, so accept the resulting outcnt and tick.
 119   _outcnt   = node->_outcnt;
 120   _del_tick = node->_del_tick;
 121 }
 122 
 123 void DUIterator_Common::reset(const DUIterator_Common& that) {
 124   if (this == &that)  return;  // ignore assignment to self
 125   if (!_vdui) {
 126     // We need to initialize everything, overwriting garbage values.
 127     _last = that._last;
 128     _vdui = that._vdui;
 129   }
 130   // Note:  It is legal (though odd) for an iterator over some node x
 131   // to be reassigned to iterate over another node y.  Some doubly-nested
 132   // progress loops depend on being able to do this.
 133   const Node* node = that._node;
 134   // Re-initialize everything, except _last.
 135   _node     = node;
 136   _outcnt   = node->_outcnt;
 137   _del_tick = node->_del_tick;
 138 }
 139 
 140 void DUIterator::sample(const Node* node) {
 141   DUIterator_Common::sample(node);      // Initialize the assertion data.
 142   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 143 }
 144 
 145 void DUIterator::verify(const Node* node, bool at_end_ok) {
 146   DUIterator_Common::verify(node, at_end_ok);
 147   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 148 }
 149 
 150 void DUIterator::verify_increment() {
 151   if (_refresh_tick & 1) {
 152     // We have refreshed the index during this loop.
 153     // Fix up _idx to meet asserts.
 154     if (_idx > _outcnt)  _idx = _outcnt;
 155   }
 156   verify(_node, true);
 157 }
 158 
 159 void DUIterator::verify_resync() {
 160   // Note:  We do not assert on _outcnt, because insertions are OK here.
 161   DUIterator_Common::verify_resync();
 162   // Make sure we are still in sync, possibly with no more out-edges:
 163   verify(_node, true);
 164 }
 165 
 166 void DUIterator::reset(const DUIterator& that) {
 167   if (this == &that)  return;  // self assignment is always a no-op
 168   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 169   assert(that._idx          == 0, "assign only the result of Node::outs()");
 170   assert(_idx               == that._idx, "already assigned _idx");
 171   if (!_vdui) {
 172     // We need to initialize everything, overwriting garbage values.
 173     sample(that._node);
 174   } else {
 175     DUIterator_Common::reset(that);
 176     if (_refresh_tick & 1) {
 177       _refresh_tick++;                  // Clear the "was refreshed" flag.
 178     }
 179     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 180   }
 181 }
 182 
 183 void DUIterator::refresh() {
 184   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 185   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 186 }
 187 
 188 void DUIterator::verify_finish() {
 189   // If the loop has killed the node, do not require it to re-run.
 190   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 191   // If this assert triggers, it means that a loop used refresh_out_pos
 192   // to re-synch an iteration index, but the loop did not correctly
 193   // re-run itself, using a "while (progress)" construct.
 194   // This iterator enforces the rule that you must keep trying the loop
 195   // until it "runs clean" without any need for refreshing.
 196   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 197 }
 198 
 199 
 200 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 201   DUIterator_Common::verify(node, at_end_ok);
 202   Node** out    = node->_out;
 203   uint   cnt    = node->_outcnt;
 204   assert(cnt == _outcnt, "no insertions allowed");
 205   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 206   // This last check is carefully designed to work for NO_OUT_ARRAY.
 207 }
 208 
 209 void DUIterator_Fast::verify_limit() {
 210   const Node* node = _node;
 211   verify(node, true);
 212   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 213 }
 214 
 215 void DUIterator_Fast::verify_resync() {
 216   const Node* node = _node;
 217   if (_outp == node->_out + _outcnt) {
 218     // Note that the limit imax, not the pointer i, gets updated with the
 219     // exact count of deletions.  (For the pointer it's always "--i".)
 220     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 221     // This is a limit pointer, with a name like "imax".
 222     // Fudge the _last field so that the common assert will be happy.
 223     _last = (Node*) node->_last_del;
 224     DUIterator_Common::verify_resync();
 225   } else {
 226     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 227     // A normal internal pointer.
 228     DUIterator_Common::verify_resync();
 229     // Make sure we are still in sync, possibly with no more out-edges:
 230     verify(node, true);
 231   }
 232 }
 233 
 234 void DUIterator_Fast::verify_relimit(uint n) {
 235   const Node* node = _node;
 236   assert((int)n > 0, "use imax -= n only with a positive count");
 237   // This must be a limit pointer, with a name like "imax".
 238   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 239   // The reported number of deletions must match what the node saw.
 240   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 241   // Fudge the _last field so that the common assert will be happy.
 242   _last = (Node*) node->_last_del;
 243   DUIterator_Common::verify_resync();
 244 }
 245 
 246 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 247   assert(_outp              == that._outp, "already assigned _outp");
 248   DUIterator_Common::reset(that);
 249 }
 250 
 251 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 252   // at_end_ok means the _outp is allowed to underflow by 1
 253   _outp += at_end_ok;
 254   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 255   _outp -= at_end_ok;
 256   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 257 }
 258 
 259 void DUIterator_Last::verify_limit() {
 260   // Do not require the limit address to be resynched.
 261   //verify(node, true);
 262   assert(_outp == _node->_out, "limit still correct");
 263 }
 264 
 265 void DUIterator_Last::verify_step(uint num_edges) {
 266   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 267   _outcnt   -= num_edges;
 268   _del_tick += num_edges;
 269   // Make sure we are still in sync, possibly with no more out-edges:
 270   const Node* node = _node;
 271   verify(node, true);
 272   assert(node->_last_del == _last, "must have deleted the edge just produced");
 273 }
 274 
 275 #endif //OPTO_DU_ITERATOR_ASSERT
 276 
 277 
 278 #endif //ASSERT
 279 
 280 
 281 // This constant used to initialize _out may be any non-null value.
 282 // The value null is reserved for the top node only.
 283 #define NO_OUT_ARRAY ((Node**)-1)
 284 
 285 // Out-of-line code from node constructors.
 286 // Executed only when extra debug info. is being passed around.
 287 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 288   C->set_node_notes_at(idx, nn);
 289 }
 290 
 291 // Shared initialization code.
 292 inline int Node::Init(int req) {
 293   Compile* C = Compile::current();
 294   int idx = C->next_unique();
 295   NOT_PRODUCT(_igv_idx = C->next_igv_idx());
 296 
 297   // Allocate memory for the necessary number of edges.
 298   if (req > 0) {
 299     // Allocate space for _in array to have double alignment.
 300     _in = (Node **) ((char *) (C->node_arena()->AmallocWords(req * sizeof(void*))));
 301   }
 302   // If there are default notes floating around, capture them:
 303   Node_Notes* nn = C->default_node_notes();
 304   if (nn != nullptr)  init_node_notes(C, idx, nn);
 305 
 306   // Note:  At this point, C is dead,
 307   // and we begin to initialize the new Node.
 308 
 309   _cnt = _max = req;
 310   _outcnt = _outmax = 0;
 311   _class_id = Class_Node;
 312   _flags = 0;
 313   _out = NO_OUT_ARRAY;
 314   return idx;
 315 }
 316 
 317 //------------------------------Node-------------------------------------------
 318 // Create a Node, with a given number of required edges.
 319 Node::Node(uint req)
 320   : _idx(Init(req))
 321 #ifdef ASSERT
 322   , _parse_idx(_idx)
 323 #endif
 324 {
 325   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 326   debug_only( verify_construction() );
 327   NOT_PRODUCT(nodes_created++);
 328   if (req == 0) {
 329     _in = nullptr;
 330   } else {
 331     Node** to = _in;
 332     for(uint i = 0; i < req; i++) {
 333       to[i] = nullptr;
 334     }
 335   }
 336 }
 337 
 338 //------------------------------Node-------------------------------------------
 339 Node::Node(Node *n0)
 340   : _idx(Init(1))
 341 #ifdef ASSERT
 342   , _parse_idx(_idx)
 343 #endif
 344 {
 345   debug_only( verify_construction() );
 346   NOT_PRODUCT(nodes_created++);
 347   assert( is_not_dead(n0), "can not use dead node");
 348   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 349 }
 350 
 351 //------------------------------Node-------------------------------------------
 352 Node::Node(Node *n0, Node *n1)
 353   : _idx(Init(2))
 354 #ifdef ASSERT
 355   , _parse_idx(_idx)
 356 #endif
 357 {
 358   debug_only( verify_construction() );
 359   NOT_PRODUCT(nodes_created++);
 360   assert( is_not_dead(n0), "can not use dead node");
 361   assert( is_not_dead(n1), "can not use dead node");
 362   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 363   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 364 }
 365 
 366 //------------------------------Node-------------------------------------------
 367 Node::Node(Node *n0, Node *n1, Node *n2)
 368   : _idx(Init(3))
 369 #ifdef ASSERT
 370   , _parse_idx(_idx)
 371 #endif
 372 {
 373   debug_only( verify_construction() );
 374   NOT_PRODUCT(nodes_created++);
 375   assert( is_not_dead(n0), "can not use dead node");
 376   assert( is_not_dead(n1), "can not use dead node");
 377   assert( is_not_dead(n2), "can not use dead node");
 378   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 379   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 380   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 381 }
 382 
 383 //------------------------------Node-------------------------------------------
 384 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 385   : _idx(Init(4))
 386 #ifdef ASSERT
 387   , _parse_idx(_idx)
 388 #endif
 389 {
 390   debug_only( verify_construction() );
 391   NOT_PRODUCT(nodes_created++);
 392   assert( is_not_dead(n0), "can not use dead node");
 393   assert( is_not_dead(n1), "can not use dead node");
 394   assert( is_not_dead(n2), "can not use dead node");
 395   assert( is_not_dead(n3), "can not use dead node");
 396   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 397   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 398   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 399   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 400 }
 401 
 402 //------------------------------Node-------------------------------------------
 403 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 404   : _idx(Init(5))
 405 #ifdef ASSERT
 406   , _parse_idx(_idx)
 407 #endif
 408 {
 409   debug_only( verify_construction() );
 410   NOT_PRODUCT(nodes_created++);
 411   assert( is_not_dead(n0), "can not use dead node");
 412   assert( is_not_dead(n1), "can not use dead node");
 413   assert( is_not_dead(n2), "can not use dead node");
 414   assert( is_not_dead(n3), "can not use dead node");
 415   assert( is_not_dead(n4), "can not use dead node");
 416   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 417   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 418   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 419   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 420   _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this);
 421 }
 422 
 423 //------------------------------Node-------------------------------------------
 424 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 425                      Node *n4, Node *n5)
 426   : _idx(Init(6))
 427 #ifdef ASSERT
 428   , _parse_idx(_idx)
 429 #endif
 430 {
 431   debug_only( verify_construction() );
 432   NOT_PRODUCT(nodes_created++);
 433   assert( is_not_dead(n0), "can not use dead node");
 434   assert( is_not_dead(n1), "can not use dead node");
 435   assert( is_not_dead(n2), "can not use dead node");
 436   assert( is_not_dead(n3), "can not use dead node");
 437   assert( is_not_dead(n4), "can not use dead node");
 438   assert( is_not_dead(n5), "can not use dead node");
 439   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 440   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 441   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 442   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 443   _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this);
 444   _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this);
 445 }
 446 
 447 //------------------------------Node-------------------------------------------
 448 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 449                      Node *n4, Node *n5, Node *n6)
 450   : _idx(Init(7))
 451 #ifdef ASSERT
 452   , _parse_idx(_idx)
 453 #endif
 454 {
 455   debug_only( verify_construction() );
 456   NOT_PRODUCT(nodes_created++);
 457   assert( is_not_dead(n0), "can not use dead node");
 458   assert( is_not_dead(n1), "can not use dead node");
 459   assert( is_not_dead(n2), "can not use dead node");
 460   assert( is_not_dead(n3), "can not use dead node");
 461   assert( is_not_dead(n4), "can not use dead node");
 462   assert( is_not_dead(n5), "can not use dead node");
 463   assert( is_not_dead(n6), "can not use dead node");
 464   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 465   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 466   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 467   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 468   _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this);
 469   _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this);
 470   _in[6] = n6; if (n6 != nullptr) n6->add_out((Node *)this);
 471 }
 472 
 473 #ifdef __clang__
 474 #pragma clang diagnostic pop
 475 #endif
 476 
 477 
 478 //------------------------------clone------------------------------------------
 479 // Clone a Node.
 480 Node *Node::clone() const {
 481   Compile* C = Compile::current();
 482   uint s = size_of();           // Size of inherited Node
 483   Node *n = (Node*)C->node_arena()->AmallocWords(size_of() + _max*sizeof(Node*));
 484   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 485   // Set the new input pointer array
 486   n->_in = (Node**)(((char*)n)+s);
 487   // Cannot share the old output pointer array, so kill it
 488   n->_out = NO_OUT_ARRAY;
 489   // And reset the counters to 0
 490   n->_outcnt = 0;
 491   n->_outmax = 0;
 492   // Unlock this guy, since he is not in any hash table.
 493   debug_only(n->_hash_lock = 0);
 494   // Walk the old node's input list to duplicate its edges
 495   uint i;
 496   for( i = 0; i < len(); i++ ) {
 497     Node *x = in(i);
 498     n->_in[i] = x;
 499     if (x != nullptr) x->add_out(n);
 500   }
 501   if (is_macro()) {
 502     C->add_macro_node(n);
 503   }
 504   if (is_expensive()) {
 505     C->add_expensive_node(n);
 506   }
 507   if (for_post_loop_opts_igvn()) {
 508     // Don't add cloned node to Compile::_for_post_loop_opts_igvn list automatically.
 509     // If it is applicable, it will happen anyway when the cloned node is registered with IGVN.
 510     n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
 511   }
 512   if (for_merge_stores_igvn()) {
 513     // Don't add cloned node to Compile::_for_merge_stores_igvn list automatically.
 514     // If it is applicable, it will happen anyway when the cloned node is registered with IGVN.
 515     n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
 516   }
 517   if (n->is_ParsePredicate()) {
 518     C->add_parse_predicate(n->as_ParsePredicate());
 519   }
 520   if (n->is_OpaqueTemplateAssertionPredicate()) {
 521     C->add_template_assertion_predicate_opaque(n->as_OpaqueTemplateAssertionPredicate());
 522   }
 523 
 524   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 525   bs->register_potential_barrier_node(n);
 526 
 527   n->set_idx(C->next_unique()); // Get new unique index as well
 528   NOT_PRODUCT(n->_igv_idx = C->next_igv_idx());
 529   debug_only( n->verify_construction() );
 530   NOT_PRODUCT(nodes_created++);
 531   // Do not patch over the debug_idx of a clone, because it makes it
 532   // impossible to break on the clone's moment of creation.
 533   //debug_only( n->set_debug_idx( debug_idx() ) );
 534 
 535   C->copy_node_notes_to(n, (Node*) this);
 536 
 537   // MachNode clone
 538   uint nopnds;
 539   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 540     MachNode *mach  = n->as_Mach();
 541     MachNode *mthis = this->as_Mach();
 542     // Get address of _opnd_array.
 543     // It should be the same offset since it is the clone of this node.
 544     MachOper **from = mthis->_opnds;
 545     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 546                     pointer_delta((const void*)from,
 547                                   (const void*)(&mthis->_opnds), 1));
 548     mach->_opnds = to;
 549     for ( uint i = 0; i < nopnds; ++i ) {
 550       to[i] = from[i]->clone();
 551     }
 552   }
 553   if (n->is_Call()) {
 554     // CallGenerator is linked to the original node.
 555     CallGenerator* cg = n->as_Call()->generator();
 556     if (cg != nullptr) {
 557       CallGenerator* cloned_cg = cg->with_call_node(n->as_Call());
 558       n->as_Call()->set_generator(cloned_cg);
 559     }
 560   }
 561   if (n->is_SafePoint()) {
 562     // Scalar replacement and macro expansion might modify the JVMState.
 563     // Clone it to make sure it's not shared between SafePointNodes.
 564     n->as_SafePoint()->clone_jvms(C);
 565     n->as_SafePoint()->clone_replaced_nodes();
 566   }
 567   if (n->is_InlineType()) {
 568     C->add_inline_type(n);
 569   }
 570   Compile::current()->record_modified_node(n);
 571   return n;                     // Return the clone
 572 }
 573 
 574 //---------------------------setup_is_top--------------------------------------
 575 // Call this when changing the top node, to reassert the invariants
 576 // required by Node::is_top.  See Compile::set_cached_top_node.
 577 void Node::setup_is_top() {
 578   if (this == (Node*)Compile::current()->top()) {
 579     // This node has just become top.  Kill its out array.
 580     _outcnt = _outmax = 0;
 581     _out = nullptr;                           // marker value for top
 582     assert(is_top(), "must be top");
 583   } else {
 584     if (_out == nullptr)  _out = NO_OUT_ARRAY;
 585     assert(!is_top(), "must not be top");
 586   }
 587 }
 588 
 589 //------------------------------~Node------------------------------------------
 590 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 591 void Node::destruct(PhaseValues* phase) {
 592   Compile* compile = (phase != nullptr) ? phase->C : Compile::current();
 593   if (phase != nullptr && phase->is_IterGVN()) {
 594     phase->is_IterGVN()->_worklist.remove(this);
 595   }
 596   // If this is the most recently created node, reclaim its index. Otherwise,
 597   // record the node as dead to keep liveness information accurate.
 598   if ((uint)_idx+1 == compile->unique()) {
 599     compile->set_unique(compile->unique()-1);
 600   } else {
 601     compile->record_dead_node(_idx);
 602   }
 603   // Clear debug info:
 604   Node_Notes* nn = compile->node_notes_at(_idx);
 605   if (nn != nullptr)  nn->clear();
 606   // Walk the input array, freeing the corresponding output edges
 607   _cnt = _max;  // forget req/prec distinction
 608   uint i;
 609   for( i = 0; i < _max; i++ ) {
 610     set_req(i, nullptr);
 611     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 612   }
 613   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 614 
 615   if (is_macro()) {
 616     compile->remove_macro_node(this);
 617   }
 618   if (is_expensive()) {
 619     compile->remove_expensive_node(this);
 620   }
 621   if (is_OpaqueTemplateAssertionPredicate()) {
 622     compile->remove_template_assertion_predicate_opaque(as_OpaqueTemplateAssertionPredicate());
 623   }
 624   if (is_ParsePredicate()) {
 625     compile->remove_parse_predicate(as_ParsePredicate());
 626   }
 627   if (for_post_loop_opts_igvn()) {
 628     compile->remove_from_post_loop_opts_igvn(this);
 629   }
 630   if (is_InlineType()) {
 631     compile->remove_inline_type(this);
 632   }
 633   if (for_merge_stores_igvn()) {
 634     compile->remove_from_merge_stores_igvn(this);
 635   }
 636 
 637   if (is_SafePoint()) {
 638     as_SafePoint()->delete_replaced_nodes();
 639 
 640     if (is_CallStaticJava()) {
 641       compile->remove_unstable_if_trap(as_CallStaticJava(), false);
 642     }
 643   }
 644   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 645   bs->unregister_potential_barrier_node(this);
 646 
 647   // See if the input array was allocated just prior to the object
 648   int edge_size = _max*sizeof(void*);
 649   int out_edge_size = _outmax*sizeof(void*);
 650   char *in_array = ((char*)_in);
 651   char *edge_end = in_array + edge_size;
 652   char *out_array = (char*)(_out == NO_OUT_ARRAY? nullptr: _out);
 653   int node_size = size_of();
 654 
 655 #ifdef ASSERT
 656   // We will not actually delete the storage, but we'll make the node unusable.
 657   compile->remove_modified_node(this);
 658   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 659   _in = _out = (Node**) badAddress;
 660   _max = _cnt = _outmax = _outcnt = 0;
 661 #endif
 662 
 663   // Free the output edge array
 664   if (out_edge_size > 0) {
 665     compile->node_arena()->Afree(out_array, out_edge_size);
 666   }
 667 
 668   // Free the input edge array and the node itself
 669   if( edge_end == (char*)this ) {
 670     // It was; free the input array and object all in one hit
 671 #ifndef ASSERT
 672     compile->node_arena()->Afree(in_array, edge_size+node_size);
 673 #endif
 674   } else {
 675     // Free just the input array
 676     compile->node_arena()->Afree(in_array, edge_size);
 677 
 678     // Free just the object
 679 #ifndef ASSERT
 680     compile->node_arena()->Afree(this, node_size);
 681 #endif
 682   }
 683 }
 684 
 685 // Resize input or output array to grow it to the next larger power-of-2 bigger
 686 // than len.
 687 void Node::resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing) {
 688   Arena* arena = Compile::current()->node_arena();
 689   uint new_max = max_size;
 690   if (new_max == 0) {
 691     max_size = 4;
 692     array = (Node**)arena->Amalloc(4 * sizeof(Node*));
 693     if (needs_clearing) {
 694       array[0] = nullptr;
 695       array[1] = nullptr;
 696       array[2] = nullptr;
 697       array[3] = nullptr;
 698     }
 699     return;
 700   }
 701   new_max = next_power_of_2(len);
 702   assert(needs_clearing || (array != nullptr && array != NO_OUT_ARRAY), "out must have sensible value");
 703   array = (Node**)arena->Arealloc(array, max_size * sizeof(Node*), new_max * sizeof(Node*));
 704   if (needs_clearing) {
 705     Copy::zero_to_bytes(&array[max_size], (new_max - max_size) * sizeof(Node*)); // null all new space
 706   }
 707   max_size = new_max;               // Record new max length
 708   // This assertion makes sure that Node::_max is wide enough to
 709   // represent the numerical value of new_max.
 710   assert(max_size > len, "int width of _max or _outmax is too small");
 711 }
 712 
 713 //------------------------------grow-------------------------------------------
 714 // Grow the input array, making space for more edges
 715 void Node::grow(uint len) {
 716   resize_array(_in, _max, len, true);
 717 }
 718 
 719 //-----------------------------out_grow----------------------------------------
 720 // Grow the input array, making space for more edges
 721 void Node::out_grow(uint len) {
 722   assert(!is_top(), "cannot grow a top node's out array");
 723   resize_array(_out, _outmax, len, false);
 724 }
 725 
 726 #ifdef ASSERT
 727 //------------------------------is_dead----------------------------------------
 728 bool Node::is_dead() const {
 729   // Mach and pinch point nodes may look like dead.
 730   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 731     return false;
 732   for( uint i = 0; i < _max; i++ )
 733     if( _in[i] != nullptr )
 734       return false;
 735   return true;
 736 }
 737 
 738 bool Node::is_not_dead(const Node* n) {
 739   return n == nullptr || !PhaseIterGVN::is_verify_def_use() || !(n->is_dead());
 740 }
 741 
 742 bool Node::is_reachable_from_root() const {
 743   ResourceMark rm;
 744   Unique_Node_List wq;
 745   wq.push((Node*)this);
 746   RootNode* root = Compile::current()->root();
 747   for (uint i = 0; i < wq.size(); i++) {
 748     Node* m = wq.at(i);
 749     if (m == root) {
 750       return true;
 751     }
 752     for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
 753       Node* u = m->fast_out(j);
 754       wq.push(u);
 755     }
 756   }
 757   return false;
 758 }
 759 #endif
 760 
 761 //------------------------------is_unreachable---------------------------------
 762 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 763   assert(!is_Mach(), "doesn't work with MachNodes");
 764   return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != nullptr && in(0)->is_top());
 765 }
 766 
 767 //------------------------------add_req----------------------------------------
 768 // Add a new required input at the end
 769 void Node::add_req( Node *n ) {
 770   assert( is_not_dead(n), "can not use dead node");
 771 
 772   // Look to see if I can move precedence down one without reallocating
 773   if( (_cnt >= _max) || (in(_max-1) != nullptr) )
 774     grow( _max+1 );
 775 
 776   // Find a precedence edge to move
 777   if( in(_cnt) != nullptr ) {   // Next precedence edge is busy?
 778     uint i;
 779     for( i=_cnt; i<_max; i++ )
 780       if( in(i) == nullptr )    // Find the null at end of prec edge list
 781         break;                  // There must be one, since we grew the array
 782     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 783   }
 784   _in[_cnt++] = n;            // Stuff over old prec edge
 785   if (n != nullptr) n->add_out((Node *)this);
 786   Compile::current()->record_modified_node(this);
 787 }
 788 
 789 //---------------------------add_req_batch-------------------------------------
 790 // Add a new required input at the end
 791 void Node::add_req_batch( Node *n, uint m ) {
 792   assert( is_not_dead(n), "can not use dead node");
 793   // check various edge cases
 794   if ((int)m <= 1) {
 795     assert((int)m >= 0, "oob");
 796     if (m != 0)  add_req(n);
 797     return;
 798   }
 799 
 800   // Look to see if I can move precedence down one without reallocating
 801   if( (_cnt+m) > _max || _in[_max-m] )
 802     grow( _max+m );
 803 
 804   // Find a precedence edge to move
 805   if( _in[_cnt] != nullptr ) {  // Next precedence edge is busy?
 806     uint i;
 807     for( i=_cnt; i<_max; i++ )
 808       if( _in[i] == nullptr )   // Find the null at end of prec edge list
 809         break;                  // There must be one, since we grew the array
 810     // Slide all the precs over by m positions (assume #prec << m).
 811     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 812   }
 813 
 814   // Stuff over the old prec edges
 815   for(uint i=0; i<m; i++ ) {
 816     _in[_cnt++] = n;
 817   }
 818 
 819   // Insert multiple out edges on the node.
 820   if (n != nullptr && !n->is_top()) {
 821     for(uint i=0; i<m; i++ ) {
 822       n->add_out((Node *)this);
 823     }
 824   }
 825   Compile::current()->record_modified_node(this);
 826 }
 827 
 828 //------------------------------del_req----------------------------------------
 829 // Delete the required edge and compact the edge array
 830 void Node::del_req( uint idx ) {
 831   assert( idx < _cnt, "oob");
 832   assert( !VerifyHashTableKeys || _hash_lock == 0,
 833           "remove node from hash table before modifying it");
 834   // First remove corresponding def-use edge
 835   Node *n = in(idx);
 836   if (n != nullptr) n->del_out((Node *)this);
 837   _in[idx] = in(--_cnt); // Compact the array
 838   // Avoid spec violation: Gap in prec edges.
 839   close_prec_gap_at(_cnt);
 840   Compile::current()->record_modified_node(this);
 841 }
 842 
 843 //------------------------------del_req_ordered--------------------------------
 844 // Delete the required edge and compact the edge array with preserved order
 845 void Node::del_req_ordered( uint idx ) {
 846   assert( idx < _cnt, "oob");
 847   assert( !VerifyHashTableKeys || _hash_lock == 0,
 848           "remove node from hash table before modifying it");
 849   // First remove corresponding def-use edge
 850   Node *n = in(idx);
 851   if (n != nullptr) n->del_out((Node *)this);
 852   if (idx < --_cnt) {    // Not last edge ?
 853     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
 854   }
 855   // Avoid spec violation: Gap in prec edges.
 856   close_prec_gap_at(_cnt);
 857   Compile::current()->record_modified_node(this);
 858 }
 859 
 860 //------------------------------ins_req----------------------------------------
 861 // Insert a new required input at the end
 862 void Node::ins_req( uint idx, Node *n ) {
 863   assert( is_not_dead(n), "can not use dead node");
 864   add_req(nullptr);                // Make space
 865   assert( idx < _max, "Must have allocated enough space");
 866   // Slide over
 867   if(_cnt-idx-1 > 0) {
 868     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 869   }
 870   _in[idx] = n;                            // Stuff over old required edge
 871   if (n != nullptr) n->add_out((Node *)this); // Add reciprocal def-use edge
 872   Compile::current()->record_modified_node(this);
 873 }
 874 
 875 //-----------------------------find_edge---------------------------------------
 876 int Node::find_edge(Node* n) {
 877   for (uint i = 0; i < len(); i++) {
 878     if (_in[i] == n)  return i;
 879   }
 880   return -1;
 881 }
 882 
 883 //----------------------------replace_edge-------------------------------------
 884 int Node::replace_edge(Node* old, Node* neww, PhaseGVN* gvn) {
 885   if (old == neww)  return 0;  // nothing to do
 886   uint nrep = 0;
 887   for (uint i = 0; i < len(); i++) {
 888     if (in(i) == old) {
 889       if (i < req()) {
 890         if (gvn != nullptr) {
 891           set_req_X(i, neww, gvn);
 892         } else {
 893           set_req(i, neww);
 894         }
 895       } else {
 896         assert(gvn == nullptr || gvn->is_IterGVN() == nullptr, "no support for igvn here");
 897         assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
 898         set_prec(i, neww);
 899       }
 900       nrep++;
 901     }
 902   }
 903   return nrep;
 904 }
 905 
 906 /**
 907  * Replace input edges in the range pointing to 'old' node.
 908  */
 909 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn) {
 910   if (old == neww)  return 0;  // nothing to do
 911   uint nrep = 0;
 912   for (int i = start; i < end; i++) {
 913     if (in(i) == old) {
 914       set_req_X(i, neww, gvn);
 915       nrep++;
 916     }
 917   }
 918   return nrep;
 919 }
 920 
 921 //-------------------------disconnect_inputs-----------------------------------
 922 // null out all inputs to eliminate incoming Def-Use edges.
 923 void Node::disconnect_inputs(Compile* C) {
 924   // the layout of Node::_in
 925   // r: a required input, null is allowed
 926   // p: a precedence, null values are all at the end
 927   // -----------------------------------
 928   // |r|...|r|p|...|p|null|...|null|
 929   //         |                     |
 930   //         req()                 len()
 931   // -----------------------------------
 932   for (uint i = 0; i < req(); ++i) {
 933     if (in(i) != nullptr) {
 934       set_req(i, nullptr);
 935     }
 936   }
 937 
 938   // Remove precedence edges if any exist
 939   // Note: Safepoints may have precedence edges, even during parsing
 940   for (uint i = len(); i > req(); ) {
 941     rm_prec(--i);  // no-op if _in[i] is null
 942   }
 943 
 944 #ifdef ASSERT
 945   // sanity check
 946   for (uint i = 0; i < len(); ++i) {
 947     assert(_in[i] == nullptr, "disconnect_inputs() failed!");
 948   }
 949 #endif
 950 
 951   // Node::destruct requires all out edges be deleted first
 952   // debug_only(destruct();)   // no reuse benefit expected
 953   C->record_dead_node(_idx);
 954 }
 955 
 956 //-----------------------------uncast---------------------------------------
 957 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 958 // Strip away casting.  (It is depth-limited.)
 959 // Optionally, keep casts with dependencies.
 960 Node* Node::uncast(bool keep_deps) const {
 961   // Should be inline:
 962   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 963   if (is_ConstraintCast()) {
 964     return uncast_helper(this, keep_deps);
 965   } else {
 966     return (Node*) this;
 967   }
 968 }
 969 
 970 // Find out of current node that matches opcode.
 971 Node* Node::find_out_with(int opcode) {
 972   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 973     Node* use = fast_out(i);
 974     if (use->Opcode() == opcode) {
 975       return use;
 976     }
 977   }
 978   return nullptr;
 979 }
 980 
 981 // Return true if the current node has an out that matches opcode.
 982 bool Node::has_out_with(int opcode) {
 983   return (find_out_with(opcode) != nullptr);
 984 }
 985 
 986 // Return true if the current node has an out that matches any of the opcodes.
 987 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
 988   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 989       int opcode = fast_out(i)->Opcode();
 990       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
 991         return true;
 992       }
 993   }
 994   return false;
 995 }
 996 
 997 
 998 //---------------------------uncast_helper-------------------------------------
 999 Node* Node::uncast_helper(const Node* p, bool keep_deps) {
1000 #ifdef ASSERT
1001   uint depth_count = 0;
1002   const Node* orig_p = p;
1003 #endif
1004 
1005   while (true) {
1006 #ifdef ASSERT
1007     if (depth_count >= K) {
1008       orig_p->dump(4);
1009       if (p != orig_p)
1010         p->dump(1);
1011     }
1012     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
1013 #endif
1014     if (p == nullptr || p->req() != 2) {
1015       break;
1016     } else if (p->is_ConstraintCast()) {
1017       if (keep_deps && p->as_ConstraintCast()->carry_dependency()) {
1018         break; // stop at casts with dependencies
1019       }
1020       p = p->in(1);
1021     } else {
1022       break;
1023     }
1024   }
1025   return (Node*) p;
1026 }
1027 
1028 //------------------------------add_prec---------------------------------------
1029 // Add a new precedence input.  Precedence inputs are unordered, with
1030 // duplicates removed and nulls packed down at the end.
1031 void Node::add_prec( Node *n ) {
1032   assert( is_not_dead(n), "can not use dead node");
1033 
1034   // Check for null at end
1035   if( _cnt >= _max || in(_max-1) )
1036     grow( _max+1 );
1037 
1038   // Find a precedence edge to move
1039   uint i = _cnt;
1040   while( in(i) != nullptr ) {
1041     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
1042     i++;
1043   }
1044   _in[i] = n;                                   // Stuff prec edge over null
1045   if ( n != nullptr) n->add_out((Node *)this);  // Add mirror edge
1046 
1047 #ifdef ASSERT
1048   while ((++i)<_max) { assert(_in[i] == nullptr, "spec violation: Gap in prec edges (node %d)", _idx); }
1049 #endif
1050   Compile::current()->record_modified_node(this);
1051 }
1052 
1053 //------------------------------rm_prec----------------------------------------
1054 // Remove a precedence input.  Precedence inputs are unordered, with
1055 // duplicates removed and nulls packed down at the end.
1056 void Node::rm_prec( uint j ) {
1057   assert(j < _max, "oob: i=%d, _max=%d", j, _max);
1058   assert(j >= _cnt, "not a precedence edge");
1059   if (_in[j] == nullptr) return;   // Avoid spec violation: Gap in prec edges.
1060   _in[j]->del_out((Node *)this);
1061   close_prec_gap_at(j);
1062   Compile::current()->record_modified_node(this);
1063 }
1064 
1065 //------------------------------size_of----------------------------------------
1066 uint Node::size_of() const { return sizeof(*this); }
1067 
1068 //------------------------------ideal_reg--------------------------------------
1069 uint Node::ideal_reg() const { return 0; }
1070 
1071 //------------------------------jvms-------------------------------------------
1072 JVMState* Node::jvms() const { return nullptr; }
1073 
1074 #ifdef ASSERT
1075 //------------------------------jvms-------------------------------------------
1076 bool Node::verify_jvms(const JVMState* using_jvms) const {
1077   for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1078     if (jvms == using_jvms)  return true;
1079   }
1080   return false;
1081 }
1082 
1083 //------------------------------init_NodeProperty------------------------------
1084 void Node::init_NodeProperty() {
1085   assert(_max_classes <= max_juint, "too many NodeProperty classes");
1086   assert(max_flags() <= max_juint, "too many NodeProperty flags");
1087 }
1088 
1089 //-----------------------------max_flags---------------------------------------
1090 juint Node::max_flags() {
1091   return (PD::_last_flag << 1) - 1; // allow flags combination
1092 }
1093 #endif
1094 
1095 //------------------------------format-----------------------------------------
1096 // Print as assembly
1097 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1098 //------------------------------emit-------------------------------------------
1099 // Emit bytes using C2_MacroAssembler
1100 void Node::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {}
1101 //------------------------------size-------------------------------------------
1102 // Size of instruction in bytes
1103 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1104 
1105 //------------------------------CFG Construction-------------------------------
1106 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1107 // Goto and Return.
1108 const Node *Node::is_block_proj() const { return nullptr; }
1109 
1110 // Minimum guaranteed type
1111 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1112 
1113 
1114 //------------------------------raise_bottom_type------------------------------
1115 // Get the worst-case Type output for this Node.
1116 void Node::raise_bottom_type(const Type* new_type) {
1117   if (is_Type()) {
1118     TypeNode *n = this->as_Type();
1119     if (VerifyAliases) {
1120       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1121     }
1122     n->set_type(new_type);
1123   } else if (is_Load()) {
1124     LoadNode *n = this->as_Load();
1125     if (VerifyAliases) {
1126       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1127     }
1128     n->set_type(new_type);
1129   }
1130 }
1131 
1132 //------------------------------Identity---------------------------------------
1133 // Return a node that the given node is equivalent to.
1134 Node* Node::Identity(PhaseGVN* phase) {
1135   return this;                  // Default to no identities
1136 }
1137 
1138 //------------------------------Value------------------------------------------
1139 // Compute a new Type for a node using the Type of the inputs.
1140 const Type* Node::Value(PhaseGVN* phase) const {
1141   return bottom_type();         // Default to worst-case Type
1142 }
1143 
1144 //------------------------------Ideal------------------------------------------
1145 //
1146 // 'Idealize' the graph rooted at this Node.
1147 //
1148 // In order to be efficient and flexible there are some subtle invariants
1149 // these Ideal calls need to hold.  Running with '-XX:VerifyIterativeGVN=1' checks
1150 // these invariants, although its too slow to have on by default.  If you are
1151 // hacking an Ideal call, be sure to test with '-XX:VerifyIterativeGVN=1'
1152 //
1153 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1154 // pointer.  If ANY change is made, it must return the root of the reshaped
1155 // graph - even if the root is the same Node.  Example: swapping the inputs
1156 // to an AddINode gives the same answer and same root, but you still have to
1157 // return the 'this' pointer instead of null.
1158 //
1159 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1160 // Identity call to return an old Node; basically if Identity can find
1161 // another Node have the Ideal call make no change and return null.
1162 // Example: AddINode::Ideal must check for add of zero; in this case it
1163 // returns null instead of doing any graph reshaping.
1164 //
1165 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1166 // sharing there may be other users of the old Nodes relying on their current
1167 // semantics.  Modifying them will break the other users.
1168 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1169 // "X+3" unchanged in case it is shared.
1170 //
1171 // If you modify the 'this' pointer's inputs, you should use
1172 // 'set_req'.  If you are making a new Node (either as the new root or
1173 // some new internal piece) you may use 'init_req' to set the initial
1174 // value.  You can make a new Node with either 'new' or 'clone'.  In
1175 // either case, def-use info is correctly maintained.
1176 //
1177 // Example: reshape "(X+3)+4" into "X+7":
1178 //    set_req(1, in(1)->in(1));
1179 //    set_req(2, phase->intcon(7));
1180 //    return this;
1181 // Example: reshape "X*4" into "X<<2"
1182 //    return new LShiftINode(in(1), phase->intcon(2));
1183 //
1184 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1185 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1186 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1187 //    return new AddINode(shift, in(1));
1188 //
1189 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1190 // These forms are faster than 'phase->transform(new ConNode())' and Do
1191 // The Right Thing with def-use info.
1192 //
1193 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1194 // graph uses the 'this' Node it must be the root.  If you want a Node with
1195 // the same Opcode as the 'this' pointer use 'clone'.
1196 //
1197 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1198   return nullptr;                  // Default to being Ideal already
1199 }
1200 
1201 // Some nodes have specific Ideal subgraph transformations only if they are
1202 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1203 // for the transformations to happen.
1204 bool Node::has_special_unique_user() const {
1205   assert(outcnt() == 1, "match only for unique out");
1206   Node* n = unique_out();
1207   int op  = Opcode();
1208   if (this->is_Store()) {
1209     // Condition for back-to-back stores folding.
1210     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1211   } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) {
1212     // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input
1213     return n->Opcode() == Op_MemBarAcquire;
1214   } else if (op == Op_AddL) {
1215     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1216     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1217   } else if (op == Op_SubI || op == Op_SubL) {
1218     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1219     return n->Opcode() == op && n->in(2) == this;
1220   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1221     // See IfProjNode::Identity()
1222     return true;
1223   } else if ((is_IfFalse() || is_IfTrue()) && n->is_If()) {
1224     // See IfNode::fold_compares
1225     return true;
1226   } else {
1227     return false;
1228   }
1229 };
1230 
1231 //--------------------------find_exact_control---------------------------------
1232 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1233 Node* Node::find_exact_control(Node* ctrl) {
1234   if (ctrl == nullptr && this->is_Region())
1235     ctrl = this->as_Region()->is_copy();
1236 
1237   if (ctrl != nullptr && ctrl->is_CatchProj()) {
1238     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1239       ctrl = ctrl->in(0);
1240     if (ctrl != nullptr && !ctrl->is_top())
1241       ctrl = ctrl->in(0);
1242   }
1243 
1244   if (ctrl != nullptr && ctrl->is_Proj())
1245     ctrl = ctrl->in(0);
1246 
1247   return ctrl;
1248 }
1249 
1250 //--------------------------dominates------------------------------------------
1251 // Helper function for MemNode::all_controls_dominate().
1252 // Check if 'this' control node dominates or equal to 'sub' control node.
1253 // We already know that if any path back to Root or Start reaches 'this',
1254 // then all paths so, so this is a simple search for one example,
1255 // not an exhaustive search for a counterexample.
1256 Node::DomResult Node::dominates(Node* sub, Node_List &nlist) {
1257   assert(this->is_CFG(), "expecting control");
1258   assert(sub != nullptr && sub->is_CFG(), "expecting control");
1259 
1260   // detect dead cycle without regions
1261   int iterations_without_region_limit = DominatorSearchLimit;
1262 
1263   Node* orig_sub = sub;
1264   Node* dom      = this;
1265   bool  met_dom  = false;
1266   nlist.clear();
1267 
1268   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1269   // After seeing 'dom', continue up to Root or Start.
1270   // If we hit a region (backward split point), it may be a loop head.
1271   // Keep going through one of the region's inputs.  If we reach the
1272   // same region again, go through a different input.  Eventually we
1273   // will either exit through the loop head, or give up.
1274   // (If we get confused, break out and return a conservative 'false'.)
1275   while (sub != nullptr) {
1276     if (sub->is_top()) {
1277       // Conservative answer for dead code.
1278       return DomResult::EncounteredDeadCode;
1279     }
1280     if (sub == dom) {
1281       if (nlist.size() == 0) {
1282         // No Region nodes except loops were visited before and the EntryControl
1283         // path was taken for loops: it did not walk in a cycle.
1284         return DomResult::Dominate;
1285       } else if (met_dom) {
1286         break;          // already met before: walk in a cycle
1287       } else {
1288         // Region nodes were visited. Continue walk up to Start or Root
1289         // to make sure that it did not walk in a cycle.
1290         met_dom = true; // first time meet
1291         iterations_without_region_limit = DominatorSearchLimit; // Reset
1292      }
1293     }
1294     if (sub->is_Start() || sub->is_Root()) {
1295       // Success if we met 'dom' along a path to Start or Root.
1296       // We assume there are no alternative paths that avoid 'dom'.
1297       // (This assumption is up to the caller to ensure!)
1298       return met_dom ? DomResult::Dominate : DomResult::NotDominate;
1299     }
1300     Node* up = sub->in(0);
1301     // Normalize simple pass-through regions and projections:
1302     up = sub->find_exact_control(up);
1303     // If sub == up, we found a self-loop.  Try to push past it.
1304     if (sub == up && sub->is_Loop()) {
1305       // Take loop entry path on the way up to 'dom'.
1306       up = sub->in(1); // in(LoopNode::EntryControl);
1307     } else if (sub == up && sub->is_Region() && sub->req() == 2) {
1308       // Take in(1) path on the way up to 'dom' for regions with only one input
1309       up = sub->in(1);
1310     } else if (sub == up && sub->is_Region()) {
1311       // Try both paths for Regions with 2 input paths (it may be a loop head).
1312       // It could give conservative 'false' answer without information
1313       // which region's input is the entry path.
1314       iterations_without_region_limit = DominatorSearchLimit; // Reset
1315 
1316       bool region_was_visited_before = false;
1317       // Was this Region node visited before?
1318       // If so, we have reached it because we accidentally took a
1319       // loop-back edge from 'sub' back into the body of the loop,
1320       // and worked our way up again to the loop header 'sub'.
1321       // So, take the first unexplored path on the way up to 'dom'.
1322       for (int j = nlist.size() - 1; j >= 0; j--) {
1323         intptr_t ni = (intptr_t)nlist.at(j);
1324         Node* visited = (Node*)(ni & ~1);
1325         bool  visited_twice_already = ((ni & 1) != 0);
1326         if (visited == sub) {
1327           if (visited_twice_already) {
1328             // Visited 2 paths, but still stuck in loop body.  Give up.
1329             return DomResult::NotDominate;
1330           }
1331           // The Region node was visited before only once.
1332           // (We will repush with the low bit set, below.)
1333           nlist.remove(j);
1334           // We will find a new edge and re-insert.
1335           region_was_visited_before = true;
1336           break;
1337         }
1338       }
1339 
1340       // Find an incoming edge which has not been seen yet; walk through it.
1341       assert(up == sub, "");
1342       uint skip = region_was_visited_before ? 1 : 0;
1343       for (uint i = 1; i < sub->req(); i++) {
1344         Node* in = sub->in(i);
1345         if (in != nullptr && !in->is_top() && in != sub) {
1346           if (skip == 0) {
1347             up = in;
1348             break;
1349           }
1350           --skip;               // skip this nontrivial input
1351         }
1352       }
1353 
1354       // Set 0 bit to indicate that both paths were taken.
1355       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1356     }
1357 
1358     if (up == sub) {
1359       break;    // some kind of tight cycle
1360     }
1361     if (up == orig_sub && met_dom) {
1362       // returned back after visiting 'dom'
1363       break;    // some kind of cycle
1364     }
1365     if (--iterations_without_region_limit < 0) {
1366       break;    // dead cycle
1367     }
1368     sub = up;
1369   }
1370 
1371   // Did not meet Root or Start node in pred. chain.
1372   return DomResult::NotDominate;
1373 }
1374 
1375 //------------------------------remove_dead_region-----------------------------
1376 // This control node is dead.  Follow the subgraph below it making everything
1377 // using it dead as well.  This will happen normally via the usual IterGVN
1378 // worklist but this call is more efficient.  Do not update use-def info
1379 // inside the dead region, just at the borders.
1380 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1381   // Con's are a popular node to re-hit in the hash table again.
1382   if( dead->is_Con() ) return;
1383 
1384   ResourceMark rm;
1385   Node_List nstack;
1386   VectorSet dead_set; // notify uses only once
1387 
1388   Node *top = igvn->C->top();
1389   nstack.push(dead);
1390   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1391 
1392   while (nstack.size() > 0) {
1393     dead = nstack.pop();
1394     if (!dead_set.test_set(dead->_idx)) {
1395       // If dead has any live uses, those are now still attached. Notify them before we lose them.
1396       igvn->add_users_to_worklist(dead);
1397     }
1398     if (dead->Opcode() == Op_SafePoint) {
1399       dead->as_SafePoint()->disconnect_from_root(igvn);
1400     }
1401     if (dead->outcnt() > 0) {
1402       // Keep dead node on stack until all uses are processed.
1403       nstack.push(dead);
1404       // For all Users of the Dead...    ;-)
1405       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1406         Node* use = dead->last_out(k);
1407         igvn->hash_delete(use);       // Yank from hash table prior to mod
1408         if (use->in(0) == dead) {     // Found another dead node
1409           assert (!use->is_Con(), "Control for Con node should be Root node.");
1410           use->set_req(0, top);       // Cut dead edge to prevent processing
1411           nstack.push(use);           // the dead node again.
1412         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1413                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1414                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1415           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1416           use->set_req(0, top);       // Cut self edge
1417           nstack.push(use);
1418         } else {                      // Else found a not-dead user
1419           // Dead if all inputs are top or null
1420           bool dead_use = !use->is_Root(); // Keep empty graph alive
1421           for (uint j = 1; j < use->req(); j++) {
1422             Node* in = use->in(j);
1423             if (in == dead) {         // Turn all dead inputs into TOP
1424               use->set_req(j, top);
1425             } else if (in != nullptr && !in->is_top()) {
1426               dead_use = false;
1427             }
1428           }
1429           if (dead_use) {
1430             if (use->is_Region()) {
1431               use->set_req(0, top);   // Cut self edge
1432             }
1433             nstack.push(use);
1434           } else {
1435             igvn->_worklist.push(use);
1436           }
1437         }
1438         // Refresh the iterator, since any number of kills might have happened.
1439         k = dead->last_outs(kmin);
1440       }
1441     } else { // (dead->outcnt() == 0)
1442       // Done with outputs.
1443       igvn->hash_delete(dead);
1444       igvn->_worklist.remove(dead);
1445       igvn->set_type(dead, Type::TOP);
1446       // Kill all inputs to the dead guy
1447       for (uint i=0; i < dead->req(); i++) {
1448         Node *n = dead->in(i);      // Get input to dead guy
1449         if (n != nullptr && !n->is_top()) { // Input is valid?
1450           dead->set_req(i, top);    // Smash input away
1451           if (n->outcnt() == 0) {   // Input also goes dead?
1452             if (!n->is_Con())
1453               nstack.push(n);       // Clear it out as well
1454           } else if (n->outcnt() == 1 &&
1455                      n->has_special_unique_user()) {
1456             igvn->add_users_to_worklist( n );
1457           } else if (n->outcnt() <= 2 && n->is_Store()) {
1458             // Push store's uses on worklist to enable folding optimization for
1459             // store/store and store/load to the same address.
1460             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1461             // and remove_globally_dead_node().
1462             igvn->add_users_to_worklist( n );
1463           } else if (dead->is_data_proj_of_pure_function(n)) {
1464             igvn->_worklist.push(n);
1465           } else {
1466             BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, n);
1467           }
1468         }
1469       }
1470       igvn->C->remove_useless_node(dead);
1471     } // (dead->outcnt() == 0)
1472   }   // while (nstack.size() > 0) for outputs
1473   return;
1474 }
1475 
1476 //------------------------------remove_dead_region-----------------------------
1477 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1478   Node *n = in(0);
1479   if( !n ) return false;
1480   // Lost control into this guy?  I.e., it became unreachable?
1481   // Aggressively kill all unreachable code.
1482   if (can_reshape && n->is_top()) {
1483     kill_dead_code(this, phase->is_IterGVN());
1484     return false; // Node is dead.
1485   }
1486 
1487   if( n->is_Region() && n->as_Region()->is_copy() ) {
1488     Node *m = n->nonnull_req();
1489     set_req(0, m);
1490     return true;
1491   }
1492   return false;
1493 }
1494 
1495 //------------------------------hash-------------------------------------------
1496 // Hash function over Nodes.
1497 uint Node::hash() const {
1498   uint sum = 0;
1499   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1500     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded nulls
1501   return (sum>>2) + _cnt + Opcode();
1502 }
1503 
1504 //------------------------------cmp--------------------------------------------
1505 // Compare special parts of simple Nodes
1506 bool Node::cmp( const Node &n ) const {
1507   return true;                  // Must be same
1508 }
1509 
1510 //------------------------------rematerialize-----------------------------------
1511 // Should we clone rather than spill this instruction?
1512 bool Node::rematerialize() const {
1513   if ( is_Mach() )
1514     return this->as_Mach()->rematerialize();
1515   else
1516     return (_flags & Flag_rematerialize) != 0;
1517 }
1518 
1519 //------------------------------needs_anti_dependence_check---------------------
1520 // Nodes which use memory without consuming it, hence need antidependences.
1521 bool Node::needs_anti_dependence_check() const {
1522   if (req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0) {
1523     return false;
1524   }
1525   return in(1)->bottom_type()->has_memory();
1526 }
1527 
1528 // Get an integer constant from a ConNode (or CastIINode).
1529 // Return a default value if there is no apparent constant here.
1530 const TypeInt* Node::find_int_type() const {
1531   if (this->is_Type()) {
1532     return this->as_Type()->type()->isa_int();
1533   } else if (this->is_Con()) {
1534     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1535     return this->bottom_type()->isa_int();
1536   }
1537   return nullptr;
1538 }
1539 
1540 const TypeInteger* Node::find_integer_type(BasicType bt) const {
1541   if (this->is_Type()) {
1542     return this->as_Type()->type()->isa_integer(bt);
1543   } else if (this->is_Con()) {
1544     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1545     return this->bottom_type()->isa_integer(bt);
1546   }
1547   return nullptr;
1548 }
1549 
1550 // Get a pointer constant from a ConstNode.
1551 // Returns the constant if it is a pointer ConstNode
1552 intptr_t Node::get_ptr() const {
1553   assert( Opcode() == Op_ConP, "" );
1554   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1555 }
1556 
1557 // Get a narrow oop constant from a ConNNode.
1558 intptr_t Node::get_narrowcon() const {
1559   assert( Opcode() == Op_ConN, "" );
1560   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1561 }
1562 
1563 // Get a long constant from a ConNode.
1564 // Return a default value if there is no apparent constant here.
1565 const TypeLong* Node::find_long_type() const {
1566   if (this->is_Type()) {
1567     return this->as_Type()->type()->isa_long();
1568   } else if (this->is_Con()) {
1569     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1570     return this->bottom_type()->isa_long();
1571   }
1572   return nullptr;
1573 }
1574 
1575 
1576 /**
1577  * Return a ptr type for nodes which should have it.
1578  */
1579 const TypePtr* Node::get_ptr_type() const {
1580   const TypePtr* tp = this->bottom_type()->make_ptr();
1581 #ifdef ASSERT
1582   if (tp == nullptr) {
1583     this->dump(1);
1584     assert((tp != nullptr), "unexpected node type");
1585   }
1586 #endif
1587   return tp;
1588 }
1589 
1590 // Get a double constant from a ConstNode.
1591 // Returns the constant if it is a double ConstNode
1592 jdouble Node::getd() const {
1593   assert( Opcode() == Op_ConD, "" );
1594   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1595 }
1596 
1597 // Get a float constant from a ConstNode.
1598 // Returns the constant if it is a float ConstNode
1599 jfloat Node::getf() const {
1600   assert( Opcode() == Op_ConF, "" );
1601   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1602 }
1603 
1604 // Get a half float constant from a ConstNode.
1605 // Returns the constant if it is a float ConstNode
1606 jshort Node::geth() const {
1607   assert( Opcode() == Op_ConH, "" );
1608   return ((ConHNode*)this)->type()->is_half_float_constant()->geth();
1609 }
1610 
1611 #ifndef PRODUCT
1612 
1613 // Call this from debugger:
1614 Node* old_root() {
1615   Matcher* matcher = Compile::current()->matcher();
1616   if (matcher != nullptr) {
1617     Node* new_root = Compile::current()->root();
1618     Node* old_root = matcher->find_old_node(new_root);
1619     if (old_root != nullptr) {
1620       return old_root;
1621     }
1622   }
1623   tty->print("old_root: not found.\n");
1624   return nullptr;
1625 }
1626 
1627 // BFS traverse all reachable nodes from start, call callback on them
1628 template <typename Callback>
1629 void visit_nodes(Node* start, Callback callback, bool traverse_output, bool only_ctrl) {
1630   Unique_Mixed_Node_List worklist;
1631   worklist.add(start);
1632   for (uint i = 0; i < worklist.size(); i++) {
1633     Node* n = worklist[i];
1634     callback(n);
1635     for (uint i = 0; i < n->len(); i++) {
1636       if (!only_ctrl || n->is_Region() || (n->Opcode() == Op_Root) || (i == TypeFunc::Control)) {
1637         // If only_ctrl is set: Add regions, the root node, or control inputs only
1638         worklist.add(n->in(i));
1639       }
1640     }
1641     if (traverse_output && !only_ctrl) {
1642       for (uint i = 0; i < n->outcnt(); i++) {
1643         worklist.add(n->raw_out(i));
1644       }
1645     }
1646   }
1647 }
1648 
1649 // BFS traverse from start, return node with idx
1650 static Node* find_node_by_idx(Node* start, uint idx, bool traverse_output, bool only_ctrl) {
1651   ResourceMark rm;
1652   Node* result = nullptr;
1653   auto callback = [&] (Node* n) {
1654     if (n->_idx == idx) {
1655       if (result != nullptr) {
1656         tty->print("find_node_by_idx: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1657           (uintptr_t)result, (uintptr_t)n, idx);
1658       }
1659       result = n;
1660     }
1661   };
1662   visit_nodes(start, callback, traverse_output, only_ctrl);
1663   return result;
1664 }
1665 
1666 static int node_idx_cmp(const Node** n1, const Node** n2) {
1667   return (*n1)->_idx - (*n2)->_idx;
1668 }
1669 
1670 static void find_nodes_by_name(Node* start, const char* name) {
1671   ResourceMark rm;
1672   GrowableArray<const Node*> ns;
1673   auto callback = [&] (const Node* n) {
1674     if (StringUtils::is_star_match(name, n->Name())) {
1675       ns.push(n);
1676     }
1677   };
1678   visit_nodes(start, callback, true, false);
1679   ns.sort(node_idx_cmp);
1680   for (int i = 0; i < ns.length(); i++) {
1681     ns.at(i)->dump();
1682   }
1683 }
1684 
1685 static void find_nodes_by_dump(Node* start, const char* pattern) {
1686   ResourceMark rm;
1687   GrowableArray<const Node*> ns;
1688   auto callback = [&] (const Node* n) {
1689     stringStream stream;
1690     n->dump("", false, &stream);
1691     if (StringUtils::is_star_match(pattern, stream.base())) {
1692       ns.push(n);
1693     }
1694   };
1695   visit_nodes(start, callback, true, false);
1696   ns.sort(node_idx_cmp);
1697   for (int i = 0; i < ns.length(); i++) {
1698     ns.at(i)->dump();
1699   }
1700 }
1701 
1702 // call from debugger: find node with name pattern in new/current graph
1703 // name can contain "*" in match pattern to match any characters
1704 // the matching is case insensitive
1705 void find_nodes_by_name(const char* name) {
1706   Node* root = Compile::current()->root();
1707   find_nodes_by_name(root, name);
1708 }
1709 
1710 // call from debugger: find node with name pattern in old graph
1711 // name can contain "*" in match pattern to match any characters
1712 // the matching is case insensitive
1713 void find_old_nodes_by_name(const char* name) {
1714   Node* root = old_root();
1715   find_nodes_by_name(root, name);
1716 }
1717 
1718 // call from debugger: find node with dump pattern in new/current graph
1719 // can contain "*" in match pattern to match any characters
1720 // the matching is case insensitive
1721 void find_nodes_by_dump(const char* pattern) {
1722   Node* root = Compile::current()->root();
1723   find_nodes_by_dump(root, pattern);
1724 }
1725 
1726 // call from debugger: find node with name pattern in old graph
1727 // can contain "*" in match pattern to match any characters
1728 // the matching is case insensitive
1729 void find_old_nodes_by_dump(const char* pattern) {
1730   Node* root = old_root();
1731   find_nodes_by_dump(root, pattern);
1732 }
1733 
1734 // Call this from debugger, search in same graph as n:
1735 Node* find_node(Node* n, const int idx) {
1736   return n->find(idx);
1737 }
1738 
1739 // Call this from debugger, search in new nodes:
1740 Node* find_node(const int idx) {
1741   return Compile::current()->root()->find(idx);
1742 }
1743 
1744 // Call this from debugger, search in old nodes:
1745 Node* find_old_node(const int idx) {
1746   Node* root = old_root();
1747   return (root == nullptr) ? nullptr : root->find(idx);
1748 }
1749 
1750 // Call this from debugger, search in same graph as n:
1751 Node* find_ctrl(Node* n, const int idx) {
1752   return n->find_ctrl(idx);
1753 }
1754 
1755 // Call this from debugger, search in new nodes:
1756 Node* find_ctrl(const int idx) {
1757   return Compile::current()->root()->find_ctrl(idx);
1758 }
1759 
1760 // Call this from debugger, search in old nodes:
1761 Node* find_old_ctrl(const int idx) {
1762   Node* root = old_root();
1763   return (root == nullptr) ? nullptr : root->find_ctrl(idx);
1764 }
1765 
1766 //------------------------------find_ctrl--------------------------------------
1767 // Find an ancestor to this node in the control history with given _idx
1768 Node* Node::find_ctrl(int idx) {
1769   return find(idx, true);
1770 }
1771 
1772 //------------------------------find-------------------------------------------
1773 // Tries to find the node with the index |idx| starting from this node. If idx is negative,
1774 // the search also includes forward (out) edges. Returns null if not found.
1775 // If only_ctrl is set, the search will only be done on control nodes. Returns null if
1776 // not found or if the node to be found is not a control node (search will not find it).
1777 Node* Node::find(const int idx, bool only_ctrl) {
1778   ResourceMark rm;
1779   return find_node_by_idx(this, abs(idx), (idx < 0), only_ctrl);
1780 }
1781 
1782 class PrintBFS {
1783 public:
1784   PrintBFS(const Node* start, const int max_distance, const Node* target, const char* options, outputStream* st)
1785   : _start(start), _max_distance(max_distance), _target(target), _options(options), _output(st),
1786     _dcc(this), _info_uid(cmpkey, hashkey) {}
1787 
1788   void run();
1789 private:
1790   // pipeline steps
1791   bool configure();
1792   void collect();
1793   void select();
1794   void select_all();
1795   void select_all_paths();
1796   void select_shortest_path();
1797   void sort();
1798   void print();
1799 
1800   // inputs
1801   const Node* _start;
1802   const int _max_distance;
1803   const Node* _target;
1804   const char* _options;
1805   outputStream* _output;
1806 
1807   // options
1808   bool _traverse_inputs = false;
1809   bool _traverse_outputs = false;
1810   struct Filter {
1811     bool _control = false;
1812     bool _memory = false;
1813     bool _data = false;
1814     bool _mixed = false;
1815     bool _other = false;
1816     bool is_empty() const {
1817       return !(_control || _memory || _data || _mixed || _other);
1818     }
1819     void set_all() {
1820       _control = true;
1821       _memory = true;
1822       _data = true;
1823       _mixed = true;
1824       _other = true;
1825     }
1826     // Check if the filter accepts the node. Go by the type categories, but also all CFG nodes
1827     // are considered to have control.
1828     bool accepts(const Node* n) {
1829       const Type* t = n->bottom_type();
1830       return ( _data    &&  t->has_category(Type::Category::Data)                    ) ||
1831              ( _memory  &&  t->has_category(Type::Category::Memory)                  ) ||
1832              ( _mixed   &&  t->has_category(Type::Category::Mixed)                   ) ||
1833              ( _control && (t->has_category(Type::Category::Control) || n->is_CFG()) ) ||
1834              ( _other   &&  t->has_category(Type::Category::Other)                   );
1835     }
1836   };
1837   Filter _filter_visit;
1838   Filter _filter_boundary;
1839   bool _sort_idx = false;
1840   bool _all_paths = false;
1841   bool _use_color = false;
1842   bool _print_blocks = false;
1843   bool _print_old = false;
1844   bool _dump_only = false;
1845   bool _print_igv = false;
1846 
1847   void print_options_help(bool print_examples);
1848   bool parse_options();
1849 
1850 public:
1851   class DumpConfigColored : public Node::DumpConfig {
1852   public:
1853     DumpConfigColored(PrintBFS* bfs) : _bfs(bfs) {};
1854     virtual void pre_dump(outputStream* st, const Node* n);
1855     virtual void post_dump(outputStream* st);
1856   private:
1857     PrintBFS* _bfs;
1858   };
1859 private:
1860   DumpConfigColored _dcc;
1861 
1862   // node info
1863   static Node* old_node(const Node* n); // mach node -> prior IR node
1864   void print_node_idx(const Node* n);
1865   void print_block_id(const Block* b);
1866   void print_node_block(const Node* n); // _pre_order, head idx, _idom, _dom_depth
1867 
1868   // traversal data structures
1869   GrowableArray<const Node*> _worklist; // BFS queue
1870   void maybe_traverse(const Node* src, const Node* dst);
1871 
1872   // node info annotation
1873   class Info {
1874   public:
1875     Info() : Info(nullptr, 0) {};
1876     Info(const Node* node, int distance)
1877       : _node(node), _distance_from_start(distance) {};
1878     const Node* node() const { return _node; };
1879     int distance() const { return _distance_from_start; };
1880     int distance_from_target() const { return _distance_from_target; }
1881     void set_distance_from_target(int d) { _distance_from_target = d; }
1882     GrowableArray<const Node*> edge_bwd; // pointing toward _start
1883     bool is_marked() const { return _mark; } // marked to keep during select
1884     void set_mark() { _mark = true; }
1885   private:
1886     const Node* _node;
1887     int _distance_from_start; // distance from _start
1888     int _distance_from_target = 0; // distance from _target if _all_paths
1889     bool _mark = false;
1890   };
1891   Dict _info_uid;            // Node -> uid
1892   GrowableArray<Info> _info; // uid  -> info
1893 
1894   Info* find_info(const Node* n) {
1895     size_t uid = (size_t)_info_uid[n];
1896     if (uid == 0) {
1897       return nullptr;
1898     }
1899     return &_info.at((int)uid);
1900   }
1901 
1902   void make_info(const Node* node, const int distance) {
1903     assert(find_info(node) == nullptr, "node does not yet have info");
1904     size_t uid = _info.length() + 1;
1905     _info_uid.Insert((void*)node, (void*)uid);
1906     _info.at_put_grow((int)uid, Info(node, distance));
1907     assert(find_info(node)->node() == node, "stored correct node");
1908   };
1909 
1910   // filled by sort, printed by print
1911   GrowableArray<const Node*> _print_list;
1912 
1913   // print header + node table
1914   void print_header() const;
1915   void print_node(const Node* n);
1916 };
1917 
1918 void PrintBFS::run() {
1919   if (!configure()) {
1920     return;
1921   }
1922   collect();
1923   select();
1924   sort();
1925   print();
1926 }
1927 
1928 // set up configuration for BFS and print
1929 bool PrintBFS::configure() {
1930   if (_max_distance < 0) {
1931     _output->print_cr("dump_bfs: max_distance must be non-negative!");
1932     return false;
1933   }
1934   return parse_options();
1935 }
1936 
1937 // BFS traverse according to configuration, fill worklist and info
1938 void PrintBFS::collect() {
1939   maybe_traverse(_start, _start);
1940   int pos = 0;
1941   while (pos < _worklist.length()) {
1942     const Node* n = _worklist.at(pos++); // next node to traverse
1943     Info* info = find_info(n);
1944     if (!_filter_visit.accepts(n) && n != _start) {
1945       continue; // we hit boundary, do not traverse further
1946     }
1947     if (n != _start && n->is_Root()) {
1948       continue; // traversing through root node would lead to unrelated nodes
1949     }
1950     if (_traverse_inputs && _max_distance > info->distance()) {
1951       for (uint i = 0; i < n->req(); i++) {
1952         maybe_traverse(n, n->in(i));
1953       }
1954     }
1955     if (_traverse_outputs && _max_distance > info->distance()) {
1956       for (uint i = 0; i < n->outcnt(); i++) {
1957         maybe_traverse(n, n->raw_out(i));
1958       }
1959     }
1960   }
1961 }
1962 
1963 // go through work list, mark those that we want to print
1964 void PrintBFS::select() {
1965   if (_target == nullptr ) {
1966     select_all();
1967   } else {
1968     if (find_info(_target) == nullptr) {
1969       _output->print_cr("Could not find target in BFS.");
1970       return;
1971     }
1972     if (_all_paths) {
1973       select_all_paths();
1974     } else {
1975       select_shortest_path();
1976     }
1977   }
1978 }
1979 
1980 // take all nodes from BFS
1981 void PrintBFS::select_all() {
1982   for (int i = 0; i < _worklist.length(); i++) {
1983     const Node* n = _worklist.at(i);
1984     Info* info = find_info(n);
1985     info->set_mark();
1986   }
1987 }
1988 
1989 // traverse backward from target, along edges found in BFS
1990 void PrintBFS::select_all_paths() {
1991   int pos = 0;
1992   GrowableArray<const Node*> backtrace;
1993   // start from target
1994   backtrace.push(_target);
1995   find_info(_target)->set_mark();
1996   // traverse backward
1997   while (pos < backtrace.length()) {
1998     const Node* n = backtrace.at(pos++);
1999     Info* info = find_info(n);
2000     for (int i = 0; i < info->edge_bwd.length(); i++) {
2001       // all backward edges
2002       const Node* back = info->edge_bwd.at(i);
2003       Info* back_info = find_info(back);
2004       if (!back_info->is_marked()) {
2005         // not yet found this on way back.
2006         back_info->set_distance_from_target(info->distance_from_target() + 1);
2007         if (back_info->distance_from_target() + back_info->distance() <= _max_distance) {
2008           // total distance is small enough
2009           back_info->set_mark();
2010           backtrace.push(back);
2011         }
2012       }
2013     }
2014   }
2015 }
2016 
2017 void PrintBFS::select_shortest_path() {
2018   const Node* current = _target;
2019   while (true) {
2020     Info* info = find_info(current);
2021     info->set_mark();
2022     if (current == _start) {
2023       break;
2024     }
2025     // first edge -> leads us one step closer to _start
2026     current = info->edge_bwd.at(0);
2027   }
2028 }
2029 
2030 // go through worklist in desired order, put the marked ones in print list
2031 void PrintBFS::sort() {
2032   if (_traverse_inputs && !_traverse_outputs) {
2033     // reverse order
2034     for (int i = _worklist.length() - 1; i >= 0; i--) {
2035       const Node* n = _worklist.at(i);
2036       Info* info = find_info(n);
2037       if (info->is_marked()) {
2038         _print_list.push(n);
2039       }
2040     }
2041   } else {
2042     // same order as worklist
2043     for (int i = 0; i < _worklist.length(); i++) {
2044       const Node* n = _worklist.at(i);
2045       Info* info = find_info(n);
2046       if (info->is_marked()) {
2047         _print_list.push(n);
2048       }
2049     }
2050   }
2051   if (_sort_idx) {
2052     _print_list.sort(node_idx_cmp);
2053   }
2054 }
2055 
2056 // go through printlist and print
2057 void PrintBFS::print() {
2058   if (_print_list.length() > 0 ) {
2059     print_header();
2060     for (int i = 0; i < _print_list.length(); i++) {
2061       const Node* n = _print_list.at(i);
2062       print_node(n);
2063     }
2064     if (_print_igv) {
2065       Compile* C = Compile::current();
2066       C->init_igv();
2067       C->igv_print_graph_to_network("PrintBFS", (Node*) C->root(), _print_list);
2068     }
2069   } else {
2070     _output->print_cr("No nodes to print.");
2071   }
2072 }
2073 
2074 void PrintBFS::print_options_help(bool print_examples) {
2075   _output->print_cr("Usage: node->dump_bfs(int max_distance, Node* target, char* options)");
2076   _output->print_cr("");
2077   _output->print_cr("Use cases:");
2078   _output->print_cr("  BFS traversal: no target required");
2079   _output->print_cr("  shortest path: set target");
2080   _output->print_cr("  all paths: set target and put 'A' in options");
2081   _output->print_cr("  detect loop: subcase of all paths, have start==target");
2082   _output->print_cr("");
2083   _output->print_cr("Arguments:");
2084   _output->print_cr("  this/start: staring point of BFS");
2085   _output->print_cr("  target:");
2086   _output->print_cr("    if null: simple BFS");
2087   _output->print_cr("    else: shortest path or all paths between this/start and target");
2088   _output->print_cr("  options:");
2089   _output->print_cr("    if null: same as \"cdmox@B\"");
2090   _output->print_cr("    else: use combination of following characters");
2091   _output->print_cr("      h: display this help info");
2092   _output->print_cr("      H: display this help info, with examples");
2093   _output->print_cr("      +: traverse in-edges (on if neither + nor -)");
2094   _output->print_cr("      -: traverse out-edges");
2095   _output->print_cr("      c: visit control nodes");
2096   _output->print_cr("      d: visit data nodes");
2097   _output->print_cr("      m: visit memory nodes");
2098   _output->print_cr("      o: visit other nodes");
2099   _output->print_cr("      x: visit mixed nodes");
2100   _output->print_cr("      C: boundary control nodes");
2101   _output->print_cr("      D: boundary data nodes");
2102   _output->print_cr("      M: boundary memory nodes");
2103   _output->print_cr("      O: boundary other nodes");
2104   _output->print_cr("      X: boundary mixed nodes");
2105   _output->print_cr("      #: display node category in color (not supported in all terminals)");
2106   _output->print_cr("      S: sort displayed nodes by node idx");
2107   _output->print_cr("      A: all paths (not just shortest path to target)");
2108   _output->print_cr("      @: print old nodes - before matching (if available)");
2109   _output->print_cr("      B: print scheduling blocks (if available)");
2110   _output->print_cr("      $: dump only, no header, no other columns");
2111   _output->print_cr("      !: show nodes on IGV (sent over network stream)");
2112   _output->print_cr("");
2113   _output->print_cr("recursively follow edges to nodes with permitted visit types,");
2114   _output->print_cr("on the boundary additionally display nodes allowed in boundary types");
2115   _output->print_cr("Note: the categories can be overlapping. For example a mixed node");
2116   _output->print_cr("      can contain control and memory output. Some from the other");
2117   _output->print_cr("      category are also control (Halt, Return, etc).");
2118   _output->print_cr("");
2119   _output->print_cr("output columns:");
2120   _output->print_cr("  dist:  BFS distance to this/start");
2121   _output->print_cr("  apd:   all paths distance (d_outputart + d_target)");
2122   _output->print_cr("  block: block identifier, based on _pre_order");
2123   _output->print_cr("  head:  first node in block");
2124   _output->print_cr("  idom:  head node of idom block");
2125   _output->print_cr("  depth: depth of block (_dom_depth)");
2126   _output->print_cr("  old:   old IR node - before matching");
2127   _output->print_cr("  dump:  node->dump()");
2128   _output->print_cr("");
2129   _output->print_cr("Note: if none of the \"cmdxo\" characters are in the options string");
2130   _output->print_cr("      then we set all of them.");
2131   _output->print_cr("      This allows for short strings like \"#\" for colored input traversal");
2132   _output->print_cr("      or \"-#\" for colored output traversal.");
2133   if (print_examples) {
2134     _output->print_cr("");
2135     _output->print_cr("Examples:");
2136     _output->print_cr("  if->dump_bfs(10, 0, \"+cxo\")");
2137     _output->print_cr("    starting at some if node, traverse inputs recursively");
2138     _output->print_cr("    only along control (mixed and other can also be control)");
2139     _output->print_cr("  phi->dump_bfs(5, 0, \"-dxo\")");
2140     _output->print_cr("    starting at phi node, traverse outputs recursively");
2141     _output->print_cr("    only along data (mixed and other can also have data flow)");
2142     _output->print_cr("  find_node(385)->dump_bfs(3, 0, \"cdmox+#@B\")");
2143     _output->print_cr("    find inputs of node 385, up to 3 nodes up (+)");
2144     _output->print_cr("    traverse all nodes (cdmox), use colors (#)");
2145     _output->print_cr("    display old nodes and blocks, if they exist");
2146     _output->print_cr("    useful call to start with");
2147     _output->print_cr("  find_node(102)->dump_bfs(10, 0, \"dCDMOX-\")");
2148     _output->print_cr("    find non-data dependencies of a data node");
2149     _output->print_cr("    follow data node outputs until we find another category");
2150     _output->print_cr("    node as the boundary");
2151     _output->print_cr("  x->dump_bfs(10, y, 0)");
2152     _output->print_cr("    find shortest path from x to y, along any edge or node");
2153     _output->print_cr("    will not find a path if it is longer than 10");
2154     _output->print_cr("    useful to find how x and y are related");
2155     _output->print_cr("  find_node(741)->dump_bfs(20, find_node(746), \"c+\")");
2156     _output->print_cr("    find shortest control path between two nodes");
2157     _output->print_cr("  find_node(741)->dump_bfs(8, find_node(746), \"cdmox+A\")");
2158     _output->print_cr("    find all paths (A) between two nodes of length at most 8");
2159     _output->print_cr("  find_node(741)->dump_bfs(7, find_node(741), \"c+A\")");
2160     _output->print_cr("    find all control loops for this node");
2161   }
2162 }
2163 
2164 bool PrintBFS::parse_options() {
2165   if (_options == nullptr) {
2166     _options = "cdmox@B"; // default options
2167   }
2168   size_t len = strlen(_options);
2169   for (size_t i = 0; i < len; i++) {
2170     switch (_options[i]) {
2171       case '+':
2172         _traverse_inputs = true;
2173         break;
2174       case '-':
2175         _traverse_outputs = true;
2176         break;
2177       case 'c':
2178         _filter_visit._control = true;
2179         break;
2180       case 'm':
2181         _filter_visit._memory = true;
2182         break;
2183       case 'd':
2184         _filter_visit._data = true;
2185         break;
2186       case 'x':
2187         _filter_visit._mixed = true;
2188         break;
2189       case 'o':
2190         _filter_visit._other = true;
2191         break;
2192       case 'C':
2193         _filter_boundary._control = true;
2194         break;
2195       case 'M':
2196         _filter_boundary._memory = true;
2197         break;
2198       case 'D':
2199         _filter_boundary._data = true;
2200         break;
2201       case 'X':
2202         _filter_boundary._mixed = true;
2203         break;
2204       case 'O':
2205         _filter_boundary._other = true;
2206         break;
2207       case 'S':
2208         _sort_idx = true;
2209         break;
2210       case 'A':
2211         _all_paths = true;
2212         break;
2213       case '#':
2214         _use_color = true;
2215         break;
2216       case 'B':
2217         _print_blocks = true;
2218         break;
2219       case '@':
2220         _print_old = true;
2221         break;
2222       case '$':
2223         _dump_only = true;
2224         break;
2225       case '!':
2226         _print_igv = true;
2227         break;
2228       case 'h':
2229         print_options_help(false);
2230         return false;
2231        case 'H':
2232         print_options_help(true);
2233         return false;
2234       default:
2235         _output->print_cr("dump_bfs: Unrecognized option \'%c\'", _options[i]);
2236         _output->print_cr("for help, run: find_node(0)->dump_bfs(0,0,\"H\")");
2237         return false;
2238     }
2239   }
2240   if (!_traverse_inputs && !_traverse_outputs) {
2241     _traverse_inputs = true;
2242   }
2243   if (_filter_visit.is_empty()) {
2244     _filter_visit.set_all();
2245   }
2246   Compile* C = Compile::current();
2247   _print_old &= (C->matcher() != nullptr); // only show old if there are new
2248   _print_blocks &= (C->cfg() != nullptr); // only show blocks if available
2249   return true;
2250 }
2251 
2252 void PrintBFS::DumpConfigColored::pre_dump(outputStream* st, const Node* n) {
2253   if (!_bfs->_use_color) {
2254     return;
2255   }
2256   Info* info = _bfs->find_info(n);
2257   if (info == nullptr || !info->is_marked()) {
2258     return;
2259   }
2260 
2261   const Type* t = n->bottom_type();
2262   switch (t->category()) {
2263     case Type::Category::Data:
2264       st->print("\u001b[34m");
2265       break;
2266     case Type::Category::Memory:
2267       st->print("\u001b[32m");
2268       break;
2269     case Type::Category::Mixed:
2270       st->print("\u001b[35m");
2271       break;
2272     case Type::Category::Control:
2273       st->print("\u001b[31m");
2274       break;
2275     case Type::Category::Other:
2276       st->print("\u001b[33m");
2277       break;
2278     case Type::Category::Undef:
2279       n->dump();
2280       assert(false, "category undef ??");
2281       break;
2282     default:
2283       n->dump();
2284       assert(false, "not covered");
2285       break;
2286   }
2287 }
2288 
2289 void PrintBFS::DumpConfigColored::post_dump(outputStream* st) {
2290   if (!_bfs->_use_color) {
2291     return;
2292   }
2293   st->print("\u001b[0m"); // white
2294 }
2295 
2296 Node* PrintBFS::old_node(const Node* n) {
2297   Compile* C = Compile::current();
2298   if (C->matcher() == nullptr || !C->node_arena()->contains(n)) {
2299     return (Node*)nullptr;
2300   } else {
2301     return C->matcher()->find_old_node(n);
2302   }
2303 }
2304 
2305 void PrintBFS::print_node_idx(const Node* n) {
2306   Compile* C = Compile::current();
2307   char buf[30];
2308   if (n == nullptr) {
2309     os::snprintf_checked(buf, sizeof(buf), "_");           // null
2310   } else if (C->node_arena()->contains(n)) {
2311     os::snprintf_checked(buf, sizeof(buf), "%d", n->_idx);  // new node
2312   } else {
2313     os::snprintf_checked(buf, sizeof(buf), "o%d", n->_idx); // old node
2314   }
2315   _output->print("%6s", buf);
2316 }
2317 
2318 void PrintBFS::print_block_id(const Block* b) {
2319   Compile* C = Compile::current();
2320   char buf[30];
2321   os::snprintf_checked(buf, sizeof(buf), "B%d", b->_pre_order);
2322   _output->print("%7s", buf);
2323 }
2324 
2325 void PrintBFS::print_node_block(const Node* n) {
2326   Compile* C = Compile::current();
2327   Block* b = C->node_arena()->contains(n)
2328              ? C->cfg()->get_block_for_node(n)
2329              : nullptr; // guard against old nodes
2330   if (b == nullptr) {
2331     _output->print("      _"); // Block
2332     _output->print("     _");  // head
2333     _output->print("     _");  // idom
2334     _output->print("      _"); // depth
2335   } else {
2336     print_block_id(b);
2337     print_node_idx(b->head());
2338     if (b->_idom) {
2339       print_node_idx(b->_idom->head());
2340     } else {
2341       _output->print("     _"); // idom
2342     }
2343     _output->print("%6d ", b->_dom_depth);
2344   }
2345 }
2346 
2347 // filter, and add to worklist, add info, note traversal edges
2348 void PrintBFS::maybe_traverse(const Node* src, const Node* dst) {
2349   if (dst != nullptr &&
2350      (_filter_visit.accepts(dst) ||
2351       _filter_boundary.accepts(dst) ||
2352       dst == _start)) { // correct category or start?
2353     if (find_info(dst) == nullptr) {
2354       // never visited - set up info
2355       _worklist.push(dst);
2356       int d = 0;
2357       if (dst != _start) {
2358         d = find_info(src)->distance() + 1;
2359       }
2360       make_info(dst, d);
2361     }
2362     if (src != dst) {
2363       // traversal edges useful during select
2364       find_info(dst)->edge_bwd.push(src);
2365     }
2366   }
2367 }
2368 
2369 void PrintBFS::print_header() const {
2370   if (_dump_only) {
2371     return; // no header in dump only mode
2372   }
2373   _output->print("dist");                         // distance
2374   if (_all_paths) {
2375     _output->print(" apd");                       // all paths distance
2376   }
2377   if (_print_blocks) {
2378     _output->print(" [block  head  idom depth]"); // block
2379   }
2380   if (_print_old) {
2381     _output->print("   old");                     // old node
2382   }
2383   _output->print(" dump\n");                      // node dump
2384   _output->print_cr("---------------------------------------------");
2385 }
2386 
2387 void PrintBFS::print_node(const Node* n) {
2388   if (_dump_only) {
2389     n->dump("\n", false, _output, &_dcc);
2390     return;
2391   }
2392   _output->print("%4d", find_info(n)->distance());// distance
2393   if (_all_paths) {
2394     Info* info = find_info(n);
2395     int apd = info->distance() + info->distance_from_target();
2396     _output->print("%4d", apd);                   // all paths distance
2397   }
2398   if (_print_blocks) {
2399     print_node_block(n);                          // block
2400   }
2401   if (_print_old) {
2402     print_node_idx(old_node(n));                  // old node
2403   }
2404   _output->print(" ");
2405   n->dump("\n", false, _output, &_dcc);           // node dump
2406 }
2407 
2408 //------------------------------dump_bfs--------------------------------------
2409 // Call this from debugger
2410 // Useful for BFS traversal, shortest path, all path, loop detection, etc
2411 // Designed to be more readable, and provide additional info
2412 // To find all options, run:
2413 //   find_node(0)->dump_bfs(0,0,"H")
2414 void Node::dump_bfs(const int max_distance, Node* target, const char* options) const {
2415   dump_bfs(max_distance, target, options, tty);
2416 }
2417 
2418 // Used to dump to stream.
2419 void Node::dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const {
2420   PrintBFS bfs(this, max_distance, target, options, st);
2421   bfs.run();
2422 }
2423 
2424 // Call this from debugger, with default arguments
2425 void Node::dump_bfs(const int max_distance) const {
2426   dump_bfs(max_distance, nullptr, nullptr);
2427 }
2428 
2429 // -----------------------------dump_idx---------------------------------------
2430 void Node::dump_idx(bool align, outputStream* st, DumpConfig* dc) const {
2431   if (dc != nullptr) {
2432     dc->pre_dump(st, this);
2433   }
2434   Compile* C = Compile::current();
2435   bool is_new = C->node_arena()->contains(this);
2436   if (align) { // print prefix empty spaces$
2437     // +1 for leading digit, +1 for "o"
2438     uint max_width = (C->unique() == 0 ? 0 : static_cast<uint>(log10(static_cast<double>(C->unique())))) + 2;
2439     // +1 for leading digit, maybe +1 for "o"
2440     uint width = (_idx == 0 ? 0 : static_cast<uint>(log10(static_cast<double>(_idx)))) + 1 + (is_new ? 0 : 1);
2441     while (max_width > width) {
2442       st->print(" ");
2443       width++;
2444     }
2445   }
2446   if (!is_new) {
2447     st->print("o");
2448   }
2449   st->print("%d", _idx);
2450   if (dc != nullptr) {
2451     dc->post_dump(st);
2452   }
2453 }
2454 
2455 // -----------------------------dump_name--------------------------------------
2456 void Node::dump_name(outputStream* st, DumpConfig* dc) const {
2457   if (dc != nullptr) {
2458     dc->pre_dump(st, this);
2459   }
2460   st->print("%s", Name());
2461   if (dc != nullptr) {
2462     dc->post_dump(st);
2463   }
2464 }
2465 
2466 // -----------------------------Name-------------------------------------------
2467 extern const char *NodeClassNames[];
2468 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
2469 
2470 static bool is_disconnected(const Node* n) {
2471   for (uint i = 0; i < n->req(); i++) {
2472     if (n->in(i) != nullptr)  return false;
2473   }
2474   return true;
2475 }
2476 
2477 #ifdef ASSERT
2478 void Node::dump_orig(outputStream *st, bool print_key) const {
2479   Compile* C = Compile::current();
2480   Node* orig = _debug_orig;
2481   if (not_a_node(orig)) orig = nullptr;
2482   if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr;
2483   if (orig == nullptr) return;
2484   if (print_key) {
2485     st->print(" !orig=");
2486   }
2487   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
2488   if (not_a_node(fast)) fast = nullptr;
2489   while (orig != nullptr) {
2490     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
2491     if (discon) st->print("[");
2492     if (!Compile::current()->node_arena()->contains(orig))
2493       st->print("o");
2494     st->print("%d", orig->_idx);
2495     if (discon) st->print("]");
2496     orig = orig->debug_orig();
2497     if (not_a_node(orig)) orig = nullptr;
2498     if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr;
2499     if (orig != nullptr) st->print(",");
2500     if (fast != nullptr) {
2501       // Step fast twice for each single step of orig:
2502       fast = fast->debug_orig();
2503       if (not_a_node(fast)) fast = nullptr;
2504       if (fast != nullptr && fast != orig) {
2505         fast = fast->debug_orig();
2506         if (not_a_node(fast)) fast = nullptr;
2507       }
2508       if (fast == orig) {
2509         st->print("...");
2510         break;
2511       }
2512     }
2513   }
2514 }
2515 
2516 void Node::set_debug_orig(Node* orig) {
2517   _debug_orig = orig;
2518   if (BreakAtNode == 0)  return;
2519   if (not_a_node(orig))  orig = nullptr;
2520   int trip = 10;
2521   while (orig != nullptr) {
2522     if (orig->debug_idx() == BreakAtNode || (uintx)orig->_idx == BreakAtNode) {
2523       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT " orig._idx=%d orig._debug_idx=" UINT64_FORMAT,
2524                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
2525       BREAKPOINT;
2526     }
2527     orig = orig->debug_orig();
2528     if (not_a_node(orig))  orig = nullptr;
2529     if (trip-- <= 0)  break;
2530   }
2531 }
2532 #endif //ASSERT
2533 
2534 //------------------------------dump------------------------------------------
2535 // Dump a Node
2536 void Node::dump(const char* suffix, bool mark, outputStream* st, DumpConfig* dc) const {
2537   Compile* C = Compile::current();
2538   bool is_new = C->node_arena()->contains(this);
2539   C->_in_dump_cnt++;
2540 
2541   // idx mark name ===
2542   dump_idx(true, st, dc);
2543   st->print(mark ? " >" : "  ");
2544   dump_name(st, dc);
2545   st->print("  === ");
2546 
2547   // Dump the required and precedence inputs
2548   dump_req(st, dc);
2549   dump_prec(st, dc);
2550   // Dump the outputs
2551   dump_out(st, dc);
2552 
2553   if (is_disconnected(this)) {
2554 #ifdef ASSERT
2555     st->print("  [" UINT64_FORMAT "]", debug_idx());
2556     dump_orig(st);
2557 #endif
2558     st->cr();
2559     C->_in_dump_cnt--;
2560     return;                     // don't process dead nodes
2561   }
2562 
2563   if (C->clone_map().value(_idx) != 0) {
2564     C->clone_map().dump(_idx, st);
2565   }
2566   // Dump node-specific info
2567   dump_spec(st);
2568 #ifdef ASSERT
2569   // Dump the non-reset _debug_idx
2570   if (Verbose && WizardMode) {
2571     st->print("  [" UINT64_FORMAT "]", debug_idx());
2572   }
2573 #endif
2574 
2575   const Type *t = bottom_type();
2576 
2577   if (t != nullptr && (t->isa_instptr() || t->isa_instklassptr())) {
2578     const TypeInstPtr  *toop = t->isa_instptr();
2579     const TypeInstKlassPtr *tkls = t->isa_instklassptr();
2580     if (toop) {
2581       st->print("  Oop:");
2582     } else if (tkls) {
2583       st->print("  Klass:");
2584     }
2585     t->dump_on(st);
2586   } else if (t == Type::MEMORY) {
2587     st->print("  Memory:");
2588     MemNode::dump_adr_type(this, adr_type(), st);
2589   } else if (Verbose || WizardMode) {
2590     st->print("  Type:");
2591     if (t) {
2592       t->dump_on(st);
2593     } else {
2594       st->print("no type");
2595     }
2596   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
2597     // Dump MachSpillcopy vector type.
2598     t->dump_on(st);
2599   }
2600   if (is_new) {
2601     DEBUG_ONLY(dump_orig(st));
2602     Node_Notes* nn = C->node_notes_at(_idx);
2603     if (nn != nullptr && !nn->is_clear()) {
2604       if (nn->jvms() != nullptr) {
2605         st->print(" !jvms:");
2606         nn->jvms()->dump_spec(st);
2607       }
2608     }
2609   }
2610   if (suffix) st->print("%s", suffix);
2611   C->_in_dump_cnt--;
2612 }
2613 
2614 // call from debugger: dump node to tty with newline
2615 void Node::dump() const {
2616   dump("\n");
2617 }
2618 
2619 //------------------------------dump_req--------------------------------------
2620 void Node::dump_req(outputStream* st, DumpConfig* dc) const {
2621   // Dump the required input edges
2622   for (uint i = 0; i < req(); i++) {    // For all required inputs
2623     Node* d = in(i);
2624     if (d == nullptr) {
2625       st->print("_ ");
2626     } else if (not_a_node(d)) {
2627       st->print("not_a_node ");  // uninitialized, sentinel, garbage, etc.
2628     } else {
2629       d->dump_idx(false, st, dc);
2630       st->print(" ");
2631     }
2632   }
2633 }
2634 
2635 
2636 //------------------------------dump_prec-------------------------------------
2637 void Node::dump_prec(outputStream* st, DumpConfig* dc) const {
2638   // Dump the precedence edges
2639   int any_prec = 0;
2640   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
2641     Node* p = in(i);
2642     if (p != nullptr) {
2643       if (!any_prec++) st->print(" |");
2644       if (not_a_node(p)) { st->print("not_a_node "); continue; }
2645       p->dump_idx(false, st, dc);
2646       st->print(" ");
2647     }
2648   }
2649 }
2650 
2651 //------------------------------dump_out--------------------------------------
2652 void Node::dump_out(outputStream* st, DumpConfig* dc) const {
2653   // Delimit the output edges
2654   st->print(" [[ ");
2655   // Dump the output edges
2656   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
2657     Node* u = _out[i];
2658     if (u == nullptr) {
2659       st->print("_ ");
2660     } else if (not_a_node(u)) {
2661       st->print("not_a_node ");
2662     } else {
2663       u->dump_idx(false, st, dc);
2664       st->print(" ");
2665     }
2666   }
2667   st->print("]] ");
2668 }
2669 
2670 //------------------------------dump-------------------------------------------
2671 // call from debugger: dump Node's inputs (or outputs if d negative)
2672 void Node::dump(int d) const {
2673   dump_bfs(abs(d), nullptr, (d > 0) ? "+$" : "-$");
2674 }
2675 
2676 //------------------------------dump_ctrl--------------------------------------
2677 // call from debugger: dump Node's control inputs (or outputs if d negative)
2678 void Node::dump_ctrl(int d) const {
2679   dump_bfs(abs(d), nullptr, (d > 0) ? "+$c" : "-$c");
2680 }
2681 
2682 //-----------------------------dump_compact------------------------------------
2683 void Node::dump_comp() const {
2684   this->dump_comp("\n");
2685 }
2686 
2687 //-----------------------------dump_compact------------------------------------
2688 // Dump a Node in compact representation, i.e., just print its name and index.
2689 // Nodes can specify additional specifics to print in compact representation by
2690 // implementing dump_compact_spec.
2691 void Node::dump_comp(const char* suffix, outputStream *st) const {
2692   Compile* C = Compile::current();
2693   C->_in_dump_cnt++;
2694   st->print("%s(%d)", Name(), _idx);
2695   this->dump_compact_spec(st);
2696   if (suffix) {
2697     st->print("%s", suffix);
2698   }
2699   C->_in_dump_cnt--;
2700 }
2701 
2702 // VERIFICATION CODE
2703 // Verify all nodes if verify_depth is negative
2704 void Node::verify(int verify_depth, VectorSet& visited, Node_List& worklist) {
2705   assert(verify_depth != 0, "depth should not be 0");
2706   Compile* C = Compile::current();
2707   uint last_index_on_current_depth = worklist.size() - 1;
2708   verify_depth--; // Visiting the first node on depth 1
2709   // Only add nodes to worklist if verify_depth is negative (visit all nodes) or greater than 0
2710   bool add_to_worklist = verify_depth != 0;
2711 
2712   for (uint list_index = 0; list_index < worklist.size(); list_index++) {
2713     Node* n = worklist[list_index];
2714 
2715     if (n->is_Con() && n->bottom_type() == Type::TOP) {
2716       if (C->cached_top_node() == nullptr) {
2717         C->set_cached_top_node((Node*)n);
2718       }
2719       assert(C->cached_top_node() == n, "TOP node must be unique");
2720     }
2721 
2722     uint in_len = n->len();
2723     for (uint i = 0; i < in_len; i++) {
2724       Node* x = n->_in[i];
2725       if (!x || x->is_top()) {
2726         continue;
2727       }
2728 
2729       // Verify my input has a def-use edge to me
2730       // Count use-def edges from n to x
2731       int cnt = 1;
2732       for (uint j = 0; j < i; j++) {
2733         if (n->_in[j] == x) {
2734           cnt++;
2735           break;
2736         }
2737       }
2738       if (cnt == 2) {
2739         // x is already checked as n's previous input, skip its duplicated def-use count checking
2740         continue;
2741       }
2742       for (uint j = i + 1; j < in_len; j++) {
2743         if (n->_in[j] == x) {
2744           cnt++;
2745         }
2746       }
2747 
2748       // Count def-use edges from x to n
2749       uint max = x->_outcnt;
2750       for (uint k = 0; k < max; k++) {
2751         if (x->_out[k] == n) {
2752           cnt--;
2753         }
2754       }
2755       assert(cnt == 0, "mismatched def-use edge counts");
2756 
2757       if (add_to_worklist && !visited.test_set(x->_idx)) {
2758         worklist.push(x);
2759       }
2760     }
2761 
2762     if (verify_depth > 0 && list_index == last_index_on_current_depth) {
2763       // All nodes on this depth were processed and its inputs are on the worklist. Decrement verify_depth and
2764       // store the current last list index which is the last node in the list with the new depth. All nodes
2765       // added afterwards will have a new depth again. Stop adding new nodes if depth limit is reached (=0).
2766       verify_depth--;
2767       if (verify_depth == 0) {
2768         add_to_worklist = false;
2769       }
2770       last_index_on_current_depth = worklist.size() - 1;
2771     }
2772   }
2773 }
2774 #endif // not PRODUCT
2775 
2776 //------------------------------Registers--------------------------------------
2777 // Do we Match on this edge index or not?  Generally false for Control
2778 // and true for everything else.  Weird for calls & returns.
2779 uint Node::match_edge(uint idx) const {
2780   return idx;                   // True for other than index 0 (control)
2781 }
2782 
2783 // Register classes are defined for specific machines
2784 const RegMask &Node::out_RegMask() const {
2785   ShouldNotCallThis();
2786   return RegMask::Empty;
2787 }
2788 
2789 const RegMask &Node::in_RegMask(uint) const {
2790   ShouldNotCallThis();
2791   return RegMask::Empty;
2792 }
2793 
2794 void Node_Array::grow(uint i) {
2795   _nesting.check(_a); // Check if a potential reallocation in the arena is safe
2796   assert(i >= _max, "Should have been checked before, use maybe_grow?");
2797   assert(_max > 0, "invariant");
2798   uint old = _max;
2799   _max = next_power_of_2(i);
2800   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2801   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2802 }
2803 
2804 void Node_Array::insert(uint i, Node* n) {
2805   if (_nodes[_max - 1]) {
2806     grow(_max);
2807   }
2808   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i + 1], ((_max - i - 1) * sizeof(Node*)));
2809   _nodes[i] = n;
2810 }
2811 
2812 void Node_Array::remove(uint i) {
2813   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i + 1], (HeapWord*)&_nodes[i], ((_max - i - 1) * sizeof(Node*)));
2814   _nodes[_max - 1] = nullptr;
2815 }
2816 
2817 void Node_Array::dump() const {
2818 #ifndef PRODUCT
2819   for (uint i = 0; i < _max; i++) {
2820     Node* nn = _nodes[i];
2821     if (nn != nullptr) {
2822       tty->print("%5d--> ",i); nn->dump();
2823     }
2824   }
2825 #endif
2826 }
2827 
2828 //--------------------------is_iteratively_computed------------------------------
2829 // Operation appears to be iteratively computed (such as an induction variable)
2830 // It is possible for this operation to return false for a loop-varying
2831 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2832 bool Node::is_iteratively_computed() {
2833   if (ideal_reg()) { // does operation have a result register?
2834     for (uint i = 1; i < req(); i++) {
2835       Node* n = in(i);
2836       if (n != nullptr && n->is_Phi()) {
2837         for (uint j = 1; j < n->req(); j++) {
2838           if (n->in(j) == this) {
2839             return true;
2840           }
2841         }
2842       }
2843     }
2844   }
2845   return false;
2846 }
2847 
2848 //--------------------------find_similar------------------------------
2849 // Return a node with opcode "opc" and same inputs as "this" if one can
2850 // be found; Otherwise return null;
2851 Node* Node::find_similar(int opc) {
2852   if (req() >= 2) {
2853     Node* def = in(1);
2854     if (def && def->outcnt() >= 2) {
2855       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2856         Node* use = def->fast_out(i);
2857         if (use != this &&
2858             use->Opcode() == opc &&
2859             use->req() == req()) {
2860           uint j;
2861           for (j = 0; j < use->req(); j++) {
2862             if (use->in(j) != in(j)) {
2863               break;
2864             }
2865           }
2866           if (j == use->req()) {
2867             return use;
2868           }
2869         }
2870       }
2871     }
2872   }
2873   return nullptr;
2874 }
2875 
2876 
2877 //--------------------------unique_ctrl_out_or_null-------------------------
2878 // Return the unique control out if only one. Null if none or more than one.
2879 Node* Node::unique_ctrl_out_or_null() const {
2880   Node* found = nullptr;
2881   for (uint i = 0; i < outcnt(); i++) {
2882     Node* use = raw_out(i);
2883     if (use->is_CFG() && use != this) {
2884       if (found != nullptr) {
2885         return nullptr;
2886       }
2887       found = use;
2888     }
2889   }
2890   return found;
2891 }
2892 
2893 //--------------------------unique_ctrl_out------------------------------
2894 // Return the unique control out. Asserts if none or more than one control out.
2895 Node* Node::unique_ctrl_out() const {
2896   Node* ctrl = unique_ctrl_out_or_null();
2897   assert(ctrl != nullptr, "control out is assumed to be unique");
2898   return ctrl;
2899 }
2900 
2901 void Node::ensure_control_or_add_prec(Node* c) {
2902   if (in(0) == nullptr) {
2903     set_req(0, c);
2904   } else if (in(0) != c) {
2905     add_prec(c);
2906   }
2907 }
2908 
2909 void Node::add_prec_from(Node* n) {
2910   for (uint i = n->req(); i < n->len(); i++) {
2911     Node* prec = n->in(i);
2912     if (prec != nullptr) {
2913       add_prec(prec);
2914     }
2915   }
2916 }
2917 
2918 bool Node::is_dead_loop_safe() const {
2919   if (is_Phi()) {
2920     return true;
2921   }
2922   if (is_Proj() && in(0) == nullptr)  {
2923     return true;
2924   }
2925   if ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0) {
2926     if (!is_Proj()) {
2927       return true;
2928     }
2929     if (in(0)->is_Allocate()) {
2930       return false;
2931     }
2932     // MemNode::can_see_stored_value() peeks through the boxing call
2933     if (in(0)->is_CallStaticJava() && in(0)->as_CallStaticJava()->is_boxing_method()) {
2934       return false;
2935     }
2936     return true;
2937   }
2938   return false;
2939 }
2940 
2941 bool Node::is_div_or_mod(BasicType bt) const { return Opcode() == Op_Div(bt) || Opcode() == Op_Mod(bt) ||
2942                                                       Opcode() == Op_UDiv(bt) || Opcode() == Op_UMod(bt); }
2943 
2944 bool Node::is_pure_function() const {
2945   switch (Opcode()) {
2946   case Op_ModD:
2947   case Op_ModF:
2948     return true;
2949   default:
2950     return false;
2951   }
2952 }
2953 
2954 // `maybe_pure_function` is assumed to be the input of `this`. This is a bit redundant,
2955 // but we already have and need maybe_pure_function in all the call sites, so
2956 // it makes it obvious that the `maybe_pure_function` is the same node as in the caller,
2957 // while it takes more thinking to realize that a locally computed in(0) must be equal to
2958 // the local in the caller.
2959 bool Node::is_data_proj_of_pure_function(const Node* maybe_pure_function) const {
2960   return Opcode() == Op_Proj && as_Proj()->_con == TypeFunc::Parms && maybe_pure_function->is_pure_function();
2961 }
2962 
2963 //=============================================================================
2964 //------------------------------yank-------------------------------------------
2965 // Find and remove
2966 void Node_List::yank( Node *n ) {
2967   uint i;
2968   for (i = 0; i < _cnt; i++) {
2969     if (_nodes[i] == n) {
2970       break;
2971     }
2972   }
2973 
2974   if (i < _cnt) {
2975     _nodes[i] = _nodes[--_cnt];
2976   }
2977 }
2978 
2979 //------------------------------dump-------------------------------------------
2980 void Node_List::dump() const {
2981 #ifndef PRODUCT
2982   for (uint i = 0; i < _cnt; i++) {
2983     if (_nodes[i]) {
2984       tty->print("%5d--> ", i);
2985       _nodes[i]->dump();
2986     }
2987   }
2988 #endif
2989 }
2990 
2991 void Node_List::dump_simple() const {
2992 #ifndef PRODUCT
2993   for (uint i = 0; i < _cnt; i++) {
2994     if( _nodes[i] ) {
2995       tty->print(" %d", _nodes[i]->_idx);
2996     } else {
2997       tty->print(" null");
2998     }
2999   }
3000 #endif
3001 }
3002 
3003 //=============================================================================
3004 //------------------------------remove-----------------------------------------
3005 void Unique_Node_List::remove(Node* n) {
3006   if (_in_worklist.test(n->_idx)) {
3007     for (uint i = 0; i < size(); i++) {
3008       if (_nodes[i] == n) {
3009         map(i, Node_List::pop());
3010         _in_worklist.remove(n->_idx);
3011         return;
3012       }
3013     }
3014     ShouldNotReachHere();
3015   }
3016 }
3017 
3018 //-----------------------remove_useless_nodes----------------------------------
3019 // Remove useless nodes from worklist
3020 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
3021   for (uint i = 0; i < size(); ++i) {
3022     Node *n = at(i);
3023     assert( n != nullptr, "Did not expect null entries in worklist");
3024     if (!useful.test(n->_idx)) {
3025       _in_worklist.remove(n->_idx);
3026       map(i, Node_List::pop());
3027       --i;  // Visit popped node
3028       // If it was last entry, loop terminates since size() was also reduced
3029     }
3030   }
3031 }
3032 
3033 //=============================================================================
3034 void Node_Stack::grow() {
3035   _nesting.check(_a); // Check if a potential reallocation in the arena is safe
3036   if (_inode_top < _inode_max) {
3037     return; // No need to grow
3038   }
3039   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
3040   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
3041   size_t max = old_max << 1;             // max * 2
3042   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
3043   _inode_max = _inodes + max;
3044   _inode_top = _inodes + old_top;        // restore _top
3045 }
3046 
3047 // Node_Stack is used to map nodes.
3048 Node* Node_Stack::find(uint idx) const {
3049   uint sz = size();
3050   for (uint i = 0; i < sz; i++) {
3051     if (idx == index_at(i)) {
3052       return node_at(i);
3053     }
3054   }
3055   return nullptr;
3056 }
3057 
3058 //=============================================================================
3059 uint TypeNode::size_of() const { return sizeof(*this); }
3060 #ifndef PRODUCT
3061 void TypeNode::dump_spec(outputStream *st) const {
3062   if (!Verbose && !WizardMode) {
3063     // standard dump does this in Verbose and WizardMode
3064     st->print(" #"); _type->dump_on(st);
3065   }
3066 }
3067 
3068 void TypeNode::dump_compact_spec(outputStream *st) const {
3069   st->print("#");
3070   _type->dump_on(st);
3071 }
3072 #endif
3073 uint TypeNode::hash() const {
3074   return Node::hash() + _type->hash();
3075 }
3076 bool TypeNode::cmp(const Node& n) const {
3077   return Type::equals(_type, n.as_Type()->_type);
3078 }
3079 const Type* TypeNode::bottom_type() const { return _type; }
3080 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
3081 
3082 //------------------------------ideal_reg--------------------------------------
3083 uint TypeNode::ideal_reg() const {
3084   return _type->ideal_reg();
3085 }