1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "opto/ad.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/connode.hpp"
  37 #include "opto/inlinetypenode.hpp"
  38 #include "opto/loopnode.hpp"
  39 #include "opto/machnode.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/regmask.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "opto/type.hpp"
  46 #include "utilities/copy.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/powerOfTwo.hpp"
  49 #include "utilities/stringUtils.hpp"
  50 
  51 class RegMask;
  52 // #include "phase.hpp"
  53 class PhaseTransform;
  54 class PhaseGVN;
  55 
  56 // Arena we are currently building Nodes in
  57 const uint Node::NotAMachineReg = 0xffff0000;
  58 
  59 #ifndef PRODUCT
  60 extern uint nodes_created;
  61 #endif
  62 #ifdef __clang__
  63 #pragma clang diagnostic push
  64 #pragma GCC diagnostic ignored "-Wuninitialized"
  65 #endif
  66 
  67 #ifdef ASSERT
  68 
  69 //-------------------------- construct_node------------------------------------
  70 // Set a breakpoint here to identify where a particular node index is built.
  71 void Node::verify_construction() {
  72   _debug_orig = nullptr;
  73   // The decimal digits of _debug_idx are <compile_id> followed by 10 digits of <_idx>
  74   Compile* C = Compile::current();
  75   assert(C->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  76   uint64_t new_debug_idx = (uint64_t)C->compile_id() * 10000000000 + _idx;
  77   set_debug_idx(new_debug_idx);
  78   if (!C->phase_optimize_finished()) {
  79     // Only check assert during parsing and optimization phase. Skip it while generating code.
  80     assert(C->live_nodes() <= C->max_node_limit(), "Live Node limit exceeded limit");
  81   }
  82   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (uint64_t)_idx == BreakAtNode)) {
  83     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT, _idx, _debug_idx);
  84     BREAKPOINT;
  85   }
  86 #if OPTO_DU_ITERATOR_ASSERT
  87   _last_del = nullptr;
  88   _del_tick = 0;
  89 #endif
  90   _hash_lock = 0;
  91 }
  92 
  93 
  94 // #ifdef ASSERT ...
  95 
  96 #if OPTO_DU_ITERATOR_ASSERT
  97 void DUIterator_Common::sample(const Node* node) {
  98   _vdui     = VerifyDUIterators;
  99   _node     = node;
 100   _outcnt   = node->_outcnt;
 101   _del_tick = node->_del_tick;
 102   _last     = nullptr;
 103 }
 104 
 105 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
 106   assert(_node     == node, "consistent iterator source");
 107   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
 108 }
 109 
 110 void DUIterator_Common::verify_resync() {
 111   // Ensure that the loop body has just deleted the last guy produced.
 112   const Node* node = _node;
 113   // Ensure that at least one copy of the last-seen edge was deleted.
 114   // Note:  It is OK to delete multiple copies of the last-seen edge.
 115   // Unfortunately, we have no way to verify that all the deletions delete
 116   // that same edge.  On this point we must use the Honor System.
 117   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 118   assert(node->_last_del == _last, "must have deleted the edge just produced");
 119   // We liked this deletion, so accept the resulting outcnt and tick.
 120   _outcnt   = node->_outcnt;
 121   _del_tick = node->_del_tick;
 122 }
 123 
 124 void DUIterator_Common::reset(const DUIterator_Common& that) {
 125   if (this == &that)  return;  // ignore assignment to self
 126   if (!_vdui) {
 127     // We need to initialize everything, overwriting garbage values.
 128     _last = that._last;
 129     _vdui = that._vdui;
 130   }
 131   // Note:  It is legal (though odd) for an iterator over some node x
 132   // to be reassigned to iterate over another node y.  Some doubly-nested
 133   // progress loops depend on being able to do this.
 134   const Node* node = that._node;
 135   // Re-initialize everything, except _last.
 136   _node     = node;
 137   _outcnt   = node->_outcnt;
 138   _del_tick = node->_del_tick;
 139 }
 140 
 141 void DUIterator::sample(const Node* node) {
 142   DUIterator_Common::sample(node);      // Initialize the assertion data.
 143   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 144 }
 145 
 146 void DUIterator::verify(const Node* node, bool at_end_ok) {
 147   DUIterator_Common::verify(node, at_end_ok);
 148   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 149 }
 150 
 151 void DUIterator::verify_increment() {
 152   if (_refresh_tick & 1) {
 153     // We have refreshed the index during this loop.
 154     // Fix up _idx to meet asserts.
 155     if (_idx > _outcnt)  _idx = _outcnt;
 156   }
 157   verify(_node, true);
 158 }
 159 
 160 void DUIterator::verify_resync() {
 161   // Note:  We do not assert on _outcnt, because insertions are OK here.
 162   DUIterator_Common::verify_resync();
 163   // Make sure we are still in sync, possibly with no more out-edges:
 164   verify(_node, true);
 165 }
 166 
 167 void DUIterator::reset(const DUIterator& that) {
 168   if (this == &that)  return;  // self assignment is always a no-op
 169   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 170   assert(that._idx          == 0, "assign only the result of Node::outs()");
 171   assert(_idx               == that._idx, "already assigned _idx");
 172   if (!_vdui) {
 173     // We need to initialize everything, overwriting garbage values.
 174     sample(that._node);
 175   } else {
 176     DUIterator_Common::reset(that);
 177     if (_refresh_tick & 1) {
 178       _refresh_tick++;                  // Clear the "was refreshed" flag.
 179     }
 180     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 181   }
 182 }
 183 
 184 void DUIterator::refresh() {
 185   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 186   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 187 }
 188 
 189 void DUIterator::verify_finish() {
 190   // If the loop has killed the node, do not require it to re-run.
 191   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 192   // If this assert triggers, it means that a loop used refresh_out_pos
 193   // to re-synch an iteration index, but the loop did not correctly
 194   // re-run itself, using a "while (progress)" construct.
 195   // This iterator enforces the rule that you must keep trying the loop
 196   // until it "runs clean" without any need for refreshing.
 197   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 198 }
 199 
 200 
 201 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 202   DUIterator_Common::verify(node, at_end_ok);
 203   Node** out    = node->_out;
 204   uint   cnt    = node->_outcnt;
 205   assert(cnt == _outcnt, "no insertions allowed");
 206   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 207   // This last check is carefully designed to work for NO_OUT_ARRAY.
 208 }
 209 
 210 void DUIterator_Fast::verify_limit() {
 211   const Node* node = _node;
 212   verify(node, true);
 213   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 214 }
 215 
 216 void DUIterator_Fast::verify_resync() {
 217   const Node* node = _node;
 218   if (_outp == node->_out + _outcnt) {
 219     // Note that the limit imax, not the pointer i, gets updated with the
 220     // exact count of deletions.  (For the pointer it's always "--i".)
 221     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 222     // This is a limit pointer, with a name like "imax".
 223     // Fudge the _last field so that the common assert will be happy.
 224     _last = (Node*) node->_last_del;
 225     DUIterator_Common::verify_resync();
 226   } else {
 227     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 228     // A normal internal pointer.
 229     DUIterator_Common::verify_resync();
 230     // Make sure we are still in sync, possibly with no more out-edges:
 231     verify(node, true);
 232   }
 233 }
 234 
 235 void DUIterator_Fast::verify_relimit(uint n) {
 236   const Node* node = _node;
 237   assert((int)n > 0, "use imax -= n only with a positive count");
 238   // This must be a limit pointer, with a name like "imax".
 239   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 240   // The reported number of deletions must match what the node saw.
 241   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 242   // Fudge the _last field so that the common assert will be happy.
 243   _last = (Node*) node->_last_del;
 244   DUIterator_Common::verify_resync();
 245 }
 246 
 247 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 248   assert(_outp              == that._outp, "already assigned _outp");
 249   DUIterator_Common::reset(that);
 250 }
 251 
 252 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 253   // at_end_ok means the _outp is allowed to underflow by 1
 254   _outp += at_end_ok;
 255   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 256   _outp -= at_end_ok;
 257   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 258 }
 259 
 260 void DUIterator_Last::verify_limit() {
 261   // Do not require the limit address to be resynched.
 262   //verify(node, true);
 263   assert(_outp == _node->_out, "limit still correct");
 264 }
 265 
 266 void DUIterator_Last::verify_step(uint num_edges) {
 267   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 268   _outcnt   -= num_edges;
 269   _del_tick += num_edges;
 270   // Make sure we are still in sync, possibly with no more out-edges:
 271   const Node* node = _node;
 272   verify(node, true);
 273   assert(node->_last_del == _last, "must have deleted the edge just produced");
 274 }
 275 
 276 #endif //OPTO_DU_ITERATOR_ASSERT
 277 
 278 
 279 #endif //ASSERT
 280 
 281 
 282 // This constant used to initialize _out may be any non-null value.
 283 // The value null is reserved for the top node only.
 284 #define NO_OUT_ARRAY ((Node**)-1)
 285 
 286 // Out-of-line code from node constructors.
 287 // Executed only when extra debug info. is being passed around.
 288 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 289   C->set_node_notes_at(idx, nn);
 290 }
 291 
 292 // Shared initialization code.
 293 inline int Node::Init(int req) {
 294   Compile* C = Compile::current();
 295   int idx = C->next_unique();
 296   NOT_PRODUCT(_igv_idx = C->next_igv_idx());
 297 
 298   // Allocate memory for the necessary number of edges.
 299   if (req > 0) {
 300     // Allocate space for _in array to have double alignment.
 301     _in = (Node **) ((char *) (C->node_arena()->AmallocWords(req * sizeof(void*))));
 302   }
 303   // If there are default notes floating around, capture them:
 304   Node_Notes* nn = C->default_node_notes();
 305   if (nn != nullptr)  init_node_notes(C, idx, nn);
 306 
 307   // Note:  At this point, C is dead,
 308   // and we begin to initialize the new Node.
 309 
 310   _cnt = _max = req;
 311   _outcnt = _outmax = 0;
 312   _class_id = Class_Node;
 313   _flags = 0;
 314   _out = NO_OUT_ARRAY;
 315   return idx;
 316 }
 317 
 318 //------------------------------Node-------------------------------------------
 319 // Create a Node, with a given number of required edges.
 320 Node::Node(uint req)
 321   : _idx(Init(req))
 322 #ifdef ASSERT
 323   , _parse_idx(_idx)
 324 #endif
 325 {
 326   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 327   debug_only( verify_construction() );
 328   NOT_PRODUCT(nodes_created++);
 329   if (req == 0) {
 330     _in = nullptr;
 331   } else {
 332     Node** to = _in;
 333     for(uint i = 0; i < req; i++) {
 334       to[i] = nullptr;
 335     }
 336   }
 337 }
 338 
 339 //------------------------------Node-------------------------------------------
 340 Node::Node(Node *n0)
 341   : _idx(Init(1))
 342 #ifdef ASSERT
 343   , _parse_idx(_idx)
 344 #endif
 345 {
 346   debug_only( verify_construction() );
 347   NOT_PRODUCT(nodes_created++);
 348   assert( is_not_dead(n0), "can not use dead node");
 349   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 350 }
 351 
 352 //------------------------------Node-------------------------------------------
 353 Node::Node(Node *n0, Node *n1)
 354   : _idx(Init(2))
 355 #ifdef ASSERT
 356   , _parse_idx(_idx)
 357 #endif
 358 {
 359   debug_only( verify_construction() );
 360   NOT_PRODUCT(nodes_created++);
 361   assert( is_not_dead(n0), "can not use dead node");
 362   assert( is_not_dead(n1), "can not use dead node");
 363   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 364   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 365 }
 366 
 367 //------------------------------Node-------------------------------------------
 368 Node::Node(Node *n0, Node *n1, Node *n2)
 369   : _idx(Init(3))
 370 #ifdef ASSERT
 371   , _parse_idx(_idx)
 372 #endif
 373 {
 374   debug_only( verify_construction() );
 375   NOT_PRODUCT(nodes_created++);
 376   assert( is_not_dead(n0), "can not use dead node");
 377   assert( is_not_dead(n1), "can not use dead node");
 378   assert( is_not_dead(n2), "can not use dead node");
 379   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 380   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 381   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 382 }
 383 
 384 //------------------------------Node-------------------------------------------
 385 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 386   : _idx(Init(4))
 387 #ifdef ASSERT
 388   , _parse_idx(_idx)
 389 #endif
 390 {
 391   debug_only( verify_construction() );
 392   NOT_PRODUCT(nodes_created++);
 393   assert( is_not_dead(n0), "can not use dead node");
 394   assert( is_not_dead(n1), "can not use dead node");
 395   assert( is_not_dead(n2), "can not use dead node");
 396   assert( is_not_dead(n3), "can not use dead node");
 397   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 398   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 399   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 400   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 401 }
 402 
 403 //------------------------------Node-------------------------------------------
 404 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 405   : _idx(Init(5))
 406 #ifdef ASSERT
 407   , _parse_idx(_idx)
 408 #endif
 409 {
 410   debug_only( verify_construction() );
 411   NOT_PRODUCT(nodes_created++);
 412   assert( is_not_dead(n0), "can not use dead node");
 413   assert( is_not_dead(n1), "can not use dead node");
 414   assert( is_not_dead(n2), "can not use dead node");
 415   assert( is_not_dead(n3), "can not use dead node");
 416   assert( is_not_dead(n4), "can not use dead node");
 417   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 418   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 419   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 420   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 421   _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this);
 422 }
 423 
 424 //------------------------------Node-------------------------------------------
 425 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 426                      Node *n4, Node *n5)
 427   : _idx(Init(6))
 428 #ifdef ASSERT
 429   , _parse_idx(_idx)
 430 #endif
 431 {
 432   debug_only( verify_construction() );
 433   NOT_PRODUCT(nodes_created++);
 434   assert( is_not_dead(n0), "can not use dead node");
 435   assert( is_not_dead(n1), "can not use dead node");
 436   assert( is_not_dead(n2), "can not use dead node");
 437   assert( is_not_dead(n3), "can not use dead node");
 438   assert( is_not_dead(n4), "can not use dead node");
 439   assert( is_not_dead(n5), "can not use dead node");
 440   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 441   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 442   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 443   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 444   _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this);
 445   _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this);
 446 }
 447 
 448 //------------------------------Node-------------------------------------------
 449 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 450                      Node *n4, Node *n5, Node *n6)
 451   : _idx(Init(7))
 452 #ifdef ASSERT
 453   , _parse_idx(_idx)
 454 #endif
 455 {
 456   debug_only( verify_construction() );
 457   NOT_PRODUCT(nodes_created++);
 458   assert( is_not_dead(n0), "can not use dead node");
 459   assert( is_not_dead(n1), "can not use dead node");
 460   assert( is_not_dead(n2), "can not use dead node");
 461   assert( is_not_dead(n3), "can not use dead node");
 462   assert( is_not_dead(n4), "can not use dead node");
 463   assert( is_not_dead(n5), "can not use dead node");
 464   assert( is_not_dead(n6), "can not use dead node");
 465   _in[0] = n0; if (n0 != nullptr) n0->add_out((Node *)this);
 466   _in[1] = n1; if (n1 != nullptr) n1->add_out((Node *)this);
 467   _in[2] = n2; if (n2 != nullptr) n2->add_out((Node *)this);
 468   _in[3] = n3; if (n3 != nullptr) n3->add_out((Node *)this);
 469   _in[4] = n4; if (n4 != nullptr) n4->add_out((Node *)this);
 470   _in[5] = n5; if (n5 != nullptr) n5->add_out((Node *)this);
 471   _in[6] = n6; if (n6 != nullptr) n6->add_out((Node *)this);
 472 }
 473 
 474 #ifdef __clang__
 475 #pragma clang diagnostic pop
 476 #endif
 477 
 478 
 479 //------------------------------clone------------------------------------------
 480 // Clone a Node.
 481 Node *Node::clone() const {
 482   Compile* C = Compile::current();
 483   uint s = size_of();           // Size of inherited Node
 484   Node *n = (Node*)C->node_arena()->AmallocWords(size_of() + _max*sizeof(Node*));
 485   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 486   // Set the new input pointer array
 487   n->_in = (Node**)(((char*)n)+s);
 488   // Cannot share the old output pointer array, so kill it
 489   n->_out = NO_OUT_ARRAY;
 490   // And reset the counters to 0
 491   n->_outcnt = 0;
 492   n->_outmax = 0;
 493   // Unlock this guy, since he is not in any hash table.
 494   debug_only(n->_hash_lock = 0);
 495   // Walk the old node's input list to duplicate its edges
 496   uint i;
 497   for( i = 0; i < len(); i++ ) {
 498     Node *x = in(i);
 499     n->_in[i] = x;
 500     if (x != nullptr) x->add_out(n);
 501   }
 502   if (is_macro()) {
 503     C->add_macro_node(n);
 504   }
 505   if (is_expensive()) {
 506     C->add_expensive_node(n);
 507   }
 508   if (for_post_loop_opts_igvn()) {
 509     // Don't add cloned node to Compile::_for_post_loop_opts_igvn list automatically.
 510     // If it is applicable, it will happen anyway when the cloned node is registered with IGVN.
 511     n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
 512   }
 513   if (n->is_ParsePredicate()) {
 514     C->add_parse_predicate(n->as_ParsePredicate());
 515   }
 516 
 517   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 518   bs->register_potential_barrier_node(n);
 519 
 520   n->set_idx(C->next_unique()); // Get new unique index as well
 521   NOT_PRODUCT(n->_igv_idx = C->next_igv_idx());
 522   debug_only( n->verify_construction() );
 523   NOT_PRODUCT(nodes_created++);
 524   // Do not patch over the debug_idx of a clone, because it makes it
 525   // impossible to break on the clone's moment of creation.
 526   //debug_only( n->set_debug_idx( debug_idx() ) );
 527 
 528   C->copy_node_notes_to(n, (Node*) this);
 529 
 530   // MachNode clone
 531   uint nopnds;
 532   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 533     MachNode *mach  = n->as_Mach();
 534     MachNode *mthis = this->as_Mach();
 535     // Get address of _opnd_array.
 536     // It should be the same offset since it is the clone of this node.
 537     MachOper **from = mthis->_opnds;
 538     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 539                     pointer_delta((const void*)from,
 540                                   (const void*)(&mthis->_opnds), 1));
 541     mach->_opnds = to;
 542     for ( uint i = 0; i < nopnds; ++i ) {
 543       to[i] = from[i]->clone();
 544     }
 545   }
 546   if (n->is_Call()) {
 547     // CallGenerator is linked to the original node.
 548     CallGenerator* cg = n->as_Call()->generator();
 549     if (cg != nullptr) {
 550       CallGenerator* cloned_cg = cg->with_call_node(n->as_Call());
 551       n->as_Call()->set_generator(cloned_cg);
 552 
 553       C->print_inlining_assert_ready();
 554       C->print_inlining_move_to(cg);
 555       C->print_inlining_update(cloned_cg);
 556     }
 557   }
 558   if (n->is_SafePoint()) {
 559     // Scalar replacement and macro expansion might modify the JVMState.
 560     // Clone it to make sure it's not shared between SafePointNodes.
 561     n->as_SafePoint()->clone_jvms(C);
 562     n->as_SafePoint()->clone_replaced_nodes();
 563   }
 564   if (n->is_InlineType()) {
 565     C->add_inline_type(n);
 566   }
 567   Compile::current()->record_modified_node(n);
 568   return n;                     // Return the clone
 569 }
 570 
 571 //---------------------------setup_is_top--------------------------------------
 572 // Call this when changing the top node, to reassert the invariants
 573 // required by Node::is_top.  See Compile::set_cached_top_node.
 574 void Node::setup_is_top() {
 575   if (this == (Node*)Compile::current()->top()) {
 576     // This node has just become top.  Kill its out array.
 577     _outcnt = _outmax = 0;
 578     _out = nullptr;                           // marker value for top
 579     assert(is_top(), "must be top");
 580   } else {
 581     if (_out == nullptr)  _out = NO_OUT_ARRAY;
 582     assert(!is_top(), "must not be top");
 583   }
 584 }
 585 
 586 //------------------------------~Node------------------------------------------
 587 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 588 void Node::destruct(PhaseValues* phase) {
 589   Compile* compile = (phase != nullptr) ? phase->C : Compile::current();
 590   if (phase != nullptr && phase->is_IterGVN()) {
 591     phase->is_IterGVN()->_worklist.remove(this);
 592   }
 593   // If this is the most recently created node, reclaim its index. Otherwise,
 594   // record the node as dead to keep liveness information accurate.
 595   if ((uint)_idx+1 == compile->unique()) {
 596     compile->set_unique(compile->unique()-1);
 597   } else {
 598     compile->record_dead_node(_idx);
 599   }
 600   // Clear debug info:
 601   Node_Notes* nn = compile->node_notes_at(_idx);
 602   if (nn != nullptr)  nn->clear();
 603   // Walk the input array, freeing the corresponding output edges
 604   _cnt = _max;  // forget req/prec distinction
 605   uint i;
 606   for( i = 0; i < _max; i++ ) {
 607     set_req(i, nullptr);
 608     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 609   }
 610   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 611 
 612   if (is_macro()) {
 613     compile->remove_macro_node(this);
 614   }
 615   if (is_expensive()) {
 616     compile->remove_expensive_node(this);
 617   }
 618   if (is_OpaqueTemplateAssertionPredicate()) {
 619     compile->remove_template_assertion_predicate_opaq(this);
 620   }
 621   if (is_ParsePredicate()) {
 622     compile->remove_parse_predicate(as_ParsePredicate());
 623   }
 624   if (for_post_loop_opts_igvn()) {
 625     compile->remove_from_post_loop_opts_igvn(this);
 626   }
 627   if (is_InlineType()) {
 628     compile->remove_inline_type(this);
 629   }
 630 
 631   if (is_SafePoint()) {
 632     as_SafePoint()->delete_replaced_nodes();
 633 
 634     if (is_CallStaticJava()) {
 635       compile->remove_unstable_if_trap(as_CallStaticJava(), false);
 636     }
 637   }
 638   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 639   bs->unregister_potential_barrier_node(this);
 640 
 641   // See if the input array was allocated just prior to the object
 642   int edge_size = _max*sizeof(void*);
 643   int out_edge_size = _outmax*sizeof(void*);
 644   char *in_array = ((char*)_in);
 645   char *edge_end = in_array + edge_size;
 646   char *out_array = (char*)(_out == NO_OUT_ARRAY? nullptr: _out);
 647   int node_size = size_of();
 648 
 649 #ifdef ASSERT
 650   // We will not actually delete the storage, but we'll make the node unusable.
 651   compile->remove_modified_node(this);
 652   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 653   _in = _out = (Node**) badAddress;
 654   _max = _cnt = _outmax = _outcnt = 0;
 655 #endif
 656 
 657   // Free the output edge array
 658   if (out_edge_size > 0) {
 659     compile->node_arena()->Afree(out_array, out_edge_size);
 660   }
 661 
 662   // Free the input edge array and the node itself
 663   if( edge_end == (char*)this ) {
 664     // It was; free the input array and object all in one hit
 665 #ifndef ASSERT
 666     compile->node_arena()->Afree(in_array, edge_size+node_size);
 667 #endif
 668   } else {
 669     // Free just the input array
 670     compile->node_arena()->Afree(in_array, edge_size);
 671 
 672     // Free just the object
 673 #ifndef ASSERT
 674     compile->node_arena()->Afree(this, node_size);
 675 #endif
 676   }
 677 }
 678 
 679 //------------------------------grow-------------------------------------------
 680 // Grow the input array, making space for more edges
 681 void Node::grow(uint len) {
 682   Arena* arena = Compile::current()->node_arena();
 683   uint new_max = _max;
 684   if( new_max == 0 ) {
 685     _max = 4;
 686     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 687     Node** to = _in;
 688     to[0] = nullptr;
 689     to[1] = nullptr;
 690     to[2] = nullptr;
 691     to[3] = nullptr;
 692     return;
 693   }
 694   new_max = next_power_of_2(len);
 695   // Trimming to limit allows a uint8 to handle up to 255 edges.
 696   // Previously I was using only powers-of-2 which peaked at 128 edges.
 697   //if( new_max >= limit ) new_max = limit-1;
 698   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 699   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // null all new space
 700   _max = new_max;               // Record new max length
 701   // This assertion makes sure that Node::_max is wide enough to
 702   // represent the numerical value of new_max.
 703   assert(_max == new_max && _max > len, "int width of _max is too small");
 704 }
 705 
 706 //-----------------------------out_grow----------------------------------------
 707 // Grow the input array, making space for more edges
 708 void Node::out_grow( uint len ) {
 709   assert(!is_top(), "cannot grow a top node's out array");
 710   Arena* arena = Compile::current()->node_arena();
 711   uint new_max = _outmax;
 712   if( new_max == 0 ) {
 713     _outmax = 4;
 714     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 715     return;
 716   }
 717   new_max = next_power_of_2(len);
 718   // Trimming to limit allows a uint8 to handle up to 255 edges.
 719   // Previously I was using only powers-of-2 which peaked at 128 edges.
 720   //if( new_max >= limit ) new_max = limit-1;
 721   assert(_out != nullptr && _out != NO_OUT_ARRAY, "out must have sensible value");
 722   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 723   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // null all new space
 724   _outmax = new_max;               // Record new max length
 725   // This assertion makes sure that Node::_max is wide enough to
 726   // represent the numerical value of new_max.
 727   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 728 }
 729 
 730 #ifdef ASSERT
 731 //------------------------------is_dead----------------------------------------
 732 bool Node::is_dead() const {
 733   // Mach and pinch point nodes may look like dead.
 734   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 735     return false;
 736   for( uint i = 0; i < _max; i++ )
 737     if( _in[i] != nullptr )
 738       return false;
 739   return true;
 740 }
 741 
 742 bool Node::is_not_dead(const Node* n) {
 743   return n == nullptr || !PhaseIterGVN::is_verify_def_use() || !(n->is_dead());
 744 }
 745 
 746 bool Node::is_reachable_from_root() const {
 747   ResourceMark rm;
 748   Unique_Node_List wq;
 749   wq.push((Node*)this);
 750   RootNode* root = Compile::current()->root();
 751   for (uint i = 0; i < wq.size(); i++) {
 752     Node* m = wq.at(i);
 753     if (m == root) {
 754       return true;
 755     }
 756     for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
 757       Node* u = m->fast_out(j);
 758       wq.push(u);
 759     }
 760   }
 761   return false;
 762 }
 763 #endif
 764 
 765 //------------------------------is_unreachable---------------------------------
 766 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 767   assert(!is_Mach(), "doesn't work with MachNodes");
 768   return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != nullptr && in(0)->is_top());
 769 }
 770 
 771 //------------------------------add_req----------------------------------------
 772 // Add a new required input at the end
 773 void Node::add_req( Node *n ) {
 774   assert( is_not_dead(n), "can not use dead node");
 775 
 776   // Look to see if I can move precedence down one without reallocating
 777   if( (_cnt >= _max) || (in(_max-1) != nullptr) )
 778     grow( _max+1 );
 779 
 780   // Find a precedence edge to move
 781   if( in(_cnt) != nullptr ) {   // Next precedence edge is busy?
 782     uint i;
 783     for( i=_cnt; i<_max; i++ )
 784       if( in(i) == nullptr )    // Find the null at end of prec edge list
 785         break;                  // There must be one, since we grew the array
 786     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 787   }
 788   _in[_cnt++] = n;            // Stuff over old prec edge
 789   if (n != nullptr) n->add_out((Node *)this);
 790   Compile::current()->record_modified_node(this);
 791 }
 792 
 793 //---------------------------add_req_batch-------------------------------------
 794 // Add a new required input at the end
 795 void Node::add_req_batch( Node *n, uint m ) {
 796   assert( is_not_dead(n), "can not use dead node");
 797   // check various edge cases
 798   if ((int)m <= 1) {
 799     assert((int)m >= 0, "oob");
 800     if (m != 0)  add_req(n);
 801     return;
 802   }
 803 
 804   // Look to see if I can move precedence down one without reallocating
 805   if( (_cnt+m) > _max || _in[_max-m] )
 806     grow( _max+m );
 807 
 808   // Find a precedence edge to move
 809   if( _in[_cnt] != nullptr ) {  // Next precedence edge is busy?
 810     uint i;
 811     for( i=_cnt; i<_max; i++ )
 812       if( _in[i] == nullptr )   // Find the null at end of prec edge list
 813         break;                  // There must be one, since we grew the array
 814     // Slide all the precs over by m positions (assume #prec << m).
 815     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 816   }
 817 
 818   // Stuff over the old prec edges
 819   for(uint i=0; i<m; i++ ) {
 820     _in[_cnt++] = n;
 821   }
 822 
 823   // Insert multiple out edges on the node.
 824   if (n != nullptr && !n->is_top()) {
 825     for(uint i=0; i<m; i++ ) {
 826       n->add_out((Node *)this);
 827     }
 828   }
 829   Compile::current()->record_modified_node(this);
 830 }
 831 
 832 //------------------------------del_req----------------------------------------
 833 // Delete the required edge and compact the edge array
 834 void Node::del_req( uint idx ) {
 835   assert( idx < _cnt, "oob");
 836   assert( !VerifyHashTableKeys || _hash_lock == 0,
 837           "remove node from hash table before modifying it");
 838   // First remove corresponding def-use edge
 839   Node *n = in(idx);
 840   if (n != nullptr) n->del_out((Node *)this);
 841   _in[idx] = in(--_cnt); // Compact the array
 842   // Avoid spec violation: Gap in prec edges.
 843   close_prec_gap_at(_cnt);
 844   Compile::current()->record_modified_node(this);
 845 }
 846 
 847 //------------------------------del_req_ordered--------------------------------
 848 // Delete the required edge and compact the edge array with preserved order
 849 void Node::del_req_ordered( uint idx ) {
 850   assert( idx < _cnt, "oob");
 851   assert( !VerifyHashTableKeys || _hash_lock == 0,
 852           "remove node from hash table before modifying it");
 853   // First remove corresponding def-use edge
 854   Node *n = in(idx);
 855   if (n != nullptr) n->del_out((Node *)this);
 856   if (idx < --_cnt) {    // Not last edge ?
 857     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
 858   }
 859   // Avoid spec violation: Gap in prec edges.
 860   close_prec_gap_at(_cnt);
 861   Compile::current()->record_modified_node(this);
 862 }
 863 
 864 //------------------------------ins_req----------------------------------------
 865 // Insert a new required input at the end
 866 void Node::ins_req( uint idx, Node *n ) {
 867   assert( is_not_dead(n), "can not use dead node");
 868   add_req(nullptr);                // Make space
 869   assert( idx < _max, "Must have allocated enough space");
 870   // Slide over
 871   if(_cnt-idx-1 > 0) {
 872     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 873   }
 874   _in[idx] = n;                            // Stuff over old required edge
 875   if (n != nullptr) n->add_out((Node *)this); // Add reciprocal def-use edge
 876   Compile::current()->record_modified_node(this);
 877 }
 878 
 879 //-----------------------------find_edge---------------------------------------
 880 int Node::find_edge(Node* n) {
 881   for (uint i = 0; i < len(); i++) {
 882     if (_in[i] == n)  return i;
 883   }
 884   return -1;
 885 }
 886 
 887 //----------------------------replace_edge-------------------------------------
 888 int Node::replace_edge(Node* old, Node* neww, PhaseGVN* gvn) {
 889   if (old == neww)  return 0;  // nothing to do
 890   uint nrep = 0;
 891   for (uint i = 0; i < len(); i++) {
 892     if (in(i) == old) {
 893       if (i < req()) {
 894         if (gvn != nullptr) {
 895           set_req_X(i, neww, gvn);
 896         } else {
 897           set_req(i, neww);
 898         }
 899       } else {
 900         assert(gvn == nullptr || gvn->is_IterGVN() == nullptr, "no support for igvn here");
 901         assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
 902         set_prec(i, neww);
 903       }
 904       nrep++;
 905     }
 906   }
 907   return nrep;
 908 }
 909 
 910 /**
 911  * Replace input edges in the range pointing to 'old' node.
 912  */
 913 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn) {
 914   if (old == neww)  return 0;  // nothing to do
 915   uint nrep = 0;
 916   for (int i = start; i < end; i++) {
 917     if (in(i) == old) {
 918       set_req_X(i, neww, gvn);
 919       nrep++;
 920     }
 921   }
 922   return nrep;
 923 }
 924 
 925 //-------------------------disconnect_inputs-----------------------------------
 926 // null out all inputs to eliminate incoming Def-Use edges.
 927 void Node::disconnect_inputs(Compile* C) {
 928   // the layout of Node::_in
 929   // r: a required input, null is allowed
 930   // p: a precedence, null values are all at the end
 931   // -----------------------------------
 932   // |r|...|r|p|...|p|null|...|null|
 933   //         |                     |
 934   //         req()                 len()
 935   // -----------------------------------
 936   for (uint i = 0; i < req(); ++i) {
 937     if (in(i) != nullptr) {
 938       set_req(i, nullptr);
 939     }
 940   }
 941 
 942   // Remove precedence edges if any exist
 943   // Note: Safepoints may have precedence edges, even during parsing
 944   for (uint i = len(); i > req(); ) {
 945     rm_prec(--i);  // no-op if _in[i] is null
 946   }
 947 
 948 #ifdef ASSERT
 949   // sanity check
 950   for (uint i = 0; i < len(); ++i) {
 951     assert(_in[i] == nullptr, "disconnect_inputs() failed!");
 952   }
 953 #endif
 954 
 955   // Node::destruct requires all out edges be deleted first
 956   // debug_only(destruct();)   // no reuse benefit expected
 957   C->record_dead_node(_idx);
 958 }
 959 
 960 //-----------------------------uncast---------------------------------------
 961 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 962 // Strip away casting.  (It is depth-limited.)
 963 // Optionally, keep casts with dependencies.
 964 Node* Node::uncast(bool keep_deps) const {
 965   // Should be inline:
 966   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 967   if (is_ConstraintCast()) {
 968     return uncast_helper(this, keep_deps);
 969   } else {
 970     return (Node*) this;
 971   }
 972 }
 973 
 974 // Find out of current node that matches opcode.
 975 Node* Node::find_out_with(int opcode) {
 976   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 977     Node* use = fast_out(i);
 978     if (use->Opcode() == opcode) {
 979       return use;
 980     }
 981   }
 982   return nullptr;
 983 }
 984 
 985 // Return true if the current node has an out that matches opcode.
 986 bool Node::has_out_with(int opcode) {
 987   return (find_out_with(opcode) != nullptr);
 988 }
 989 
 990 // Return true if the current node has an out that matches any of the opcodes.
 991 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
 992   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 993       int opcode = fast_out(i)->Opcode();
 994       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
 995         return true;
 996       }
 997   }
 998   return false;
 999 }
1000 
1001 
1002 //---------------------------uncast_helper-------------------------------------
1003 Node* Node::uncast_helper(const Node* p, bool keep_deps) {
1004 #ifdef ASSERT
1005   uint depth_count = 0;
1006   const Node* orig_p = p;
1007 #endif
1008 
1009   while (true) {
1010 #ifdef ASSERT
1011     if (depth_count >= K) {
1012       orig_p->dump(4);
1013       if (p != orig_p)
1014         p->dump(1);
1015     }
1016     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
1017 #endif
1018     if (p == nullptr || p->req() != 2) {
1019       break;
1020     } else if (p->is_ConstraintCast()) {
1021       if (keep_deps && p->as_ConstraintCast()->carry_dependency()) {
1022         break; // stop at casts with dependencies
1023       }
1024       p = p->in(1);
1025     } else {
1026       break;
1027     }
1028   }
1029   return (Node*) p;
1030 }
1031 
1032 //------------------------------add_prec---------------------------------------
1033 // Add a new precedence input.  Precedence inputs are unordered, with
1034 // duplicates removed and nulls packed down at the end.
1035 void Node::add_prec( Node *n ) {
1036   assert( is_not_dead(n), "can not use dead node");
1037 
1038   // Check for null at end
1039   if( _cnt >= _max || in(_max-1) )
1040     grow( _max+1 );
1041 
1042   // Find a precedence edge to move
1043   uint i = _cnt;
1044   while( in(i) != nullptr ) {
1045     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
1046     i++;
1047   }
1048   _in[i] = n;                                   // Stuff prec edge over null
1049   if ( n != nullptr) n->add_out((Node *)this);  // Add mirror edge
1050 
1051 #ifdef ASSERT
1052   while ((++i)<_max) { assert(_in[i] == nullptr, "spec violation: Gap in prec edges (node %d)", _idx); }
1053 #endif
1054   Compile::current()->record_modified_node(this);
1055 }
1056 
1057 //------------------------------rm_prec----------------------------------------
1058 // Remove a precedence input.  Precedence inputs are unordered, with
1059 // duplicates removed and nulls packed down at the end.
1060 void Node::rm_prec( uint j ) {
1061   assert(j < _max, "oob: i=%d, _max=%d", j, _max);
1062   assert(j >= _cnt, "not a precedence edge");
1063   if (_in[j] == nullptr) return;   // Avoid spec violation: Gap in prec edges.
1064   _in[j]->del_out((Node *)this);
1065   close_prec_gap_at(j);
1066   Compile::current()->record_modified_node(this);
1067 }
1068 
1069 //------------------------------size_of----------------------------------------
1070 uint Node::size_of() const { return sizeof(*this); }
1071 
1072 //------------------------------ideal_reg--------------------------------------
1073 uint Node::ideal_reg() const { return 0; }
1074 
1075 //------------------------------jvms-------------------------------------------
1076 JVMState* Node::jvms() const { return nullptr; }
1077 
1078 #ifdef ASSERT
1079 //------------------------------jvms-------------------------------------------
1080 bool Node::verify_jvms(const JVMState* using_jvms) const {
1081   for (JVMState* jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) {
1082     if (jvms == using_jvms)  return true;
1083   }
1084   return false;
1085 }
1086 
1087 //------------------------------init_NodeProperty------------------------------
1088 void Node::init_NodeProperty() {
1089   assert(_max_classes <= max_juint, "too many NodeProperty classes");
1090   assert(max_flags() <= max_juint, "too many NodeProperty flags");
1091 }
1092 
1093 //-----------------------------max_flags---------------------------------------
1094 juint Node::max_flags() {
1095   return (PD::_last_flag << 1) - 1; // allow flags combination
1096 }
1097 #endif
1098 
1099 //------------------------------format-----------------------------------------
1100 // Print as assembly
1101 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1102 //------------------------------emit-------------------------------------------
1103 // Emit bytes using C2_MacroAssembler
1104 void Node::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const {}
1105 //------------------------------size-------------------------------------------
1106 // Size of instruction in bytes
1107 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1108 
1109 //------------------------------CFG Construction-------------------------------
1110 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1111 // Goto and Return.
1112 const Node *Node::is_block_proj() const { return nullptr; }
1113 
1114 // Minimum guaranteed type
1115 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1116 
1117 
1118 //------------------------------raise_bottom_type------------------------------
1119 // Get the worst-case Type output for this Node.
1120 void Node::raise_bottom_type(const Type* new_type) {
1121   if (is_Type()) {
1122     TypeNode *n = this->as_Type();
1123     if (VerifyAliases) {
1124       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1125     }
1126     n->set_type(new_type);
1127   } else if (is_Load()) {
1128     LoadNode *n = this->as_Load();
1129     if (VerifyAliases) {
1130       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1131     }
1132     n->set_type(new_type);
1133   }
1134 }
1135 
1136 //------------------------------Identity---------------------------------------
1137 // Return a node that the given node is equivalent to.
1138 Node* Node::Identity(PhaseGVN* phase) {
1139   return this;                  // Default to no identities
1140 }
1141 
1142 //------------------------------Value------------------------------------------
1143 // Compute a new Type for a node using the Type of the inputs.
1144 const Type* Node::Value(PhaseGVN* phase) const {
1145   return bottom_type();         // Default to worst-case Type
1146 }
1147 
1148 //------------------------------Ideal------------------------------------------
1149 //
1150 // 'Idealize' the graph rooted at this Node.
1151 //
1152 // In order to be efficient and flexible there are some subtle invariants
1153 // these Ideal calls need to hold.  Running with '-XX:VerifyIterativeGVN=1' checks
1154 // these invariants, although its too slow to have on by default.  If you are
1155 // hacking an Ideal call, be sure to test with '-XX:VerifyIterativeGVN=1'
1156 //
1157 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1158 // pointer.  If ANY change is made, it must return the root of the reshaped
1159 // graph - even if the root is the same Node.  Example: swapping the inputs
1160 // to an AddINode gives the same answer and same root, but you still have to
1161 // return the 'this' pointer instead of null.
1162 //
1163 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1164 // Identity call to return an old Node; basically if Identity can find
1165 // another Node have the Ideal call make no change and return null.
1166 // Example: AddINode::Ideal must check for add of zero; in this case it
1167 // returns null instead of doing any graph reshaping.
1168 //
1169 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1170 // sharing there may be other users of the old Nodes relying on their current
1171 // semantics.  Modifying them will break the other users.
1172 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1173 // "X+3" unchanged in case it is shared.
1174 //
1175 // If you modify the 'this' pointer's inputs, you should use
1176 // 'set_req'.  If you are making a new Node (either as the new root or
1177 // some new internal piece) you may use 'init_req' to set the initial
1178 // value.  You can make a new Node with either 'new' or 'clone'.  In
1179 // either case, def-use info is correctly maintained.
1180 //
1181 // Example: reshape "(X+3)+4" into "X+7":
1182 //    set_req(1, in(1)->in(1));
1183 //    set_req(2, phase->intcon(7));
1184 //    return this;
1185 // Example: reshape "X*4" into "X<<2"
1186 //    return new LShiftINode(in(1), phase->intcon(2));
1187 //
1188 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1189 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1190 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1191 //    return new AddINode(shift, in(1));
1192 //
1193 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1194 // These forms are faster than 'phase->transform(new ConNode())' and Do
1195 // The Right Thing with def-use info.
1196 //
1197 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1198 // graph uses the 'this' Node it must be the root.  If you want a Node with
1199 // the same Opcode as the 'this' pointer use 'clone'.
1200 //
1201 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1202   return nullptr;                  // Default to being Ideal already
1203 }
1204 
1205 // Some nodes have specific Ideal subgraph transformations only if they are
1206 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1207 // for the transformations to happen.
1208 bool Node::has_special_unique_user() const {
1209   assert(outcnt() == 1, "match only for unique out");
1210   Node* n = unique_out();
1211   int op  = Opcode();
1212   if (this->is_Store()) {
1213     // Condition for back-to-back stores folding.
1214     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1215   } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) {
1216     // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input
1217     return n->Opcode() == Op_MemBarAcquire;
1218   } else if (op == Op_AddL) {
1219     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1220     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1221   } else if (op == Op_SubI || op == Op_SubL) {
1222     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1223     return n->Opcode() == op && n->in(2) == this;
1224   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1225     // See IfProjNode::Identity()
1226     return true;
1227   } else if ((is_IfFalse() || is_IfTrue()) && n->is_If()) {
1228     // See IfNode::fold_compares
1229     return true;
1230   } else {
1231     return false;
1232   }
1233 };
1234 
1235 //--------------------------find_exact_control---------------------------------
1236 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1237 Node* Node::find_exact_control(Node* ctrl) {
1238   if (ctrl == nullptr && this->is_Region())
1239     ctrl = this->as_Region()->is_copy();
1240 
1241   if (ctrl != nullptr && ctrl->is_CatchProj()) {
1242     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1243       ctrl = ctrl->in(0);
1244     if (ctrl != nullptr && !ctrl->is_top())
1245       ctrl = ctrl->in(0);
1246   }
1247 
1248   if (ctrl != nullptr && ctrl->is_Proj())
1249     ctrl = ctrl->in(0);
1250 
1251   return ctrl;
1252 }
1253 
1254 //--------------------------dominates------------------------------------------
1255 // Helper function for MemNode::all_controls_dominate().
1256 // Check if 'this' control node dominates or equal to 'sub' control node.
1257 // We already know that if any path back to Root or Start reaches 'this',
1258 // then all paths so, so this is a simple search for one example,
1259 // not an exhaustive search for a counterexample.
1260 Node::DomResult Node::dominates(Node* sub, Node_List &nlist) {
1261   assert(this->is_CFG(), "expecting control");
1262   assert(sub != nullptr && sub->is_CFG(), "expecting control");
1263 
1264   // detect dead cycle without regions
1265   int iterations_without_region_limit = DominatorSearchLimit;
1266 
1267   Node* orig_sub = sub;
1268   Node* dom      = this;
1269   bool  met_dom  = false;
1270   nlist.clear();
1271 
1272   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1273   // After seeing 'dom', continue up to Root or Start.
1274   // If we hit a region (backward split point), it may be a loop head.
1275   // Keep going through one of the region's inputs.  If we reach the
1276   // same region again, go through a different input.  Eventually we
1277   // will either exit through the loop head, or give up.
1278   // (If we get confused, break out and return a conservative 'false'.)
1279   while (sub != nullptr) {
1280     if (sub->is_top()) {
1281       // Conservative answer for dead code.
1282       return DomResult::EncounteredDeadCode;
1283     }
1284     if (sub == dom) {
1285       if (nlist.size() == 0) {
1286         // No Region nodes except loops were visited before and the EntryControl
1287         // path was taken for loops: it did not walk in a cycle.
1288         return DomResult::Dominate;
1289       } else if (met_dom) {
1290         break;          // already met before: walk in a cycle
1291       } else {
1292         // Region nodes were visited. Continue walk up to Start or Root
1293         // to make sure that it did not walk in a cycle.
1294         met_dom = true; // first time meet
1295         iterations_without_region_limit = DominatorSearchLimit; // Reset
1296      }
1297     }
1298     if (sub->is_Start() || sub->is_Root()) {
1299       // Success if we met 'dom' along a path to Start or Root.
1300       // We assume there are no alternative paths that avoid 'dom'.
1301       // (This assumption is up to the caller to ensure!)
1302       return met_dom ? DomResult::Dominate : DomResult::NotDominate;
1303     }
1304     Node* up = sub->in(0);
1305     // Normalize simple pass-through regions and projections:
1306     up = sub->find_exact_control(up);
1307     // If sub == up, we found a self-loop.  Try to push past it.
1308     if (sub == up && sub->is_Loop()) {
1309       // Take loop entry path on the way up to 'dom'.
1310       up = sub->in(1); // in(LoopNode::EntryControl);
1311     } else if (sub == up && sub->is_Region() && sub->req() == 2) {
1312       // Take in(1) path on the way up to 'dom' for regions with only one input
1313       up = sub->in(1);
1314     } else if (sub == up && sub->is_Region()) {
1315       // Try both paths for Regions with 2 input paths (it may be a loop head).
1316       // It could give conservative 'false' answer without information
1317       // which region's input is the entry path.
1318       iterations_without_region_limit = DominatorSearchLimit; // Reset
1319 
1320       bool region_was_visited_before = false;
1321       // Was this Region node visited before?
1322       // If so, we have reached it because we accidentally took a
1323       // loop-back edge from 'sub' back into the body of the loop,
1324       // and worked our way up again to the loop header 'sub'.
1325       // So, take the first unexplored path on the way up to 'dom'.
1326       for (int j = nlist.size() - 1; j >= 0; j--) {
1327         intptr_t ni = (intptr_t)nlist.at(j);
1328         Node* visited = (Node*)(ni & ~1);
1329         bool  visited_twice_already = ((ni & 1) != 0);
1330         if (visited == sub) {
1331           if (visited_twice_already) {
1332             // Visited 2 paths, but still stuck in loop body.  Give up.
1333             return DomResult::NotDominate;
1334           }
1335           // The Region node was visited before only once.
1336           // (We will repush with the low bit set, below.)
1337           nlist.remove(j);
1338           // We will find a new edge and re-insert.
1339           region_was_visited_before = true;
1340           break;
1341         }
1342       }
1343 
1344       // Find an incoming edge which has not been seen yet; walk through it.
1345       assert(up == sub, "");
1346       uint skip = region_was_visited_before ? 1 : 0;
1347       for (uint i = 1; i < sub->req(); i++) {
1348         Node* in = sub->in(i);
1349         if (in != nullptr && !in->is_top() && in != sub) {
1350           if (skip == 0) {
1351             up = in;
1352             break;
1353           }
1354           --skip;               // skip this nontrivial input
1355         }
1356       }
1357 
1358       // Set 0 bit to indicate that both paths were taken.
1359       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1360     }
1361 
1362     if (up == sub) {
1363       break;    // some kind of tight cycle
1364     }
1365     if (up == orig_sub && met_dom) {
1366       // returned back after visiting 'dom'
1367       break;    // some kind of cycle
1368     }
1369     if (--iterations_without_region_limit < 0) {
1370       break;    // dead cycle
1371     }
1372     sub = up;
1373   }
1374 
1375   // Did not meet Root or Start node in pred. chain.
1376   return DomResult::NotDominate;
1377 }
1378 
1379 //------------------------------remove_dead_region-----------------------------
1380 // This control node is dead.  Follow the subgraph below it making everything
1381 // using it dead as well.  This will happen normally via the usual IterGVN
1382 // worklist but this call is more efficient.  Do not update use-def info
1383 // inside the dead region, just at the borders.
1384 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1385   // Con's are a popular node to re-hit in the hash table again.
1386   if( dead->is_Con() ) return;
1387 
1388   ResourceMark rm;
1389   Node_List nstack;
1390   VectorSet dead_set; // notify uses only once
1391 
1392   Node *top = igvn->C->top();
1393   nstack.push(dead);
1394   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1395 
1396   while (nstack.size() > 0) {
1397     dead = nstack.pop();
1398     if (!dead_set.test_set(dead->_idx)) {
1399       // If dead has any live uses, those are now still attached. Notify them before we lose them.
1400       igvn->add_users_to_worklist(dead);
1401     }
1402     if (dead->Opcode() == Op_SafePoint) {
1403       dead->as_SafePoint()->disconnect_from_root(igvn);
1404     }
1405     if (dead->outcnt() > 0) {
1406       // Keep dead node on stack until all uses are processed.
1407       nstack.push(dead);
1408       // For all Users of the Dead...    ;-)
1409       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1410         Node* use = dead->last_out(k);
1411         igvn->hash_delete(use);       // Yank from hash table prior to mod
1412         if (use->in(0) == dead) {     // Found another dead node
1413           assert (!use->is_Con(), "Control for Con node should be Root node.");
1414           use->set_req(0, top);       // Cut dead edge to prevent processing
1415           nstack.push(use);           // the dead node again.
1416         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1417                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1418                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1419           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1420           use->set_req(0, top);       // Cut self edge
1421           nstack.push(use);
1422         } else {                      // Else found a not-dead user
1423           // Dead if all inputs are top or null
1424           bool dead_use = !use->is_Root(); // Keep empty graph alive
1425           for (uint j = 1; j < use->req(); j++) {
1426             Node* in = use->in(j);
1427             if (in == dead) {         // Turn all dead inputs into TOP
1428               use->set_req(j, top);
1429             } else if (in != nullptr && !in->is_top()) {
1430               dead_use = false;
1431             }
1432           }
1433           if (dead_use) {
1434             if (use->is_Region()) {
1435               use->set_req(0, top);   // Cut self edge
1436             }
1437             nstack.push(use);
1438           } else {
1439             igvn->_worklist.push(use);
1440           }
1441         }
1442         // Refresh the iterator, since any number of kills might have happened.
1443         k = dead->last_outs(kmin);
1444       }
1445     } else { // (dead->outcnt() == 0)
1446       // Done with outputs.
1447       igvn->hash_delete(dead);
1448       igvn->_worklist.remove(dead);
1449       igvn->set_type(dead, Type::TOP);
1450       // Kill all inputs to the dead guy
1451       for (uint i=0; i < dead->req(); i++) {
1452         Node *n = dead->in(i);      // Get input to dead guy
1453         if (n != nullptr && !n->is_top()) { // Input is valid?
1454           dead->set_req(i, top);    // Smash input away
1455           if (n->outcnt() == 0) {   // Input also goes dead?
1456             if (!n->is_Con())
1457               nstack.push(n);       // Clear it out as well
1458           } else if (n->outcnt() == 1 &&
1459                      n->has_special_unique_user()) {
1460             igvn->add_users_to_worklist( n );
1461           } else if (n->outcnt() <= 2 && n->is_Store()) {
1462             // Push store's uses on worklist to enable folding optimization for
1463             // store/store and store/load to the same address.
1464             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1465             // and remove_globally_dead_node().
1466             igvn->add_users_to_worklist( n );
1467           } else {
1468             BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, n);
1469           }
1470         }
1471       }
1472       igvn->C->remove_useless_node(dead);
1473     } // (dead->outcnt() == 0)
1474   }   // while (nstack.size() > 0) for outputs
1475   return;
1476 }
1477 
1478 //------------------------------remove_dead_region-----------------------------
1479 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1480   Node *n = in(0);
1481   if( !n ) return false;
1482   // Lost control into this guy?  I.e., it became unreachable?
1483   // Aggressively kill all unreachable code.
1484   if (can_reshape && n->is_top()) {
1485     kill_dead_code(this, phase->is_IterGVN());
1486     return false; // Node is dead.
1487   }
1488 
1489   if( n->is_Region() && n->as_Region()->is_copy() ) {
1490     Node *m = n->nonnull_req();
1491     set_req(0, m);
1492     return true;
1493   }
1494   return false;
1495 }
1496 
1497 //------------------------------hash-------------------------------------------
1498 // Hash function over Nodes.
1499 uint Node::hash() const {
1500   uint sum = 0;
1501   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1502     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded nulls
1503   return (sum>>2) + _cnt + Opcode();
1504 }
1505 
1506 //------------------------------cmp--------------------------------------------
1507 // Compare special parts of simple Nodes
1508 bool Node::cmp( const Node &n ) const {
1509   return true;                  // Must be same
1510 }
1511 
1512 //------------------------------rematerialize-----------------------------------
1513 // Should we clone rather than spill this instruction?
1514 bool Node::rematerialize() const {
1515   if ( is_Mach() )
1516     return this->as_Mach()->rematerialize();
1517   else
1518     return (_flags & Flag_rematerialize) != 0;
1519 }
1520 
1521 //------------------------------needs_anti_dependence_check---------------------
1522 // Nodes which use memory without consuming it, hence need antidependences.
1523 bool Node::needs_anti_dependence_check() const {
1524   if (req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0) {
1525     return false;
1526   }
1527   return in(1)->bottom_type()->has_memory();
1528 }
1529 
1530 // Get an integer constant from a ConNode (or CastIINode).
1531 // Return a default value if there is no apparent constant here.
1532 const TypeInt* Node::find_int_type() const {
1533   if (this->is_Type()) {
1534     return this->as_Type()->type()->isa_int();
1535   } else if (this->is_Con()) {
1536     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1537     return this->bottom_type()->isa_int();
1538   }
1539   return nullptr;
1540 }
1541 
1542 const TypeInteger* Node::find_integer_type(BasicType bt) const {
1543   if (this->is_Type()) {
1544     return this->as_Type()->type()->isa_integer(bt);
1545   } else if (this->is_Con()) {
1546     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1547     return this->bottom_type()->isa_integer(bt);
1548   }
1549   return nullptr;
1550 }
1551 
1552 // Get a pointer constant from a ConstNode.
1553 // Returns the constant if it is a pointer ConstNode
1554 intptr_t Node::get_ptr() const {
1555   assert( Opcode() == Op_ConP, "" );
1556   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1557 }
1558 
1559 // Get a narrow oop constant from a ConNNode.
1560 intptr_t Node::get_narrowcon() const {
1561   assert( Opcode() == Op_ConN, "" );
1562   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1563 }
1564 
1565 // Get a long constant from a ConNode.
1566 // Return a default value if there is no apparent constant here.
1567 const TypeLong* Node::find_long_type() const {
1568   if (this->is_Type()) {
1569     return this->as_Type()->type()->isa_long();
1570   } else if (this->is_Con()) {
1571     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1572     return this->bottom_type()->isa_long();
1573   }
1574   return nullptr;
1575 }
1576 
1577 
1578 /**
1579  * Return a ptr type for nodes which should have it.
1580  */
1581 const TypePtr* Node::get_ptr_type() const {
1582   const TypePtr* tp = this->bottom_type()->make_ptr();
1583 #ifdef ASSERT
1584   if (tp == nullptr) {
1585     this->dump(1);
1586     assert((tp != nullptr), "unexpected node type");
1587   }
1588 #endif
1589   return tp;
1590 }
1591 
1592 // Get a double constant from a ConstNode.
1593 // Returns the constant if it is a double ConstNode
1594 jdouble Node::getd() const {
1595   assert( Opcode() == Op_ConD, "" );
1596   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1597 }
1598 
1599 // Get a float constant from a ConstNode.
1600 // Returns the constant if it is a float ConstNode
1601 jfloat Node::getf() const {
1602   assert( Opcode() == Op_ConF, "" );
1603   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1604 }
1605 
1606 #ifndef PRODUCT
1607 
1608 // Call this from debugger:
1609 Node* old_root() {
1610   Matcher* matcher = Compile::current()->matcher();
1611   if (matcher != nullptr) {
1612     Node* new_root = Compile::current()->root();
1613     Node* old_root = matcher->find_old_node(new_root);
1614     if (old_root != nullptr) {
1615       return old_root;
1616     }
1617   }
1618   tty->print("old_root: not found.\n");
1619   return nullptr;
1620 }
1621 
1622 // BFS traverse all reachable nodes from start, call callback on them
1623 template <typename Callback>
1624 void visit_nodes(Node* start, Callback callback, bool traverse_output, bool only_ctrl) {
1625   Unique_Mixed_Node_List worklist;
1626   worklist.add(start);
1627   for (uint i = 0; i < worklist.size(); i++) {
1628     Node* n = worklist[i];
1629     callback(n);
1630     for (uint i = 0; i < n->len(); i++) {
1631       if (!only_ctrl || n->is_Region() || (n->Opcode() == Op_Root) || (i == TypeFunc::Control)) {
1632         // If only_ctrl is set: Add regions, the root node, or control inputs only
1633         worklist.add(n->in(i));
1634       }
1635     }
1636     if (traverse_output && !only_ctrl) {
1637       for (uint i = 0; i < n->outcnt(); i++) {
1638         worklist.add(n->raw_out(i));
1639       }
1640     }
1641   }
1642 }
1643 
1644 // BFS traverse from start, return node with idx
1645 static Node* find_node_by_idx(Node* start, uint idx, bool traverse_output, bool only_ctrl) {
1646   ResourceMark rm;
1647   Node* result = nullptr;
1648   auto callback = [&] (Node* n) {
1649     if (n->_idx == idx) {
1650       if (result != nullptr) {
1651         tty->print("find_node_by_idx: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1652           (uintptr_t)result, (uintptr_t)n, idx);
1653       }
1654       result = n;
1655     }
1656   };
1657   visit_nodes(start, callback, traverse_output, only_ctrl);
1658   return result;
1659 }
1660 
1661 static int node_idx_cmp(const Node** n1, const Node** n2) {
1662   return (*n1)->_idx - (*n2)->_idx;
1663 }
1664 
1665 static void find_nodes_by_name(Node* start, const char* name) {
1666   ResourceMark rm;
1667   GrowableArray<const Node*> ns;
1668   auto callback = [&] (const Node* n) {
1669     if (StringUtils::is_star_match(name, n->Name())) {
1670       ns.push(n);
1671     }
1672   };
1673   visit_nodes(start, callback, true, false);
1674   ns.sort(node_idx_cmp);
1675   for (int i = 0; i < ns.length(); i++) {
1676     ns.at(i)->dump();
1677   }
1678 }
1679 
1680 static void find_nodes_by_dump(Node* start, const char* pattern) {
1681   ResourceMark rm;
1682   GrowableArray<const Node*> ns;
1683   auto callback = [&] (const Node* n) {
1684     stringStream stream;
1685     n->dump("", false, &stream);
1686     if (StringUtils::is_star_match(pattern, stream.base())) {
1687       ns.push(n);
1688     }
1689   };
1690   visit_nodes(start, callback, true, false);
1691   ns.sort(node_idx_cmp);
1692   for (int i = 0; i < ns.length(); i++) {
1693     ns.at(i)->dump();
1694   }
1695 }
1696 
1697 // call from debugger: find node with name pattern in new/current graph
1698 // name can contain "*" in match pattern to match any characters
1699 // the matching is case insensitive
1700 void find_nodes_by_name(const char* name) {
1701   Node* root = Compile::current()->root();
1702   find_nodes_by_name(root, name);
1703 }
1704 
1705 // call from debugger: find node with name pattern in old graph
1706 // name can contain "*" in match pattern to match any characters
1707 // the matching is case insensitive
1708 void find_old_nodes_by_name(const char* name) {
1709   Node* root = old_root();
1710   find_nodes_by_name(root, name);
1711 }
1712 
1713 // call from debugger: find node with dump pattern in new/current graph
1714 // can contain "*" in match pattern to match any characters
1715 // the matching is case insensitive
1716 void find_nodes_by_dump(const char* pattern) {
1717   Node* root = Compile::current()->root();
1718   find_nodes_by_dump(root, pattern);
1719 }
1720 
1721 // call from debugger: find node with name pattern in old graph
1722 // can contain "*" in match pattern to match any characters
1723 // the matching is case insensitive
1724 void find_old_nodes_by_dump(const char* pattern) {
1725   Node* root = old_root();
1726   find_nodes_by_dump(root, pattern);
1727 }
1728 
1729 // Call this from debugger, search in same graph as n:
1730 Node* find_node(Node* n, const int idx) {
1731   return n->find(idx);
1732 }
1733 
1734 // Call this from debugger, search in new nodes:
1735 Node* find_node(const int idx) {
1736   return Compile::current()->root()->find(idx);
1737 }
1738 
1739 // Call this from debugger, search in old nodes:
1740 Node* find_old_node(const int idx) {
1741   Node* root = old_root();
1742   return (root == nullptr) ? nullptr : root->find(idx);
1743 }
1744 
1745 // Call this from debugger, search in same graph as n:
1746 Node* find_ctrl(Node* n, const int idx) {
1747   return n->find_ctrl(idx);
1748 }
1749 
1750 // Call this from debugger, search in new nodes:
1751 Node* find_ctrl(const int idx) {
1752   return Compile::current()->root()->find_ctrl(idx);
1753 }
1754 
1755 // Call this from debugger, search in old nodes:
1756 Node* find_old_ctrl(const int idx) {
1757   Node* root = old_root();
1758   return (root == nullptr) ? nullptr : root->find_ctrl(idx);
1759 }
1760 
1761 //------------------------------find_ctrl--------------------------------------
1762 // Find an ancestor to this node in the control history with given _idx
1763 Node* Node::find_ctrl(int idx) {
1764   return find(idx, true);
1765 }
1766 
1767 //------------------------------find-------------------------------------------
1768 // Tries to find the node with the index |idx| starting from this node. If idx is negative,
1769 // the search also includes forward (out) edges. Returns null if not found.
1770 // If only_ctrl is set, the search will only be done on control nodes. Returns null if
1771 // not found or if the node to be found is not a control node (search will not find it).
1772 Node* Node::find(const int idx, bool only_ctrl) {
1773   ResourceMark rm;
1774   return find_node_by_idx(this, abs(idx), (idx < 0), only_ctrl);
1775 }
1776 
1777 class PrintBFS {
1778 public:
1779   PrintBFS(const Node* start, const int max_distance, const Node* target, const char* options, outputStream* st)
1780   : _start(start), _max_distance(max_distance), _target(target), _options(options), _output(st),
1781     _dcc(this), _info_uid(cmpkey, hashkey) {}
1782 
1783   void run();
1784 private:
1785   // pipeline steps
1786   bool configure();
1787   void collect();
1788   void select();
1789   void select_all();
1790   void select_all_paths();
1791   void select_shortest_path();
1792   void sort();
1793   void print();
1794 
1795   // inputs
1796   const Node* _start;
1797   const int _max_distance;
1798   const Node* _target;
1799   const char* _options;
1800   outputStream* _output;
1801 
1802   // options
1803   bool _traverse_inputs = false;
1804   bool _traverse_outputs = false;
1805   struct Filter {
1806     bool _control = false;
1807     bool _memory = false;
1808     bool _data = false;
1809     bool _mixed = false;
1810     bool _other = false;
1811     bool is_empty() const {
1812       return !(_control || _memory || _data || _mixed || _other);
1813     }
1814     void set_all() {
1815       _control = true;
1816       _memory = true;
1817       _data = true;
1818       _mixed = true;
1819       _other = true;
1820     }
1821     // Check if the filter accepts the node. Go by the type categories, but also all CFG nodes
1822     // are considered to have control.
1823     bool accepts(const Node* n) {
1824       const Type* t = n->bottom_type();
1825       return ( _data    &&  t->has_category(Type::Category::Data)                    ) ||
1826              ( _memory  &&  t->has_category(Type::Category::Memory)                  ) ||
1827              ( _mixed   &&  t->has_category(Type::Category::Mixed)                   ) ||
1828              ( _control && (t->has_category(Type::Category::Control) || n->is_CFG()) ) ||
1829              ( _other   &&  t->has_category(Type::Category::Other)                   );
1830     }
1831   };
1832   Filter _filter_visit;
1833   Filter _filter_boundary;
1834   bool _sort_idx = false;
1835   bool _all_paths = false;
1836   bool _use_color = false;
1837   bool _print_blocks = false;
1838   bool _print_old = false;
1839   bool _dump_only = false;
1840   void print_options_help(bool print_examples);
1841   bool parse_options();
1842 
1843 public:
1844   class DumpConfigColored : public Node::DumpConfig {
1845   public:
1846     DumpConfigColored(PrintBFS* bfs) : _bfs(bfs) {};
1847     virtual void pre_dump(outputStream* st, const Node* n);
1848     virtual void post_dump(outputStream* st);
1849   private:
1850     PrintBFS* _bfs;
1851   };
1852 private:
1853   DumpConfigColored _dcc;
1854 
1855   // node info
1856   static Node* old_node(const Node* n); // mach node -> prior IR node
1857   void print_node_idx(const Node* n);
1858   void print_block_id(const Block* b);
1859   void print_node_block(const Node* n); // _pre_order, head idx, _idom, _dom_depth
1860 
1861   // traversal data structures
1862   GrowableArray<const Node*> _worklist; // BFS queue
1863   void maybe_traverse(const Node* src, const Node* dst);
1864 
1865   // node info annotation
1866   class Info {
1867   public:
1868     Info() : Info(nullptr, 0) {};
1869     Info(const Node* node, int distance)
1870       : _node(node), _distance_from_start(distance) {};
1871     const Node* node() const { return _node; };
1872     int distance() const { return _distance_from_start; };
1873     int distance_from_target() const { return _distance_from_target; }
1874     void set_distance_from_target(int d) { _distance_from_target = d; }
1875     GrowableArray<const Node*> edge_bwd; // pointing toward _start
1876     bool is_marked() const { return _mark; } // marked to keep during select
1877     void set_mark() { _mark = true; }
1878   private:
1879     const Node* _node;
1880     int _distance_from_start; // distance from _start
1881     int _distance_from_target = 0; // distance from _target if _all_paths
1882     bool _mark = false;
1883   };
1884   Dict _info_uid;            // Node -> uid
1885   GrowableArray<Info> _info; // uid  -> info
1886 
1887   Info* find_info(const Node* n) {
1888     size_t uid = (size_t)_info_uid[n];
1889     if (uid == 0) {
1890       return nullptr;
1891     }
1892     return &_info.at((int)uid);
1893   }
1894 
1895   void make_info(const Node* node, const int distance) {
1896     assert(find_info(node) == nullptr, "node does not yet have info");
1897     size_t uid = _info.length() + 1;
1898     _info_uid.Insert((void*)node, (void*)uid);
1899     _info.at_put_grow((int)uid, Info(node, distance));
1900     assert(find_info(node)->node() == node, "stored correct node");
1901   };
1902 
1903   // filled by sort, printed by print
1904   GrowableArray<const Node*> _print_list;
1905 
1906   // print header + node table
1907   void print_header() const;
1908   void print_node(const Node* n);
1909 };
1910 
1911 void PrintBFS::run() {
1912   if (!configure()) {
1913     return;
1914   }
1915   collect();
1916   select();
1917   sort();
1918   print();
1919 }
1920 
1921 // set up configuration for BFS and print
1922 bool PrintBFS::configure() {
1923   if (_max_distance < 0) {
1924     _output->print_cr("dump_bfs: max_distance must be non-negative!");
1925     return false;
1926   }
1927   return parse_options();
1928 }
1929 
1930 // BFS traverse according to configuration, fill worklist and info
1931 void PrintBFS::collect() {
1932   maybe_traverse(_start, _start);
1933   int pos = 0;
1934   while (pos < _worklist.length()) {
1935     const Node* n = _worklist.at(pos++); // next node to traverse
1936     Info* info = find_info(n);
1937     if (!_filter_visit.accepts(n) && n != _start) {
1938       continue; // we hit boundary, do not traverse further
1939     }
1940     if (n != _start && n->is_Root()) {
1941       continue; // traversing through root node would lead to unrelated nodes
1942     }
1943     if (_traverse_inputs && _max_distance > info->distance()) {
1944       for (uint i = 0; i < n->req(); i++) {
1945         maybe_traverse(n, n->in(i));
1946       }
1947     }
1948     if (_traverse_outputs && _max_distance > info->distance()) {
1949       for (uint i = 0; i < n->outcnt(); i++) {
1950         maybe_traverse(n, n->raw_out(i));
1951       }
1952     }
1953   }
1954 }
1955 
1956 // go through work list, mark those that we want to print
1957 void PrintBFS::select() {
1958   if (_target == nullptr ) {
1959     select_all();
1960   } else {
1961     if (find_info(_target) == nullptr) {
1962       _output->print_cr("Could not find target in BFS.");
1963       return;
1964     }
1965     if (_all_paths) {
1966       select_all_paths();
1967     } else {
1968       select_shortest_path();
1969     }
1970   }
1971 }
1972 
1973 // take all nodes from BFS
1974 void PrintBFS::select_all() {
1975   for (int i = 0; i < _worklist.length(); i++) {
1976     const Node* n = _worklist.at(i);
1977     Info* info = find_info(n);
1978     info->set_mark();
1979   }
1980 }
1981 
1982 // traverse backward from target, along edges found in BFS
1983 void PrintBFS::select_all_paths() {
1984   int pos = 0;
1985   GrowableArray<const Node*> backtrace;
1986   // start from target
1987   backtrace.push(_target);
1988   find_info(_target)->set_mark();
1989   // traverse backward
1990   while (pos < backtrace.length()) {
1991     const Node* n = backtrace.at(pos++);
1992     Info* info = find_info(n);
1993     for (int i = 0; i < info->edge_bwd.length(); i++) {
1994       // all backward edges
1995       const Node* back = info->edge_bwd.at(i);
1996       Info* back_info = find_info(back);
1997       if (!back_info->is_marked()) {
1998         // not yet found this on way back.
1999         back_info->set_distance_from_target(info->distance_from_target() + 1);
2000         if (back_info->distance_from_target() + back_info->distance() <= _max_distance) {
2001           // total distance is small enough
2002           back_info->set_mark();
2003           backtrace.push(back);
2004         }
2005       }
2006     }
2007   }
2008 }
2009 
2010 void PrintBFS::select_shortest_path() {
2011   const Node* current = _target;
2012   while (true) {
2013     Info* info = find_info(current);
2014     info->set_mark();
2015     if (current == _start) {
2016       break;
2017     }
2018     // first edge -> leads us one step closer to _start
2019     current = info->edge_bwd.at(0);
2020   }
2021 }
2022 
2023 // go through worklist in desired order, put the marked ones in print list
2024 void PrintBFS::sort() {
2025   if (_traverse_inputs && !_traverse_outputs) {
2026     // reverse order
2027     for (int i = _worklist.length() - 1; i >= 0; i--) {
2028       const Node* n = _worklist.at(i);
2029       Info* info = find_info(n);
2030       if (info->is_marked()) {
2031         _print_list.push(n);
2032       }
2033     }
2034   } else {
2035     // same order as worklist
2036     for (int i = 0; i < _worklist.length(); i++) {
2037       const Node* n = _worklist.at(i);
2038       Info* info = find_info(n);
2039       if (info->is_marked()) {
2040         _print_list.push(n);
2041       }
2042     }
2043   }
2044   if (_sort_idx) {
2045     _print_list.sort(node_idx_cmp);
2046   }
2047 }
2048 
2049 // go through printlist and print
2050 void PrintBFS::print() {
2051   if (_print_list.length() > 0 ) {
2052     print_header();
2053     for (int i = 0; i < _print_list.length(); i++) {
2054       const Node* n = _print_list.at(i);
2055       print_node(n);
2056     }
2057   } else {
2058     _output->print_cr("No nodes to print.");
2059   }
2060 }
2061 
2062 void PrintBFS::print_options_help(bool print_examples) {
2063   _output->print_cr("Usage: node->dump_bfs(int max_distance, Node* target, char* options)");
2064   _output->print_cr("");
2065   _output->print_cr("Use cases:");
2066   _output->print_cr("  BFS traversal: no target required");
2067   _output->print_cr("  shortest path: set target");
2068   _output->print_cr("  all paths: set target and put 'A' in options");
2069   _output->print_cr("  detect loop: subcase of all paths, have start==target");
2070   _output->print_cr("");
2071   _output->print_cr("Arguments:");
2072   _output->print_cr("  this/start: staring point of BFS");
2073   _output->print_cr("  target:");
2074   _output->print_cr("    if null: simple BFS");
2075   _output->print_cr("    else: shortest path or all paths between this/start and target");
2076   _output->print_cr("  options:");
2077   _output->print_cr("    if null: same as \"cdmox@B\"");
2078   _output->print_cr("    else: use combination of following characters");
2079   _output->print_cr("      h: display this help info");
2080   _output->print_cr("      H: display this help info, with examples");
2081   _output->print_cr("      +: traverse in-edges (on if neither + nor -)");
2082   _output->print_cr("      -: traverse out-edges");
2083   _output->print_cr("      c: visit control nodes");
2084   _output->print_cr("      d: visit data nodes");
2085   _output->print_cr("      m: visit memory nodes");
2086   _output->print_cr("      o: visit other nodes");
2087   _output->print_cr("      x: visit mixed nodes");
2088   _output->print_cr("      C: boundary control nodes");
2089   _output->print_cr("      D: boundary data nodes");
2090   _output->print_cr("      M: boundary memory nodes");
2091   _output->print_cr("      O: boundary other nodes");
2092   _output->print_cr("      X: boundary mixed nodes");
2093   _output->print_cr("      #: display node category in color (not supported in all terminals)");
2094   _output->print_cr("      S: sort displayed nodes by node idx");
2095   _output->print_cr("      A: all paths (not just shortest path to target)");
2096   _output->print_cr("      @: print old nodes - before matching (if available)");
2097   _output->print_cr("      B: print scheduling blocks (if available)");
2098   _output->print_cr("      $: dump only, no header, no other columns");
2099   _output->print_cr("");
2100   _output->print_cr("recursively follow edges to nodes with permitted visit types,");
2101   _output->print_cr("on the boundary additionally display nodes allowed in boundary types");
2102   _output->print_cr("Note: the categories can be overlapping. For example a mixed node");
2103   _output->print_cr("      can contain control and memory output. Some from the other");
2104   _output->print_cr("      category are also control (Halt, Return, etc).");
2105   _output->print_cr("");
2106   _output->print_cr("output columns:");
2107   _output->print_cr("  dist:  BFS distance to this/start");
2108   _output->print_cr("  apd:   all paths distance (d_outputart + d_target)");
2109   _output->print_cr("  block: block identifier, based on _pre_order");
2110   _output->print_cr("  head:  first node in block");
2111   _output->print_cr("  idom:  head node of idom block");
2112   _output->print_cr("  depth: depth of block (_dom_depth)");
2113   _output->print_cr("  old:   old IR node - before matching");
2114   _output->print_cr("  dump:  node->dump()");
2115   _output->print_cr("");
2116   _output->print_cr("Note: if none of the \"cmdxo\" characters are in the options string");
2117   _output->print_cr("      then we set all of them.");
2118   _output->print_cr("      This allows for short strings like \"#\" for colored input traversal");
2119   _output->print_cr("      or \"-#\" for colored output traversal.");
2120   if (print_examples) {
2121     _output->print_cr("");
2122     _output->print_cr("Examples:");
2123     _output->print_cr("  if->dump_bfs(10, 0, \"+cxo\")");
2124     _output->print_cr("    starting at some if node, traverse inputs recursively");
2125     _output->print_cr("    only along control (mixed and other can also be control)");
2126     _output->print_cr("  phi->dump_bfs(5, 0, \"-dxo\")");
2127     _output->print_cr("    starting at phi node, traverse outputs recursively");
2128     _output->print_cr("    only along data (mixed and other can also have data flow)");
2129     _output->print_cr("  find_node(385)->dump_bfs(3, 0, \"cdmox+#@B\")");
2130     _output->print_cr("    find inputs of node 385, up to 3 nodes up (+)");
2131     _output->print_cr("    traverse all nodes (cdmox), use colors (#)");
2132     _output->print_cr("    display old nodes and blocks, if they exist");
2133     _output->print_cr("    useful call to start with");
2134     _output->print_cr("  find_node(102)->dump_bfs(10, 0, \"dCDMOX-\")");
2135     _output->print_cr("    find non-data dependencies of a data node");
2136     _output->print_cr("    follow data node outputs until we find another category");
2137     _output->print_cr("    node as the boundary");
2138     _output->print_cr("  x->dump_bfs(10, y, 0)");
2139     _output->print_cr("    find shortest path from x to y, along any edge or node");
2140     _output->print_cr("    will not find a path if it is longer than 10");
2141     _output->print_cr("    useful to find how x and y are related");
2142     _output->print_cr("  find_node(741)->dump_bfs(20, find_node(746), \"c+\")");
2143     _output->print_cr("    find shortest control path between two nodes");
2144     _output->print_cr("  find_node(741)->dump_bfs(8, find_node(746), \"cdmox+A\")");
2145     _output->print_cr("    find all paths (A) between two nodes of length at most 8");
2146     _output->print_cr("  find_node(741)->dump_bfs(7, find_node(741), \"c+A\")");
2147     _output->print_cr("    find all control loops for this node");
2148   }
2149 }
2150 
2151 bool PrintBFS::parse_options() {
2152   if (_options == nullptr) {
2153     _options = "cdmox@B"; // default options
2154   }
2155   size_t len = strlen(_options);
2156   for (size_t i = 0; i < len; i++) {
2157     switch (_options[i]) {
2158       case '+':
2159         _traverse_inputs = true;
2160         break;
2161       case '-':
2162         _traverse_outputs = true;
2163         break;
2164       case 'c':
2165         _filter_visit._control = true;
2166         break;
2167       case 'm':
2168         _filter_visit._memory = true;
2169         break;
2170       case 'd':
2171         _filter_visit._data = true;
2172         break;
2173       case 'x':
2174         _filter_visit._mixed = true;
2175         break;
2176       case 'o':
2177         _filter_visit._other = true;
2178         break;
2179       case 'C':
2180         _filter_boundary._control = true;
2181         break;
2182       case 'M':
2183         _filter_boundary._memory = true;
2184         break;
2185       case 'D':
2186         _filter_boundary._data = true;
2187         break;
2188       case 'X':
2189         _filter_boundary._mixed = true;
2190         break;
2191       case 'O':
2192         _filter_boundary._other = true;
2193         break;
2194       case 'S':
2195         _sort_idx = true;
2196         break;
2197       case 'A':
2198         _all_paths = true;
2199         break;
2200       case '#':
2201         _use_color = true;
2202         break;
2203       case 'B':
2204         _print_blocks = true;
2205         break;
2206       case '@':
2207         _print_old = true;
2208         break;
2209       case '$':
2210         _dump_only = true;
2211         break;
2212       case 'h':
2213         print_options_help(false);
2214         return false;
2215        case 'H':
2216         print_options_help(true);
2217         return false;
2218       default:
2219         _output->print_cr("dump_bfs: Unrecognized option \'%c\'", _options[i]);
2220         _output->print_cr("for help, run: find_node(0)->dump_bfs(0,0,\"H\")");
2221         return false;
2222     }
2223   }
2224   if (!_traverse_inputs && !_traverse_outputs) {
2225     _traverse_inputs = true;
2226   }
2227   if (_filter_visit.is_empty()) {
2228     _filter_visit.set_all();
2229   }
2230   Compile* C = Compile::current();
2231   _print_old &= (C->matcher() != nullptr); // only show old if there are new
2232   _print_blocks &= (C->cfg() != nullptr); // only show blocks if available
2233   return true;
2234 }
2235 
2236 void PrintBFS::DumpConfigColored::pre_dump(outputStream* st, const Node* n) {
2237   if (!_bfs->_use_color) {
2238     return;
2239   }
2240   Info* info = _bfs->find_info(n);
2241   if (info == nullptr || !info->is_marked()) {
2242     return;
2243   }
2244 
2245   const Type* t = n->bottom_type();
2246   switch (t->category()) {
2247     case Type::Category::Data:
2248       st->print("\u001b[34m");
2249       break;
2250     case Type::Category::Memory:
2251       st->print("\u001b[32m");
2252       break;
2253     case Type::Category::Mixed:
2254       st->print("\u001b[35m");
2255       break;
2256     case Type::Category::Control:
2257       st->print("\u001b[31m");
2258       break;
2259     case Type::Category::Other:
2260       st->print("\u001b[33m");
2261       break;
2262     case Type::Category::Undef:
2263       n->dump();
2264       assert(false, "category undef ??");
2265       break;
2266     default:
2267       n->dump();
2268       assert(false, "not covered");
2269       break;
2270   }
2271 }
2272 
2273 void PrintBFS::DumpConfigColored::post_dump(outputStream* st) {
2274   if (!_bfs->_use_color) {
2275     return;
2276   }
2277   st->print("\u001b[0m"); // white
2278 }
2279 
2280 Node* PrintBFS::old_node(const Node* n) {
2281   Compile* C = Compile::current();
2282   if (C->matcher() == nullptr || !C->node_arena()->contains(n)) {
2283     return (Node*)nullptr;
2284   } else {
2285     return C->matcher()->find_old_node(n);
2286   }
2287 }
2288 
2289 void PrintBFS::print_node_idx(const Node* n) {
2290   Compile* C = Compile::current();
2291   char buf[30];
2292   if (n == nullptr) {
2293     os::snprintf_checked(buf, sizeof(buf), "_");           // null
2294   } else if (C->node_arena()->contains(n)) {
2295     os::snprintf_checked(buf, sizeof(buf), "%d", n->_idx);  // new node
2296   } else {
2297     os::snprintf_checked(buf, sizeof(buf), "o%d", n->_idx); // old node
2298   }
2299   _output->print("%6s", buf);
2300 }
2301 
2302 void PrintBFS::print_block_id(const Block* b) {
2303   Compile* C = Compile::current();
2304   char buf[30];
2305   os::snprintf_checked(buf, sizeof(buf), "B%d", b->_pre_order);
2306   _output->print("%7s", buf);
2307 }
2308 
2309 void PrintBFS::print_node_block(const Node* n) {
2310   Compile* C = Compile::current();
2311   Block* b = C->node_arena()->contains(n)
2312              ? C->cfg()->get_block_for_node(n)
2313              : nullptr; // guard against old nodes
2314   if (b == nullptr) {
2315     _output->print("      _"); // Block
2316     _output->print("     _");  // head
2317     _output->print("     _");  // idom
2318     _output->print("      _"); // depth
2319   } else {
2320     print_block_id(b);
2321     print_node_idx(b->head());
2322     if (b->_idom) {
2323       print_node_idx(b->_idom->head());
2324     } else {
2325       _output->print("     _"); // idom
2326     }
2327     _output->print("%6d ", b->_dom_depth);
2328   }
2329 }
2330 
2331 // filter, and add to worklist, add info, note traversal edges
2332 void PrintBFS::maybe_traverse(const Node* src, const Node* dst) {
2333   if (dst != nullptr &&
2334      (_filter_visit.accepts(dst) ||
2335       _filter_boundary.accepts(dst) ||
2336       dst == _start)) { // correct category or start?
2337     if (find_info(dst) == nullptr) {
2338       // never visited - set up info
2339       _worklist.push(dst);
2340       int d = 0;
2341       if (dst != _start) {
2342         d = find_info(src)->distance() + 1;
2343       }
2344       make_info(dst, d);
2345     }
2346     if (src != dst) {
2347       // traversal edges useful during select
2348       find_info(dst)->edge_bwd.push(src);
2349     }
2350   }
2351 }
2352 
2353 void PrintBFS::print_header() const {
2354   if (_dump_only) {
2355     return; // no header in dump only mode
2356   }
2357   _output->print("dist");                         // distance
2358   if (_all_paths) {
2359     _output->print(" apd");                       // all paths distance
2360   }
2361   if (_print_blocks) {
2362     _output->print(" [block  head  idom depth]"); // block
2363   }
2364   if (_print_old) {
2365     _output->print("   old");                     // old node
2366   }
2367   _output->print(" dump\n");                      // node dump
2368   _output->print_cr("---------------------------------------------");
2369 }
2370 
2371 void PrintBFS::print_node(const Node* n) {
2372   if (_dump_only) {
2373     n->dump("\n", false, _output, &_dcc);
2374     return;
2375   }
2376   _output->print("%4d", find_info(n)->distance());// distance
2377   if (_all_paths) {
2378     Info* info = find_info(n);
2379     int apd = info->distance() + info->distance_from_target();
2380     _output->print("%4d", apd);                   // all paths distance
2381   }
2382   if (_print_blocks) {
2383     print_node_block(n);                          // block
2384   }
2385   if (_print_old) {
2386     print_node_idx(old_node(n));                  // old node
2387   }
2388   _output->print(" ");
2389   n->dump("\n", false, _output, &_dcc);           // node dump
2390 }
2391 
2392 //------------------------------dump_bfs--------------------------------------
2393 // Call this from debugger
2394 // Useful for BFS traversal, shortest path, all path, loop detection, etc
2395 // Designed to be more readable, and provide additional info
2396 // To find all options, run:
2397 //   find_node(0)->dump_bfs(0,0,"H")
2398 void Node::dump_bfs(const int max_distance, Node* target, const char* options) const {
2399   dump_bfs(max_distance, target, options, tty);
2400 }
2401 
2402 // Used to dump to stream.
2403 void Node::dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const {
2404   PrintBFS bfs(this, max_distance, target, options, st);
2405   bfs.run();
2406 }
2407 
2408 // Call this from debugger, with default arguments
2409 void Node::dump_bfs(const int max_distance) const {
2410   dump_bfs(max_distance, nullptr, nullptr);
2411 }
2412 
2413 // -----------------------------dump_idx---------------------------------------
2414 void Node::dump_idx(bool align, outputStream* st, DumpConfig* dc) const {
2415   if (dc != nullptr) {
2416     dc->pre_dump(st, this);
2417   }
2418   Compile* C = Compile::current();
2419   bool is_new = C->node_arena()->contains(this);
2420   if (align) { // print prefix empty spaces$
2421     // +1 for leading digit, +1 for "o"
2422     uint max_width = static_cast<uint>(log10(static_cast<double>(C->unique()))) + 2;
2423     // +1 for leading digit, maybe +1 for "o"
2424     uint width = static_cast<uint>(log10(static_cast<double>(_idx))) + 1 + (is_new ? 0 : 1);
2425     while (max_width > width) {
2426       st->print(" ");
2427       width++;
2428     }
2429   }
2430   if (!is_new) {
2431     st->print("o");
2432   }
2433   st->print("%d", _idx);
2434   if (dc != nullptr) {
2435     dc->post_dump(st);
2436   }
2437 }
2438 
2439 // -----------------------------dump_name--------------------------------------
2440 void Node::dump_name(outputStream* st, DumpConfig* dc) const {
2441   if (dc != nullptr) {
2442     dc->pre_dump(st, this);
2443   }
2444   st->print("%s", Name());
2445   if (dc != nullptr) {
2446     dc->post_dump(st);
2447   }
2448 }
2449 
2450 // -----------------------------Name-------------------------------------------
2451 extern const char *NodeClassNames[];
2452 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
2453 
2454 static bool is_disconnected(const Node* n) {
2455   for (uint i = 0; i < n->req(); i++) {
2456     if (n->in(i) != nullptr)  return false;
2457   }
2458   return true;
2459 }
2460 
2461 #ifdef ASSERT
2462 void Node::dump_orig(outputStream *st, bool print_key) const {
2463   Compile* C = Compile::current();
2464   Node* orig = _debug_orig;
2465   if (not_a_node(orig)) orig = nullptr;
2466   if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr;
2467   if (orig == nullptr) return;
2468   if (print_key) {
2469     st->print(" !orig=");
2470   }
2471   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
2472   if (not_a_node(fast)) fast = nullptr;
2473   while (orig != nullptr) {
2474     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
2475     if (discon) st->print("[");
2476     if (!Compile::current()->node_arena()->contains(orig))
2477       st->print("o");
2478     st->print("%d", orig->_idx);
2479     if (discon) st->print("]");
2480     orig = orig->debug_orig();
2481     if (not_a_node(orig)) orig = nullptr;
2482     if (orig != nullptr && !C->node_arena()->contains(orig)) orig = nullptr;
2483     if (orig != nullptr) st->print(",");
2484     if (fast != nullptr) {
2485       // Step fast twice for each single step of orig:
2486       fast = fast->debug_orig();
2487       if (not_a_node(fast)) fast = nullptr;
2488       if (fast != nullptr && fast != orig) {
2489         fast = fast->debug_orig();
2490         if (not_a_node(fast)) fast = nullptr;
2491       }
2492       if (fast == orig) {
2493         st->print("...");
2494         break;
2495       }
2496     }
2497   }
2498 }
2499 
2500 void Node::set_debug_orig(Node* orig) {
2501   _debug_orig = orig;
2502   if (BreakAtNode == 0)  return;
2503   if (not_a_node(orig))  orig = nullptr;
2504   int trip = 10;
2505   while (orig != nullptr) {
2506     if (orig->debug_idx() == BreakAtNode || (uintx)orig->_idx == BreakAtNode) {
2507       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=" UINT64_FORMAT " orig._idx=%d orig._debug_idx=" UINT64_FORMAT,
2508                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
2509       BREAKPOINT;
2510     }
2511     orig = orig->debug_orig();
2512     if (not_a_node(orig))  orig = nullptr;
2513     if (trip-- <= 0)  break;
2514   }
2515 }
2516 #endif //ASSERT
2517 
2518 //------------------------------dump------------------------------------------
2519 // Dump a Node
2520 void Node::dump(const char* suffix, bool mark, outputStream* st, DumpConfig* dc) const {
2521   Compile* C = Compile::current();
2522   bool is_new = C->node_arena()->contains(this);
2523   C->_in_dump_cnt++;
2524 
2525   // idx mark name ===
2526   dump_idx(true, st, dc);
2527   st->print(mark ? " >" : "  ");
2528   dump_name(st, dc);
2529   st->print("  === ");
2530 
2531   // Dump the required and precedence inputs
2532   dump_req(st, dc);
2533   dump_prec(st, dc);
2534   // Dump the outputs
2535   dump_out(st, dc);
2536 
2537   if (is_disconnected(this)) {
2538 #ifdef ASSERT
2539     st->print("  [" UINT64_FORMAT "]", debug_idx());
2540     dump_orig(st);
2541 #endif
2542     st->cr();
2543     C->_in_dump_cnt--;
2544     return;                     // don't process dead nodes
2545   }
2546 
2547   if (C->clone_map().value(_idx) != 0) {
2548     C->clone_map().dump(_idx, st);
2549   }
2550   // Dump node-specific info
2551   dump_spec(st);
2552 #ifdef ASSERT
2553   // Dump the non-reset _debug_idx
2554   if (Verbose && WizardMode) {
2555     st->print("  [" UINT64_FORMAT "]", debug_idx());
2556   }
2557 #endif
2558 
2559   const Type *t = bottom_type();
2560 
2561   if (t != nullptr && (t->isa_instptr() || t->isa_instklassptr())) {
2562     const TypeInstPtr  *toop = t->isa_instptr();
2563     const TypeInstKlassPtr *tkls = t->isa_instklassptr();
2564     if (toop) {
2565       st->print("  Oop:");
2566     } else if (tkls) {
2567       st->print("  Klass:");
2568     }
2569     t->dump_on(st);
2570   } else if (t == Type::MEMORY) {
2571     st->print("  Memory:");
2572     MemNode::dump_adr_type(this, adr_type(), st);
2573   } else if (Verbose || WizardMode) {
2574     st->print("  Type:");
2575     if (t) {
2576       t->dump_on(st);
2577     } else {
2578       st->print("no type");
2579     }
2580   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
2581     // Dump MachSpillcopy vector type.
2582     t->dump_on(st);
2583   }
2584   if (is_new) {
2585     DEBUG_ONLY(dump_orig(st));
2586     Node_Notes* nn = C->node_notes_at(_idx);
2587     if (nn != nullptr && !nn->is_clear()) {
2588       if (nn->jvms() != nullptr) {
2589         st->print(" !jvms:");
2590         nn->jvms()->dump_spec(st);
2591       }
2592     }
2593   }
2594   if (suffix) st->print("%s", suffix);
2595   C->_in_dump_cnt--;
2596 }
2597 
2598 // call from debugger: dump node to tty with newline
2599 void Node::dump() const {
2600   dump("\n");
2601 }
2602 
2603 //------------------------------dump_req--------------------------------------
2604 void Node::dump_req(outputStream* st, DumpConfig* dc) const {
2605   // Dump the required input edges
2606   for (uint i = 0; i < req(); i++) {    // For all required inputs
2607     Node* d = in(i);
2608     if (d == nullptr) {
2609       st->print("_ ");
2610     } else if (not_a_node(d)) {
2611       st->print("not_a_node ");  // uninitialized, sentinel, garbage, etc.
2612     } else {
2613       d->dump_idx(false, st, dc);
2614       st->print(" ");
2615     }
2616   }
2617 }
2618 
2619 
2620 //------------------------------dump_prec-------------------------------------
2621 void Node::dump_prec(outputStream* st, DumpConfig* dc) const {
2622   // Dump the precedence edges
2623   int any_prec = 0;
2624   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
2625     Node* p = in(i);
2626     if (p != nullptr) {
2627       if (!any_prec++) st->print(" |");
2628       if (not_a_node(p)) { st->print("not_a_node "); continue; }
2629       p->dump_idx(false, st, dc);
2630       st->print(" ");
2631     }
2632   }
2633 }
2634 
2635 //------------------------------dump_out--------------------------------------
2636 void Node::dump_out(outputStream* st, DumpConfig* dc) const {
2637   // Delimit the output edges
2638   st->print(" [[ ");
2639   // Dump the output edges
2640   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
2641     Node* u = _out[i];
2642     if (u == nullptr) {
2643       st->print("_ ");
2644     } else if (not_a_node(u)) {
2645       st->print("not_a_node ");
2646     } else {
2647       u->dump_idx(false, st, dc);
2648       st->print(" ");
2649     }
2650   }
2651   st->print("]] ");
2652 }
2653 
2654 //------------------------------dump-------------------------------------------
2655 // call from debugger: dump Node's inputs (or outputs if d negative)
2656 void Node::dump(int d) const {
2657   dump_bfs(abs(d), nullptr, (d > 0) ? "+$" : "-$");
2658 }
2659 
2660 //------------------------------dump_ctrl--------------------------------------
2661 // call from debugger: dump Node's control inputs (or outputs if d negative)
2662 void Node::dump_ctrl(int d) const {
2663   dump_bfs(abs(d), nullptr, (d > 0) ? "+$c" : "-$c");
2664 }
2665 
2666 //-----------------------------dump_compact------------------------------------
2667 void Node::dump_comp() const {
2668   this->dump_comp("\n");
2669 }
2670 
2671 //-----------------------------dump_compact------------------------------------
2672 // Dump a Node in compact representation, i.e., just print its name and index.
2673 // Nodes can specify additional specifics to print in compact representation by
2674 // implementing dump_compact_spec.
2675 void Node::dump_comp(const char* suffix, outputStream *st) const {
2676   Compile* C = Compile::current();
2677   C->_in_dump_cnt++;
2678   st->print("%s(%d)", Name(), _idx);
2679   this->dump_compact_spec(st);
2680   if (suffix) {
2681     st->print("%s", suffix);
2682   }
2683   C->_in_dump_cnt--;
2684 }
2685 
2686 // VERIFICATION CODE
2687 // Verify all nodes if verify_depth is negative
2688 void Node::verify(int verify_depth, VectorSet& visited, Node_List& worklist) {
2689   assert(verify_depth != 0, "depth should not be 0");
2690   Compile* C = Compile::current();
2691   uint last_index_on_current_depth = worklist.size() - 1;
2692   verify_depth--; // Visiting the first node on depth 1
2693   // Only add nodes to worklist if verify_depth is negative (visit all nodes) or greater than 0
2694   bool add_to_worklist = verify_depth != 0;
2695 
2696   for (uint list_index = 0; list_index < worklist.size(); list_index++) {
2697     Node* n = worklist[list_index];
2698 
2699     if (n->is_Con() && n->bottom_type() == Type::TOP) {
2700       if (C->cached_top_node() == nullptr) {
2701         C->set_cached_top_node((Node*)n);
2702       }
2703       assert(C->cached_top_node() == n, "TOP node must be unique");
2704     }
2705 
2706     uint in_len = n->len();
2707     for (uint i = 0; i < in_len; i++) {
2708       Node* x = n->_in[i];
2709       if (!x || x->is_top()) {
2710         continue;
2711       }
2712 
2713       // Verify my input has a def-use edge to me
2714       // Count use-def edges from n to x
2715       int cnt = 1;
2716       for (uint j = 0; j < i; j++) {
2717         if (n->_in[j] == x) {
2718           cnt++;
2719           break;
2720         }
2721       }
2722       if (cnt == 2) {
2723         // x is already checked as n's previous input, skip its duplicated def-use count checking
2724         continue;
2725       }
2726       for (uint j = i + 1; j < in_len; j++) {
2727         if (n->_in[j] == x) {
2728           cnt++;
2729         }
2730       }
2731 
2732       // Count def-use edges from x to n
2733       uint max = x->_outcnt;
2734       for (uint k = 0; k < max; k++) {
2735         if (x->_out[k] == n) {
2736           cnt--;
2737         }
2738       }
2739       assert(cnt == 0, "mismatched def-use edge counts");
2740 
2741       if (add_to_worklist && !visited.test_set(x->_idx)) {
2742         worklist.push(x);
2743       }
2744     }
2745 
2746     if (verify_depth > 0 && list_index == last_index_on_current_depth) {
2747       // All nodes on this depth were processed and its inputs are on the worklist. Decrement verify_depth and
2748       // store the current last list index which is the last node in the list with the new depth. All nodes
2749       // added afterwards will have a new depth again. Stop adding new nodes if depth limit is reached (=0).
2750       verify_depth--;
2751       if (verify_depth == 0) {
2752         add_to_worklist = false;
2753       }
2754       last_index_on_current_depth = worklist.size() - 1;
2755     }
2756   }
2757 }
2758 #endif // not PRODUCT
2759 
2760 //------------------------------Registers--------------------------------------
2761 // Do we Match on this edge index or not?  Generally false for Control
2762 // and true for everything else.  Weird for calls & returns.
2763 uint Node::match_edge(uint idx) const {
2764   return idx;                   // True for other than index 0 (control)
2765 }
2766 
2767 // Register classes are defined for specific machines
2768 const RegMask &Node::out_RegMask() const {
2769   ShouldNotCallThis();
2770   return RegMask::Empty;
2771 }
2772 
2773 const RegMask &Node::in_RegMask(uint) const {
2774   ShouldNotCallThis();
2775   return RegMask::Empty;
2776 }
2777 
2778 void Node_Array::grow(uint i) {
2779   _nesting.check(_a); // Check if a potential reallocation in the arena is safe
2780   assert(i >= _max, "Should have been checked before, use maybe_grow?");
2781   assert(_max > 0, "invariant");
2782   uint old = _max;
2783   _max = next_power_of_2(i);
2784   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2785   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2786 }
2787 
2788 void Node_Array::insert(uint i, Node* n) {
2789   if (_nodes[_max - 1]) {
2790     grow(_max);
2791   }
2792   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i + 1], ((_max - i - 1) * sizeof(Node*)));
2793   _nodes[i] = n;
2794 }
2795 
2796 void Node_Array::remove(uint i) {
2797   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i + 1], (HeapWord*)&_nodes[i], ((_max - i - 1) * sizeof(Node*)));
2798   _nodes[_max - 1] = nullptr;
2799 }
2800 
2801 void Node_Array::dump() const {
2802 #ifndef PRODUCT
2803   for (uint i = 0; i < _max; i++) {
2804     Node* nn = _nodes[i];
2805     if (nn != nullptr) {
2806       tty->print("%5d--> ",i); nn->dump();
2807     }
2808   }
2809 #endif
2810 }
2811 
2812 //--------------------------is_iteratively_computed------------------------------
2813 // Operation appears to be iteratively computed (such as an induction variable)
2814 // It is possible for this operation to return false for a loop-varying
2815 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2816 bool Node::is_iteratively_computed() {
2817   if (ideal_reg()) { // does operation have a result register?
2818     for (uint i = 1; i < req(); i++) {
2819       Node* n = in(i);
2820       if (n != nullptr && n->is_Phi()) {
2821         for (uint j = 1; j < n->req(); j++) {
2822           if (n->in(j) == this) {
2823             return true;
2824           }
2825         }
2826       }
2827     }
2828   }
2829   return false;
2830 }
2831 
2832 //--------------------------find_similar------------------------------
2833 // Return a node with opcode "opc" and same inputs as "this" if one can
2834 // be found; Otherwise return null;
2835 Node* Node::find_similar(int opc) {
2836   if (req() >= 2) {
2837     Node* def = in(1);
2838     if (def && def->outcnt() >= 2) {
2839       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2840         Node* use = def->fast_out(i);
2841         if (use != this &&
2842             use->Opcode() == opc &&
2843             use->req() == req()) {
2844           uint j;
2845           for (j = 0; j < use->req(); j++) {
2846             if (use->in(j) != in(j)) {
2847               break;
2848             }
2849           }
2850           if (j == use->req()) {
2851             return use;
2852           }
2853         }
2854       }
2855     }
2856   }
2857   return nullptr;
2858 }
2859 
2860 
2861 //--------------------------unique_ctrl_out_or_null-------------------------
2862 // Return the unique control out if only one. Null if none or more than one.
2863 Node* Node::unique_ctrl_out_or_null() const {
2864   Node* found = nullptr;
2865   for (uint i = 0; i < outcnt(); i++) {
2866     Node* use = raw_out(i);
2867     if (use->is_CFG() && use != this) {
2868       if (found != nullptr) {
2869         return nullptr;
2870       }
2871       found = use;
2872     }
2873   }
2874   return found;
2875 }
2876 
2877 //--------------------------unique_ctrl_out------------------------------
2878 // Return the unique control out. Asserts if none or more than one control out.
2879 Node* Node::unique_ctrl_out() const {
2880   Node* ctrl = unique_ctrl_out_or_null();
2881   assert(ctrl != nullptr, "control out is assumed to be unique");
2882   return ctrl;
2883 }
2884 
2885 void Node::ensure_control_or_add_prec(Node* c) {
2886   if (in(0) == nullptr) {
2887     set_req(0, c);
2888   } else if (in(0) != c) {
2889     add_prec(c);
2890   }
2891 }
2892 
2893 bool Node::is_dead_loop_safe() const {
2894   if (is_Phi()) {
2895     return true;
2896   }
2897   if (is_Proj() && in(0) == nullptr)  {
2898     return true;
2899   }
2900   if ((_flags & (Flag_is_dead_loop_safe | Flag_is_Con)) != 0) {
2901     if (!is_Proj()) {
2902       return true;
2903     }
2904     if (in(0)->is_Allocate()) {
2905       return false;
2906     }
2907     // MemNode::can_see_stored_value() peeks through the boxing call
2908     if (in(0)->is_CallStaticJava() && in(0)->as_CallStaticJava()->is_boxing_method()) {
2909       return false;
2910     }
2911     return true;
2912   }
2913   return false;
2914 }
2915 
2916 //=============================================================================
2917 //------------------------------yank-------------------------------------------
2918 // Find and remove
2919 void Node_List::yank( Node *n ) {
2920   uint i;
2921   for (i = 0; i < _cnt; i++) {
2922     if (_nodes[i] == n) {
2923       break;
2924     }
2925   }
2926 
2927   if (i < _cnt) {
2928     _nodes[i] = _nodes[--_cnt];
2929   }
2930 }
2931 
2932 //------------------------------dump-------------------------------------------
2933 void Node_List::dump() const {
2934 #ifndef PRODUCT
2935   for (uint i = 0; i < _cnt; i++) {
2936     if (_nodes[i]) {
2937       tty->print("%5d--> ", i);
2938       _nodes[i]->dump();
2939     }
2940   }
2941 #endif
2942 }
2943 
2944 void Node_List::dump_simple() const {
2945 #ifndef PRODUCT
2946   for (uint i = 0; i < _cnt; i++) {
2947     if( _nodes[i] ) {
2948       tty->print(" %d", _nodes[i]->_idx);
2949     } else {
2950       tty->print(" null");
2951     }
2952   }
2953 #endif
2954 }
2955 
2956 //=============================================================================
2957 //------------------------------remove-----------------------------------------
2958 void Unique_Node_List::remove(Node* n) {
2959   if (_in_worklist.test(n->_idx)) {
2960     for (uint i = 0; i < size(); i++) {
2961       if (_nodes[i] == n) {
2962         map(i, Node_List::pop());
2963         _in_worklist.remove(n->_idx);
2964         return;
2965       }
2966     }
2967     ShouldNotReachHere();
2968   }
2969 }
2970 
2971 //-----------------------remove_useless_nodes----------------------------------
2972 // Remove useless nodes from worklist
2973 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2974   for (uint i = 0; i < size(); ++i) {
2975     Node *n = at(i);
2976     assert( n != nullptr, "Did not expect null entries in worklist");
2977     if (!useful.test(n->_idx)) {
2978       _in_worklist.remove(n->_idx);
2979       map(i, Node_List::pop());
2980       --i;  // Visit popped node
2981       // If it was last entry, loop terminates since size() was also reduced
2982     }
2983   }
2984 }
2985 
2986 //=============================================================================
2987 void Node_Stack::grow() {
2988   _nesting.check(_a); // Check if a potential reallocation in the arena is safe
2989   if (_inode_top < _inode_max) {
2990     return; // No need to grow
2991   }
2992   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2993   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2994   size_t max = old_max << 1;             // max * 2
2995   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2996   _inode_max = _inodes + max;
2997   _inode_top = _inodes + old_top;        // restore _top
2998 }
2999 
3000 // Node_Stack is used to map nodes.
3001 Node* Node_Stack::find(uint idx) const {
3002   uint sz = size();
3003   for (uint i = 0; i < sz; i++) {
3004     if (idx == index_at(i)) {
3005       return node_at(i);
3006     }
3007   }
3008   return nullptr;
3009 }
3010 
3011 //=============================================================================
3012 uint TypeNode::size_of() const { return sizeof(*this); }
3013 #ifndef PRODUCT
3014 void TypeNode::dump_spec(outputStream *st) const {
3015   if (!Verbose && !WizardMode) {
3016     // standard dump does this in Verbose and WizardMode
3017     st->print(" #"); _type->dump_on(st);
3018   }
3019 }
3020 
3021 void TypeNode::dump_compact_spec(outputStream *st) const {
3022   st->print("#");
3023   _type->dump_on(st);
3024 }
3025 #endif
3026 uint TypeNode::hash() const {
3027   return Node::hash() + _type->hash();
3028 }
3029 bool TypeNode::cmp(const Node& n) const {
3030   return Type::equals(_type, n.as_Type()->_type);
3031 }
3032 const Type* TypeNode::bottom_type() const { return _type; }
3033 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
3034 
3035 //------------------------------ideal_reg--------------------------------------
3036 uint TypeNode::ideal_reg() const {
3037   return _type->ideal_reg();
3038 }