1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef SHARE_OPTO_NODE_HPP 27 #define SHARE_OPTO_NODE_HPP 28 29 #include "libadt/vectset.hpp" 30 #include "opto/compile.hpp" 31 #include "opto/type.hpp" 32 #include "utilities/copy.hpp" 33 34 // Portions of code courtesy of Clifford Click 35 36 // Optimization - Graph Style 37 38 39 class AbstractLockNode; 40 class AddNode; 41 class AddPNode; 42 class AliasInfo; 43 class AllocateArrayNode; 44 class AllocateNode; 45 class ArrayCopyNode; 46 class BaseCountedLoopNode; 47 class BaseCountedLoopEndNode; 48 class BlackholeNode; 49 class Block; 50 class BoolNode; 51 class BoxLockNode; 52 class CMoveNode; 53 class CallDynamicJavaNode; 54 class CallJavaNode; 55 class CallLeafNode; 56 class CallLeafNoFPNode; 57 class CallNode; 58 class CallRuntimeNode; 59 class CallStaticJavaNode; 60 class CastFFNode; 61 class CastDDNode; 62 class CastVVNode; 63 class CastIINode; 64 class CastLLNode; 65 class CastPPNode; 66 class CatchNode; 67 class CatchProjNode; 68 class CheckCastPPNode; 69 class ClearArrayNode; 70 class CmpNode; 71 class CodeBuffer; 72 class ConstraintCastNode; 73 class ConNode; 74 class ConINode; 75 class ConvertNode; 76 class CompareAndSwapNode; 77 class CompareAndExchangeNode; 78 class CountedLoopNode; 79 class CountedLoopEndNode; 80 class DecodeNarrowPtrNode; 81 class DecodeNNode; 82 class DecodeNKlassNode; 83 class EncodeNarrowPtrNode; 84 class EncodePNode; 85 class EncodePKlassNode; 86 class FastLockNode; 87 class FastUnlockNode; 88 class HaltNode; 89 class IfNode; 90 class IfProjNode; 91 class IfFalseNode; 92 class IfTrueNode; 93 class InitializeNode; 94 class JVMState; 95 class JumpNode; 96 class JumpProjNode; 97 class LoadNode; 98 class LoadStoreNode; 99 class LoadStoreConditionalNode; 100 class LockNode; 101 class LongCountedLoopNode; 102 class LongCountedLoopEndNode; 103 class LoopNode; 104 class LShiftNode; 105 class MachBranchNode; 106 class MachCallDynamicJavaNode; 107 class MachCallJavaNode; 108 class MachCallLeafNode; 109 class MachCallNode; 110 class MachCallRuntimeNode; 111 class MachCallStaticJavaNode; 112 class MachConstantBaseNode; 113 class MachConstantNode; 114 class MachGotoNode; 115 class MachIfNode; 116 class MachJumpNode; 117 class MachNode; 118 class MachNullCheckNode; 119 class MachProjNode; 120 class MachReturnNode; 121 class MachSafePointNode; 122 class MachSpillCopyNode; 123 class MachTempNode; 124 class MachMergeNode; 125 class MachMemBarNode; 126 class Matcher; 127 class MemBarNode; 128 class MemBarStoreStoreNode; 129 class MemNode; 130 class MergeMemNode; 131 class MoveNode; 132 class MulNode; 133 class MultiNode; 134 class MultiBranchNode; 135 class NegNode; 136 class NegVNode; 137 class NeverBranchNode; 138 class Opaque1Node; 139 class OpaqueLoopInitNode; 140 class OpaqueLoopStrideNode; 141 class OpaqueNotNullNode; 142 class OpaqueInitializedAssertionPredicateNode; 143 class OpaqueTemplateAssertionPredicateNode; 144 class OuterStripMinedLoopNode; 145 class OuterStripMinedLoopEndNode; 146 class Node; 147 class Node_Array; 148 class Node_List; 149 class Node_Stack; 150 class OopMap; 151 class ParmNode; 152 class ParsePredicateNode; 153 class PCTableNode; 154 class PhaseCCP; 155 class PhaseGVN; 156 class PhaseIterGVN; 157 class PhaseRegAlloc; 158 class PhaseTransform; 159 class PhaseValues; 160 class PhiNode; 161 class Pipeline; 162 class PopulateIndexNode; 163 class ProjNode; 164 class RangeCheckNode; 165 class ReductionNode; 166 class RegMask; 167 class RegionNode; 168 class RootNode; 169 class SafePointNode; 170 class SafePointScalarObjectNode; 171 class SafePointScalarMergeNode; 172 class SaturatingVectorNode; 173 class StartNode; 174 class State; 175 class StoreNode; 176 class SubNode; 177 class SubTypeCheckNode; 178 class Type; 179 class TypeNode; 180 class UnlockNode; 181 class VectorNode; 182 class LoadVectorNode; 183 class LoadVectorMaskedNode; 184 class StoreVectorMaskedNode; 185 class LoadVectorGatherNode; 186 class LoadVectorGatherMaskedNode; 187 class StoreVectorNode; 188 class StoreVectorScatterNode; 189 class StoreVectorScatterMaskedNode; 190 class VerifyVectorAlignmentNode; 191 class VectorMaskCmpNode; 192 class VectorUnboxNode; 193 class VectorSet; 194 class VectorReinterpretNode; 195 class ShiftVNode; 196 class ExpandVNode; 197 class CompressVNode; 198 class CompressMNode; 199 class C2_MacroAssembler; 200 201 202 #ifndef OPTO_DU_ITERATOR_ASSERT 203 #ifdef ASSERT 204 #define OPTO_DU_ITERATOR_ASSERT 1 205 #else 206 #define OPTO_DU_ITERATOR_ASSERT 0 207 #endif 208 #endif //OPTO_DU_ITERATOR_ASSERT 209 210 #if OPTO_DU_ITERATOR_ASSERT 211 class DUIterator; 212 class DUIterator_Fast; 213 class DUIterator_Last; 214 #else 215 typedef uint DUIterator; 216 typedef Node** DUIterator_Fast; 217 typedef Node** DUIterator_Last; 218 #endif 219 220 typedef ResizeableResourceHashtable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable; 221 222 // Node Sentinel 223 #define NodeSentinel (Node*)-1 224 225 // Unknown count frequency 226 #define COUNT_UNKNOWN (-1.0f) 227 228 //------------------------------Node------------------------------------------- 229 // Nodes define actions in the program. They create values, which have types. 230 // They are both vertices in a directed graph and program primitives. Nodes 231 // are labeled; the label is the "opcode", the primitive function in the lambda 232 // calculus sense that gives meaning to the Node. Node inputs are ordered (so 233 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to 234 // the Node's function. These inputs also define a Type equation for the Node. 235 // Solving these Type equations amounts to doing dataflow analysis. 236 // Control and data are uniformly represented in the graph. Finally, Nodes 237 // have a unique dense integer index which is used to index into side arrays 238 // whenever I have phase-specific information. 239 240 class Node { 241 friend class VMStructs; 242 243 // Lots of restrictions on cloning Nodes 244 NONCOPYABLE(Node); 245 246 public: 247 friend class Compile; 248 #if OPTO_DU_ITERATOR_ASSERT 249 friend class DUIterator_Common; 250 friend class DUIterator; 251 friend class DUIterator_Fast; 252 friend class DUIterator_Last; 253 #endif 254 255 // Because Nodes come and go, I define an Arena of Node structures to pull 256 // from. This should allow fast access to node creation & deletion. This 257 // field is a local cache of a value defined in some "program fragment" for 258 // which these Nodes are just a part of. 259 260 inline void* operator new(size_t x) throw() { 261 Compile* C = Compile::current(); 262 Node* n = (Node*)C->node_arena()->AmallocWords(x); 263 return (void*)n; 264 } 265 266 // Delete is a NOP 267 void operator delete( void *ptr ) {} 268 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 269 void destruct(PhaseValues* phase); 270 271 // Create a new Node. Required is the number is of inputs required for 272 // semantic correctness. 273 Node( uint required ); 274 275 // Create a new Node with given input edges. 276 // This version requires use of the "edge-count" new. 277 // E.g. new (C,3) FooNode( C, nullptr, left, right ); 278 Node( Node *n0 ); 279 Node( Node *n0, Node *n1 ); 280 Node( Node *n0, Node *n1, Node *n2 ); 281 Node( Node *n0, Node *n1, Node *n2, Node *n3 ); 282 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 ); 283 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 ); 284 Node( Node *n0, Node *n1, Node *n2, Node *n3, 285 Node *n4, Node *n5, Node *n6 ); 286 287 // Clone an inherited Node given only the base Node type. 288 Node* clone() const; 289 290 // Clone a Node, immediately supplying one or two new edges. 291 // The first and second arguments, if non-null, replace in(1) and in(2), 292 // respectively. 293 Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const { 294 Node* nn = clone(); 295 if (in1 != nullptr) nn->set_req(1, in1); 296 if (in2 != nullptr) nn->set_req(2, in2); 297 return nn; 298 } 299 300 private: 301 // Shared setup for the above constructors. 302 // Handles all interactions with Compile::current. 303 // Puts initial values in all Node fields except _idx. 304 // Returns the initial value for _idx, which cannot 305 // be initialized by assignment. 306 inline int Init(int req); 307 308 //----------------- input edge handling 309 protected: 310 friend class PhaseCFG; // Access to address of _in array elements 311 Node **_in; // Array of use-def references to Nodes 312 Node **_out; // Array of def-use references to Nodes 313 314 // Input edges are split into two categories. Required edges are required 315 // for semantic correctness; order is important and nulls are allowed. 316 // Precedence edges are used to help determine execution order and are 317 // added, e.g., for scheduling purposes. They are unordered and not 318 // duplicated; they have no embedded nulls. Edges from 0 to _cnt-1 319 // are required, from _cnt to _max-1 are precedence edges. 320 node_idx_t _cnt; // Total number of required Node inputs. 321 322 node_idx_t _max; // Actual length of input array. 323 324 // Output edges are an unordered list of def-use edges which exactly 325 // correspond to required input edges which point from other nodes 326 // to this one. Thus the count of the output edges is the number of 327 // users of this node. 328 node_idx_t _outcnt; // Total number of Node outputs. 329 330 node_idx_t _outmax; // Actual length of output array. 331 332 // Grow the actual input array to the next larger power-of-2 bigger than len. 333 void grow( uint len ); 334 // Grow the output array to the next larger power-of-2 bigger than len. 335 void out_grow( uint len ); 336 337 public: 338 // Each Node is assigned a unique small/dense number. This number is used 339 // to index into auxiliary arrays of data and bit vectors. 340 // The field _idx is declared constant to defend against inadvertent assignments, 341 // since it is used by clients as a naked field. However, the field's value can be 342 // changed using the set_idx() method. 343 // 344 // The PhaseRenumberLive phase renumbers nodes based on liveness information. 345 // Therefore, it updates the value of the _idx field. The parse-time _idx is 346 // preserved in _parse_idx. 347 const node_idx_t _idx; 348 DEBUG_ONLY(const node_idx_t _parse_idx;) 349 // IGV node identifier. Two nodes, possibly in different compilation phases, 350 // have the same IGV identifier if (and only if) they are the very same node 351 // (same memory address) or one is "derived" from the other (by e.g. 352 // renumbering or matching). This identifier makes it possible to follow the 353 // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes. 354 NOT_PRODUCT(node_idx_t _igv_idx;) 355 356 // Get the (read-only) number of input edges 357 uint req() const { return _cnt; } 358 uint len() const { return _max; } 359 // Get the (read-only) number of output edges 360 uint outcnt() const { return _outcnt; } 361 362 #if OPTO_DU_ITERATOR_ASSERT 363 // Iterate over the out-edges of this node. Deletions are illegal. 364 inline DUIterator outs() const; 365 // Use this when the out array might have changed to suppress asserts. 366 inline DUIterator& refresh_out_pos(DUIterator& i) const; 367 // Does the node have an out at this position? (Used for iteration.) 368 inline bool has_out(DUIterator& i) const; 369 inline Node* out(DUIterator& i) const; 370 // Iterate over the out-edges of this node. All changes are illegal. 371 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const; 372 inline Node* fast_out(DUIterator_Fast& i) const; 373 // Iterate over the out-edges of this node, deleting one at a time. 374 inline DUIterator_Last last_outs(DUIterator_Last& min) const; 375 inline Node* last_out(DUIterator_Last& i) const; 376 // The inline bodies of all these methods are after the iterator definitions. 377 #else 378 // Iterate over the out-edges of this node. Deletions are illegal. 379 // This iteration uses integral indexes, to decouple from array reallocations. 380 DUIterator outs() const { return 0; } 381 // Use this when the out array might have changed to suppress asserts. 382 DUIterator refresh_out_pos(DUIterator i) const { return i; } 383 384 // Reference to the i'th output Node. Error if out of bounds. 385 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; } 386 // Does the node have an out at this position? (Used for iteration.) 387 bool has_out(DUIterator i) const { return i < _outcnt; } 388 389 // Iterate over the out-edges of this node. All changes are illegal. 390 // This iteration uses a pointer internal to the out array. 391 DUIterator_Fast fast_outs(DUIterator_Fast& max) const { 392 Node** out = _out; 393 // Assign a limit pointer to the reference argument: 394 max = out + (ptrdiff_t)_outcnt; 395 // Return the base pointer: 396 return out; 397 } 398 Node* fast_out(DUIterator_Fast i) const { return *i; } 399 // Iterate over the out-edges of this node, deleting one at a time. 400 // This iteration uses a pointer internal to the out array. 401 DUIterator_Last last_outs(DUIterator_Last& min) const { 402 Node** out = _out; 403 // Assign a limit pointer to the reference argument: 404 min = out; 405 // Return the pointer to the start of the iteration: 406 return out + (ptrdiff_t)_outcnt - 1; 407 } 408 Node* last_out(DUIterator_Last i) const { return *i; } 409 #endif 410 411 // Reference to the i'th input Node. Error if out of bounds. 412 Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; } 413 // Reference to the i'th input Node. null if out of bounds. 414 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); } 415 // Reference to the i'th output Node. Error if out of bounds. 416 // Use this accessor sparingly. We are going trying to use iterators instead. 417 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; } 418 // Return the unique out edge. 419 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; } 420 // Delete out edge at position 'i' by moving last out edge to position 'i' 421 void raw_del_out(uint i) { 422 assert(i < _outcnt,"oob"); 423 assert(_outcnt > 0,"oob"); 424 #if OPTO_DU_ITERATOR_ASSERT 425 // Record that a change happened here. 426 debug_only(_last_del = _out[i]; ++_del_tick); 427 #endif 428 _out[i] = _out[--_outcnt]; 429 // Smash the old edge so it can't be used accidentally. 430 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 431 } 432 433 #ifdef ASSERT 434 bool is_dead() const; 435 static bool is_not_dead(const Node* n); 436 bool is_reachable_from_root() const; 437 #endif 438 // Check whether node has become unreachable 439 bool is_unreachable(PhaseIterGVN &igvn) const; 440 441 // Set a required input edge, also updates corresponding output edge 442 void add_req( Node *n ); // Append a NEW required input 443 void add_req( Node *n0, Node *n1 ) { 444 add_req(n0); add_req(n1); } 445 void add_req( Node *n0, Node *n1, Node *n2 ) { 446 add_req(n0); add_req(n1); add_req(n2); } 447 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n). 448 void del_req( uint idx ); // Delete required edge & compact 449 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order 450 void ins_req( uint i, Node *n ); // Insert a NEW required input 451 void set_req( uint i, Node *n ) { 452 assert( is_not_dead(n), "can not use dead node"); 453 assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt); 454 assert( !VerifyHashTableKeys || _hash_lock == 0, 455 "remove node from hash table before modifying it"); 456 Node** p = &_in[i]; // cache this._in, across the del_out call 457 if (*p != nullptr) (*p)->del_out((Node *)this); 458 (*p) = n; 459 if (n != nullptr) n->add_out((Node *)this); 460 Compile::current()->record_modified_node(this); 461 } 462 // Light version of set_req() to init inputs after node creation. 463 void init_req( uint i, Node *n ) { 464 assert( (i == 0 && this == n) || 465 is_not_dead(n), "can not use dead node"); 466 assert( i < _cnt, "oob"); 467 assert( !VerifyHashTableKeys || _hash_lock == 0, 468 "remove node from hash table before modifying it"); 469 assert( _in[i] == nullptr, "sanity"); 470 _in[i] = n; 471 if (n != nullptr) n->add_out((Node *)this); 472 Compile::current()->record_modified_node(this); 473 } 474 // Find first occurrence of n among my edges: 475 int find_edge(Node* n); 476 int find_prec_edge(Node* n) { 477 for (uint i = req(); i < len(); i++) { 478 if (_in[i] == n) return i; 479 if (_in[i] == nullptr) { 480 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); ) 481 break; 482 } 483 } 484 return -1; 485 } 486 int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr); 487 int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn); 488 // null out all inputs to eliminate incoming Def-Use edges. 489 void disconnect_inputs(Compile* C); 490 491 // Quickly, return true if and only if I am Compile::current()->top(). 492 bool is_top() const { 493 assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), ""); 494 return (_out == nullptr); 495 } 496 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.) 497 void setup_is_top(); 498 499 // Strip away casting. (It is depth-limited.) 500 Node* uncast(bool keep_deps = false) const; 501 // Return whether two Nodes are equivalent, after stripping casting. 502 bool eqv_uncast(const Node* n, bool keep_deps = false) const { 503 return (this->uncast(keep_deps) == n->uncast(keep_deps)); 504 } 505 506 // Find out of current node that matches opcode. 507 Node* find_out_with(int opcode); 508 // Return true if the current node has an out that matches opcode. 509 bool has_out_with(int opcode); 510 // Return true if the current node has an out that matches any of the opcodes. 511 bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4); 512 513 private: 514 static Node* uncast_helper(const Node* n, bool keep_deps); 515 516 // Add an output edge to the end of the list 517 void add_out( Node *n ) { 518 if (is_top()) return; 519 if( _outcnt == _outmax ) out_grow(_outcnt); 520 _out[_outcnt++] = n; 521 } 522 // Delete an output edge 523 void del_out( Node *n ) { 524 if (is_top()) return; 525 Node** outp = &_out[_outcnt]; 526 // Find and remove n 527 do { 528 assert(outp > _out, "Missing Def-Use edge"); 529 } while (*--outp != n); 530 *outp = _out[--_outcnt]; 531 // Smash the old edge so it can't be used accidentally. 532 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 533 // Record that a change happened here. 534 #if OPTO_DU_ITERATOR_ASSERT 535 debug_only(_last_del = n; ++_del_tick); 536 #endif 537 } 538 // Close gap after removing edge. 539 void close_prec_gap_at(uint gap) { 540 assert(_cnt <= gap && gap < _max, "no valid prec edge"); 541 uint i = gap; 542 Node *last = nullptr; 543 for (; i < _max-1; ++i) { 544 Node *next = _in[i+1]; 545 if (next == nullptr) break; 546 last = next; 547 } 548 _in[gap] = last; // Move last slot to empty one. 549 _in[i] = nullptr; // null out last slot. 550 } 551 552 public: 553 // Globally replace this node by a given new node, updating all uses. 554 void replace_by(Node* new_node); 555 // Globally replace this node by a given new node, updating all uses 556 // and cutting input edges of old node. 557 void subsume_by(Node* new_node, Compile* c) { 558 replace_by(new_node); 559 disconnect_inputs(c); 560 } 561 void set_req_X(uint i, Node *n, PhaseIterGVN *igvn); 562 void set_req_X(uint i, Node *n, PhaseGVN *gvn); 563 // Find the one non-null required input. RegionNode only 564 Node *nonnull_req() const; 565 // Add or remove precedence edges 566 void add_prec( Node *n ); 567 void rm_prec( uint i ); 568 569 // Note: prec(i) will not necessarily point to n if edge already exists. 570 void set_prec( uint i, Node *n ) { 571 assert(i < _max, "oob: i=%d, _max=%d", i, _max); 572 assert(is_not_dead(n), "can not use dead node"); 573 assert(i >= _cnt, "not a precedence edge"); 574 // Avoid spec violation: duplicated prec edge. 575 if (_in[i] == n) return; 576 if (n == nullptr || find_prec_edge(n) != -1) { 577 rm_prec(i); 578 return; 579 } 580 if (_in[i] != nullptr) _in[i]->del_out((Node *)this); 581 _in[i] = n; 582 n->add_out((Node *)this); 583 Compile::current()->record_modified_node(this); 584 } 585 586 // Set this node's index, used by cisc_version to replace current node 587 void set_idx(uint new_idx) { 588 const node_idx_t* ref = &_idx; 589 *(node_idx_t*)ref = new_idx; 590 } 591 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.) 592 void swap_edges(uint i1, uint i2) { 593 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 594 // Def-Use info is unchanged 595 Node* n1 = in(i1); 596 Node* n2 = in(i2); 597 _in[i1] = n2; 598 _in[i2] = n1; 599 // If this node is in the hash table, make sure it doesn't need a rehash. 600 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code"); 601 // Flip swapped edges flag. 602 if (has_swapped_edges()) { 603 remove_flag(Node::Flag_has_swapped_edges); 604 } else { 605 add_flag(Node::Flag_has_swapped_edges); 606 } 607 } 608 609 // Iterators over input Nodes for a Node X are written as: 610 // for( i = 0; i < X.req(); i++ ) ... X[i] ... 611 // NOTE: Required edges can contain embedded null pointers. 612 613 //----------------- Other Node Properties 614 615 // Generate class IDs for (some) ideal nodes so that it is possible to determine 616 // the type of a node using a non-virtual method call (the method is_<Node>() below). 617 // 618 // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines 619 // the type of the node the ID represents; another subset of an ID's bits are reserved 620 // for the superclasses of the node represented by the ID. 621 // 622 // By design, if A is a supertype of B, A.is_B() returns true and B.is_A() 623 // returns false. A.is_A() returns true. 624 // 625 // If two classes, A and B, have the same superclass, a different bit of A's class id 626 // is reserved for A's type than for B's type. That bit is specified by the third 627 // parameter in the macro DEFINE_CLASS_ID. 628 // 629 // By convention, classes with deeper hierarchy are declared first. Moreover, 630 // classes with the same hierarchy depth are sorted by usage frequency. 631 // 632 // The query method masks the bits to cut off bits of subclasses and then compares 633 // the result with the class id (see the macro DEFINE_CLASS_QUERY below). 634 // 635 // Class_MachCall=30, ClassMask_MachCall=31 636 // 12 8 4 0 637 // 0 0 0 0 0 0 0 0 1 1 1 1 0 638 // | | | | 639 // | | | Bit_Mach=2 640 // | | Bit_MachReturn=4 641 // | Bit_MachSafePoint=8 642 // Bit_MachCall=16 643 // 644 // Class_CountedLoop=56, ClassMask_CountedLoop=63 645 // 12 8 4 0 646 // 0 0 0 0 0 0 0 1 1 1 0 0 0 647 // | | | 648 // | | Bit_Region=8 649 // | Bit_Loop=16 650 // Bit_CountedLoop=32 651 652 #define DEFINE_CLASS_ID(cl, supcl, subn) \ 653 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \ 654 Class_##cl = Class_##supcl + Bit_##cl , \ 655 ClassMask_##cl = ((Bit_##cl << 1) - 1) , 656 657 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods 658 // so that its values fit into 32 bits. 659 enum NodeClasses { 660 Bit_Node = 0x00000000, 661 Class_Node = 0x00000000, 662 ClassMask_Node = 0xFFFFFFFF, 663 664 DEFINE_CLASS_ID(Multi, Node, 0) 665 DEFINE_CLASS_ID(SafePoint, Multi, 0) 666 DEFINE_CLASS_ID(Call, SafePoint, 0) 667 DEFINE_CLASS_ID(CallJava, Call, 0) 668 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0) 669 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1) 670 DEFINE_CLASS_ID(CallRuntime, Call, 1) 671 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0) 672 DEFINE_CLASS_ID(CallLeafNoFP, CallLeaf, 0) 673 DEFINE_CLASS_ID(Allocate, Call, 2) 674 DEFINE_CLASS_ID(AllocateArray, Allocate, 0) 675 DEFINE_CLASS_ID(AbstractLock, Call, 3) 676 DEFINE_CLASS_ID(Lock, AbstractLock, 0) 677 DEFINE_CLASS_ID(Unlock, AbstractLock, 1) 678 DEFINE_CLASS_ID(ArrayCopy, Call, 4) 679 DEFINE_CLASS_ID(MultiBranch, Multi, 1) 680 DEFINE_CLASS_ID(PCTable, MultiBranch, 0) 681 DEFINE_CLASS_ID(Catch, PCTable, 0) 682 DEFINE_CLASS_ID(Jump, PCTable, 1) 683 DEFINE_CLASS_ID(If, MultiBranch, 1) 684 DEFINE_CLASS_ID(BaseCountedLoopEnd, If, 0) 685 DEFINE_CLASS_ID(CountedLoopEnd, BaseCountedLoopEnd, 0) 686 DEFINE_CLASS_ID(LongCountedLoopEnd, BaseCountedLoopEnd, 1) 687 DEFINE_CLASS_ID(RangeCheck, If, 1) 688 DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2) 689 DEFINE_CLASS_ID(ParsePredicate, If, 3) 690 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2) 691 DEFINE_CLASS_ID(Start, Multi, 2) 692 DEFINE_CLASS_ID(MemBar, Multi, 3) 693 DEFINE_CLASS_ID(Initialize, MemBar, 0) 694 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1) 695 696 DEFINE_CLASS_ID(Mach, Node, 1) 697 DEFINE_CLASS_ID(MachReturn, Mach, 0) 698 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0) 699 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0) 700 DEFINE_CLASS_ID(MachCallJava, MachCall, 0) 701 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0) 702 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1) 703 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1) 704 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0) 705 DEFINE_CLASS_ID(MachBranch, Mach, 1) 706 DEFINE_CLASS_ID(MachIf, MachBranch, 0) 707 DEFINE_CLASS_ID(MachGoto, MachBranch, 1) 708 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2) 709 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2) 710 DEFINE_CLASS_ID(MachTemp, Mach, 3) 711 DEFINE_CLASS_ID(MachConstantBase, Mach, 4) 712 DEFINE_CLASS_ID(MachConstant, Mach, 5) 713 DEFINE_CLASS_ID(MachJump, MachConstant, 0) 714 DEFINE_CLASS_ID(MachMerge, Mach, 6) 715 DEFINE_CLASS_ID(MachMemBar, Mach, 7) 716 717 DEFINE_CLASS_ID(Type, Node, 2) 718 DEFINE_CLASS_ID(Phi, Type, 0) 719 DEFINE_CLASS_ID(ConstraintCast, Type, 1) 720 DEFINE_CLASS_ID(CastII, ConstraintCast, 0) 721 DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1) 722 DEFINE_CLASS_ID(CastLL, ConstraintCast, 2) 723 DEFINE_CLASS_ID(CastFF, ConstraintCast, 3) 724 DEFINE_CLASS_ID(CastDD, ConstraintCast, 4) 725 DEFINE_CLASS_ID(CastVV, ConstraintCast, 5) 726 DEFINE_CLASS_ID(CastPP, ConstraintCast, 6) 727 DEFINE_CLASS_ID(CMove, Type, 3) 728 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4) 729 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5) 730 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0) 731 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1) 732 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6) 733 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0) 734 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1) 735 DEFINE_CLASS_ID(Vector, Type, 7) 736 DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0) 737 DEFINE_CLASS_ID(VectorUnbox, Vector, 1) 738 DEFINE_CLASS_ID(VectorReinterpret, Vector, 2) 739 DEFINE_CLASS_ID(ShiftV, Vector, 3) 740 DEFINE_CLASS_ID(CompressV, Vector, 4) 741 DEFINE_CLASS_ID(ExpandV, Vector, 5) 742 DEFINE_CLASS_ID(CompressM, Vector, 6) 743 DEFINE_CLASS_ID(Reduction, Vector, 7) 744 DEFINE_CLASS_ID(NegV, Vector, 8) 745 DEFINE_CLASS_ID(SaturatingVector, Vector, 9) 746 DEFINE_CLASS_ID(Con, Type, 8) 747 DEFINE_CLASS_ID(ConI, Con, 0) 748 DEFINE_CLASS_ID(SafePointScalarMerge, Type, 9) 749 DEFINE_CLASS_ID(Convert, Type, 10) 750 751 752 DEFINE_CLASS_ID(Proj, Node, 3) 753 DEFINE_CLASS_ID(CatchProj, Proj, 0) 754 DEFINE_CLASS_ID(JumpProj, Proj, 1) 755 DEFINE_CLASS_ID(IfProj, Proj, 2) 756 DEFINE_CLASS_ID(IfTrue, IfProj, 0) 757 DEFINE_CLASS_ID(IfFalse, IfProj, 1) 758 DEFINE_CLASS_ID(Parm, Proj, 4) 759 DEFINE_CLASS_ID(MachProj, Proj, 5) 760 761 DEFINE_CLASS_ID(Mem, Node, 4) 762 DEFINE_CLASS_ID(Load, Mem, 0) 763 DEFINE_CLASS_ID(LoadVector, Load, 0) 764 DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0) 765 DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1) 766 DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2) 767 DEFINE_CLASS_ID(Store, Mem, 1) 768 DEFINE_CLASS_ID(StoreVector, Store, 0) 769 DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0) 770 DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1) 771 DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2) 772 DEFINE_CLASS_ID(LoadStore, Mem, 2) 773 DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0) 774 DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0) 775 DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1) 776 777 DEFINE_CLASS_ID(Region, Node, 5) 778 DEFINE_CLASS_ID(Loop, Region, 0) 779 DEFINE_CLASS_ID(Root, Loop, 0) 780 DEFINE_CLASS_ID(BaseCountedLoop, Loop, 1) 781 DEFINE_CLASS_ID(CountedLoop, BaseCountedLoop, 0) 782 DEFINE_CLASS_ID(LongCountedLoop, BaseCountedLoop, 1) 783 DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2) 784 785 DEFINE_CLASS_ID(Sub, Node, 6) 786 DEFINE_CLASS_ID(Cmp, Sub, 0) 787 DEFINE_CLASS_ID(FastLock, Cmp, 0) 788 DEFINE_CLASS_ID(FastUnlock, Cmp, 1) 789 DEFINE_CLASS_ID(SubTypeCheck,Cmp, 2) 790 791 DEFINE_CLASS_ID(MergeMem, Node, 7) 792 DEFINE_CLASS_ID(Bool, Node, 8) 793 DEFINE_CLASS_ID(AddP, Node, 9) 794 DEFINE_CLASS_ID(BoxLock, Node, 10) 795 DEFINE_CLASS_ID(Add, Node, 11) 796 DEFINE_CLASS_ID(Mul, Node, 12) 797 DEFINE_CLASS_ID(ClearArray, Node, 14) 798 DEFINE_CLASS_ID(Halt, Node, 15) 799 DEFINE_CLASS_ID(Opaque1, Node, 16) 800 DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0) 801 DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1) 802 DEFINE_CLASS_ID(OpaqueNotNull, Node, 17) 803 DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate, Node, 18) 804 DEFINE_CLASS_ID(OpaqueTemplateAssertionPredicate, Node, 19) 805 DEFINE_CLASS_ID(Move, Node, 20) 806 DEFINE_CLASS_ID(LShift, Node, 21) 807 DEFINE_CLASS_ID(Neg, Node, 22) 808 809 _max_classes = ClassMask_Neg 810 }; 811 #undef DEFINE_CLASS_ID 812 813 // Flags are sorted by usage frequency. 814 enum NodeFlags { 815 Flag_is_Copy = 1 << 0, // should be first bit to avoid shift 816 Flag_rematerialize = 1 << 1, 817 Flag_needs_anti_dependence_check = 1 << 2, 818 Flag_is_macro = 1 << 3, 819 Flag_is_Con = 1 << 4, 820 Flag_is_cisc_alternate = 1 << 5, 821 Flag_is_dead_loop_safe = 1 << 6, 822 Flag_may_be_short_branch = 1 << 7, 823 Flag_avoid_back_to_back_before = 1 << 8, 824 Flag_avoid_back_to_back_after = 1 << 9, 825 Flag_has_call = 1 << 10, 826 Flag_has_swapped_edges = 1 << 11, 827 Flag_is_scheduled = 1 << 12, 828 Flag_is_expensive = 1 << 13, 829 Flag_is_predicated_vector = 1 << 14, 830 Flag_for_post_loop_opts_igvn = 1 << 15, 831 Flag_is_removed_by_peephole = 1 << 16, 832 Flag_is_predicated_using_blend = 1 << 17, 833 _last_flag = Flag_is_predicated_using_blend 834 }; 835 836 class PD; 837 838 private: 839 juint _class_id; 840 juint _flags; 841 842 #ifdef ASSERT 843 static juint max_flags(); 844 #endif 845 846 protected: 847 // These methods should be called from constructors only. 848 void init_class_id(juint c) { 849 _class_id = c; // cast out const 850 } 851 void init_flags(uint fl) { 852 assert(fl <= max_flags(), "invalid node flag"); 853 _flags |= fl; 854 } 855 void clear_flag(uint fl) { 856 assert(fl <= max_flags(), "invalid node flag"); 857 _flags &= ~fl; 858 } 859 860 public: 861 juint class_id() const { return _class_id; } 862 863 juint flags() const { return _flags; } 864 865 void add_flag(juint fl) { init_flags(fl); } 866 867 void remove_flag(juint fl) { clear_flag(fl); } 868 869 // Return a dense integer opcode number 870 virtual int Opcode() const; 871 872 // Virtual inherited Node size 873 virtual uint size_of() const; 874 875 // Other interesting Node properties 876 #define DEFINE_CLASS_QUERY(type) \ 877 bool is_##type() const { \ 878 return ((_class_id & ClassMask_##type) == Class_##type); \ 879 } \ 880 type##Node *as_##type() const { \ 881 assert(is_##type(), "invalid node class: %s", Name()); \ 882 return (type##Node*)this; \ 883 } \ 884 type##Node* isa_##type() const { \ 885 return (is_##type()) ? as_##type() : nullptr; \ 886 } 887 888 DEFINE_CLASS_QUERY(AbstractLock) 889 DEFINE_CLASS_QUERY(Add) 890 DEFINE_CLASS_QUERY(AddP) 891 DEFINE_CLASS_QUERY(Allocate) 892 DEFINE_CLASS_QUERY(AllocateArray) 893 DEFINE_CLASS_QUERY(ArrayCopy) 894 DEFINE_CLASS_QUERY(BaseCountedLoop) 895 DEFINE_CLASS_QUERY(BaseCountedLoopEnd) 896 DEFINE_CLASS_QUERY(Bool) 897 DEFINE_CLASS_QUERY(BoxLock) 898 DEFINE_CLASS_QUERY(Call) 899 DEFINE_CLASS_QUERY(CallDynamicJava) 900 DEFINE_CLASS_QUERY(CallJava) 901 DEFINE_CLASS_QUERY(CallLeaf) 902 DEFINE_CLASS_QUERY(CallLeafNoFP) 903 DEFINE_CLASS_QUERY(CallRuntime) 904 DEFINE_CLASS_QUERY(CallStaticJava) 905 DEFINE_CLASS_QUERY(Catch) 906 DEFINE_CLASS_QUERY(CatchProj) 907 DEFINE_CLASS_QUERY(CheckCastPP) 908 DEFINE_CLASS_QUERY(CastII) 909 DEFINE_CLASS_QUERY(CastLL) 910 DEFINE_CLASS_QUERY(ConI) 911 DEFINE_CLASS_QUERY(CastPP) 912 DEFINE_CLASS_QUERY(ConstraintCast) 913 DEFINE_CLASS_QUERY(ClearArray) 914 DEFINE_CLASS_QUERY(CMove) 915 DEFINE_CLASS_QUERY(Cmp) 916 DEFINE_CLASS_QUERY(Convert) 917 DEFINE_CLASS_QUERY(CountedLoop) 918 DEFINE_CLASS_QUERY(CountedLoopEnd) 919 DEFINE_CLASS_QUERY(DecodeNarrowPtr) 920 DEFINE_CLASS_QUERY(DecodeN) 921 DEFINE_CLASS_QUERY(DecodeNKlass) 922 DEFINE_CLASS_QUERY(EncodeNarrowPtr) 923 DEFINE_CLASS_QUERY(EncodeP) 924 DEFINE_CLASS_QUERY(EncodePKlass) 925 DEFINE_CLASS_QUERY(FastLock) 926 DEFINE_CLASS_QUERY(FastUnlock) 927 DEFINE_CLASS_QUERY(Halt) 928 DEFINE_CLASS_QUERY(If) 929 DEFINE_CLASS_QUERY(RangeCheck) 930 DEFINE_CLASS_QUERY(IfProj) 931 DEFINE_CLASS_QUERY(IfFalse) 932 DEFINE_CLASS_QUERY(IfTrue) 933 DEFINE_CLASS_QUERY(Initialize) 934 DEFINE_CLASS_QUERY(Jump) 935 DEFINE_CLASS_QUERY(JumpProj) 936 DEFINE_CLASS_QUERY(LongCountedLoop) 937 DEFINE_CLASS_QUERY(LongCountedLoopEnd) 938 DEFINE_CLASS_QUERY(Load) 939 DEFINE_CLASS_QUERY(LoadStore) 940 DEFINE_CLASS_QUERY(LoadStoreConditional) 941 DEFINE_CLASS_QUERY(Lock) 942 DEFINE_CLASS_QUERY(Loop) 943 DEFINE_CLASS_QUERY(LShift) 944 DEFINE_CLASS_QUERY(Mach) 945 DEFINE_CLASS_QUERY(MachBranch) 946 DEFINE_CLASS_QUERY(MachCall) 947 DEFINE_CLASS_QUERY(MachCallDynamicJava) 948 DEFINE_CLASS_QUERY(MachCallJava) 949 DEFINE_CLASS_QUERY(MachCallLeaf) 950 DEFINE_CLASS_QUERY(MachCallRuntime) 951 DEFINE_CLASS_QUERY(MachCallStaticJava) 952 DEFINE_CLASS_QUERY(MachConstantBase) 953 DEFINE_CLASS_QUERY(MachConstant) 954 DEFINE_CLASS_QUERY(MachGoto) 955 DEFINE_CLASS_QUERY(MachIf) 956 DEFINE_CLASS_QUERY(MachJump) 957 DEFINE_CLASS_QUERY(MachNullCheck) 958 DEFINE_CLASS_QUERY(MachProj) 959 DEFINE_CLASS_QUERY(MachReturn) 960 DEFINE_CLASS_QUERY(MachSafePoint) 961 DEFINE_CLASS_QUERY(MachSpillCopy) 962 DEFINE_CLASS_QUERY(MachTemp) 963 DEFINE_CLASS_QUERY(MachMemBar) 964 DEFINE_CLASS_QUERY(MachMerge) 965 DEFINE_CLASS_QUERY(Mem) 966 DEFINE_CLASS_QUERY(MemBar) 967 DEFINE_CLASS_QUERY(MemBarStoreStore) 968 DEFINE_CLASS_QUERY(MergeMem) 969 DEFINE_CLASS_QUERY(Move) 970 DEFINE_CLASS_QUERY(Mul) 971 DEFINE_CLASS_QUERY(Multi) 972 DEFINE_CLASS_QUERY(MultiBranch) 973 DEFINE_CLASS_QUERY(Neg) 974 DEFINE_CLASS_QUERY(NegV) 975 DEFINE_CLASS_QUERY(NeverBranch) 976 DEFINE_CLASS_QUERY(Opaque1) 977 DEFINE_CLASS_QUERY(OpaqueNotNull) 978 DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate) 979 DEFINE_CLASS_QUERY(OpaqueTemplateAssertionPredicate) 980 DEFINE_CLASS_QUERY(OpaqueLoopInit) 981 DEFINE_CLASS_QUERY(OpaqueLoopStride) 982 DEFINE_CLASS_QUERY(OuterStripMinedLoop) 983 DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd) 984 DEFINE_CLASS_QUERY(Parm) 985 DEFINE_CLASS_QUERY(ParsePredicate) 986 DEFINE_CLASS_QUERY(PCTable) 987 DEFINE_CLASS_QUERY(Phi) 988 DEFINE_CLASS_QUERY(Proj) 989 DEFINE_CLASS_QUERY(Reduction) 990 DEFINE_CLASS_QUERY(Region) 991 DEFINE_CLASS_QUERY(Root) 992 DEFINE_CLASS_QUERY(SafePoint) 993 DEFINE_CLASS_QUERY(SafePointScalarObject) 994 DEFINE_CLASS_QUERY(SafePointScalarMerge) 995 DEFINE_CLASS_QUERY(Start) 996 DEFINE_CLASS_QUERY(Store) 997 DEFINE_CLASS_QUERY(Sub) 998 DEFINE_CLASS_QUERY(SubTypeCheck) 999 DEFINE_CLASS_QUERY(Type) 1000 DEFINE_CLASS_QUERY(Vector) 1001 DEFINE_CLASS_QUERY(VectorMaskCmp) 1002 DEFINE_CLASS_QUERY(VectorUnbox) 1003 DEFINE_CLASS_QUERY(VectorReinterpret) 1004 DEFINE_CLASS_QUERY(CompressV) 1005 DEFINE_CLASS_QUERY(ExpandV) 1006 DEFINE_CLASS_QUERY(CompressM) 1007 DEFINE_CLASS_QUERY(LoadVector) 1008 DEFINE_CLASS_QUERY(LoadVectorGather) 1009 DEFINE_CLASS_QUERY(LoadVectorMasked) 1010 DEFINE_CLASS_QUERY(LoadVectorGatherMasked) 1011 DEFINE_CLASS_QUERY(StoreVector) 1012 DEFINE_CLASS_QUERY(StoreVectorScatter) 1013 DEFINE_CLASS_QUERY(StoreVectorMasked) 1014 DEFINE_CLASS_QUERY(StoreVectorScatterMasked) 1015 DEFINE_CLASS_QUERY(SaturatingVector) 1016 DEFINE_CLASS_QUERY(ShiftV) 1017 DEFINE_CLASS_QUERY(Unlock) 1018 1019 #undef DEFINE_CLASS_QUERY 1020 1021 // duplicate of is_MachSpillCopy() 1022 bool is_SpillCopy () const { 1023 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy); 1024 } 1025 1026 bool is_Con () const { return (_flags & Flag_is_Con) != 0; } 1027 // The data node which is safe to leave in dead loop during IGVN optimization. 1028 bool is_dead_loop_safe() const; 1029 1030 // is_Copy() returns copied edge index (0 or 1) 1031 uint is_Copy() const { return (_flags & Flag_is_Copy); } 1032 1033 virtual bool is_CFG() const { return false; } 1034 1035 // If this node is control-dependent on a test, can it be 1036 // rerouted to a dominating equivalent test? This is usually 1037 // true of non-CFG nodes, but can be false for operations which 1038 // depend for their correct sequencing on more than one test. 1039 // (In that case, hoisting to a dominating test may silently 1040 // skip some other important test.) 1041 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; }; 1042 1043 // When building basic blocks, I need to have a notion of block beginning 1044 // Nodes, next block selector Nodes (block enders), and next block 1045 // projections. These calls need to work on their machine equivalents. The 1046 // Ideal beginning Nodes are RootNode, RegionNode and StartNode. 1047 bool is_block_start() const { 1048 if ( is_Region() ) 1049 return this == (const Node*)in(0); 1050 else 1051 return is_Start(); 1052 } 1053 1054 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root, 1055 // Goto and Return. This call also returns the block ending Node. 1056 virtual const Node *is_block_proj() const; 1057 1058 // The node is a "macro" node which needs to be expanded before matching 1059 bool is_macro() const { return (_flags & Flag_is_macro) != 0; } 1060 // The node is expensive: the best control is set during loop opts 1061 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; } 1062 // The node's original edge position is swapped. 1063 bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; } 1064 1065 bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; } 1066 1067 bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; } 1068 1069 // Used in lcm to mark nodes that have scheduled 1070 bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; } 1071 1072 bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; } 1073 1074 // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)? 1075 static bool may_be_loop_entry(Node* n) { 1076 return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate(); 1077 } 1078 1079 //----------------- Optimization 1080 1081 // Get the worst-case Type output for this Node. 1082 virtual const class Type *bottom_type() const; 1083 1084 // If we find a better type for a node, try to record it permanently. 1085 // Return true if this node actually changed. 1086 // Be sure to do the hash_delete game in the "rehash" variant. 1087 void raise_bottom_type(const Type* new_type); 1088 1089 // Get the address type with which this node uses and/or defs memory, 1090 // or null if none. The address type is conservatively wide. 1091 // Returns non-null for calls, membars, loads, stores, etc. 1092 // Returns TypePtr::BOTTOM if the node touches memory "broadly". 1093 virtual const class TypePtr *adr_type() const { return nullptr; } 1094 1095 // Return an existing node which computes the same function as this node. 1096 // The optimistic combined algorithm requires this to return a Node which 1097 // is a small number of steps away (e.g., one of my inputs). 1098 virtual Node* Identity(PhaseGVN* phase); 1099 1100 // Return the set of values this Node can take on at runtime. 1101 virtual const Type* Value(PhaseGVN* phase) const; 1102 1103 // Return a node which is more "ideal" than the current node. 1104 // The invariants on this call are subtle. If in doubt, read the 1105 // treatise in node.cpp above the default implementation AND TEST WITH 1106 // -XX:VerifyIterativeGVN=1 1107 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1108 1109 // Some nodes have specific Ideal subgraph transformations only if they are 1110 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1111 // for the transformations to happen. 1112 bool has_special_unique_user() const; 1113 1114 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1115 Node* find_exact_control(Node* ctrl); 1116 1117 // Results of the dominance analysis. 1118 enum class DomResult { 1119 NotDominate, // 'this' node does not dominate 'sub'. 1120 Dominate, // 'this' node dominates or is equal to 'sub'. 1121 EncounteredDeadCode // Result is undefined due to encountering dead code. 1122 }; 1123 // Check if 'this' node dominates or equal to 'sub'. 1124 DomResult dominates(Node* sub, Node_List &nlist); 1125 1126 protected: 1127 bool remove_dead_region(PhaseGVN *phase, bool can_reshape); 1128 public: 1129 1130 // See if there is valid pipeline info 1131 static const Pipeline *pipeline_class(); 1132 virtual const Pipeline *pipeline() const; 1133 1134 // Compute the latency from the def to this instruction of the ith input node 1135 uint latency(uint i); 1136 1137 // Hash & compare functions, for pessimistic value numbering 1138 1139 // If the hash function returns the special sentinel value NO_HASH, 1140 // the node is guaranteed never to compare equal to any other node. 1141 // If we accidentally generate a hash with value NO_HASH the node 1142 // won't go into the table and we'll lose a little optimization. 1143 static const uint NO_HASH = 0; 1144 virtual uint hash() const; 1145 virtual bool cmp( const Node &n ) const; 1146 1147 // Operation appears to be iteratively computed (such as an induction variable) 1148 // It is possible for this operation to return false for a loop-varying 1149 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 1150 bool is_iteratively_computed(); 1151 1152 // Determine if a node is a counted loop induction variable. 1153 // NOTE: The method is defined in "loopnode.cpp". 1154 bool is_cloop_ind_var() const; 1155 1156 // Return a node with opcode "opc" and same inputs as "this" if one can 1157 // be found; Otherwise return null; 1158 Node* find_similar(int opc); 1159 1160 // Return the unique control out if only one. Null if none or more than one. 1161 Node* unique_ctrl_out_or_null() const; 1162 // Return the unique control out. Asserts if none or more than one control out. 1163 Node* unique_ctrl_out() const; 1164 1165 // Set control or add control as precedence edge 1166 void ensure_control_or_add_prec(Node* c); 1167 1168 // Visit boundary uses of the node and apply a callback function for each. 1169 // Recursively traverse uses, stopping and applying the callback when 1170 // reaching a boundary node, defined by is_boundary. Note: the function 1171 // definition appears after the complete type definition of Node_List. 1172 template <typename Callback, typename Check> 1173 void visit_uses(Callback callback, Check is_boundary) const; 1174 1175 // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses 1176 // (Load and range check CastII nodes). 1177 // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication). 1178 virtual Node* pin_array_access_node() const { 1179 return nullptr; 1180 } 1181 1182 //----------------- Code Generation 1183 1184 // Ideal register class for Matching. Zero means unmatched instruction 1185 // (these are cloned instead of converted to machine nodes). 1186 virtual uint ideal_reg() const; 1187 1188 static const uint NotAMachineReg; // must be > max. machine register 1189 1190 // Do we Match on this edge index or not? Generally false for Control 1191 // and true for everything else. Weird for calls & returns. 1192 virtual uint match_edge(uint idx) const; 1193 1194 // Register class output is returned in 1195 virtual const RegMask &out_RegMask() const; 1196 // Register class input is expected in 1197 virtual const RegMask &in_RegMask(uint) const; 1198 // Should we clone rather than spill this instruction? 1199 bool rematerialize() const; 1200 1201 // Return JVM State Object if this Node carries debug info, or null otherwise 1202 virtual JVMState* jvms() const; 1203 1204 // Print as assembly 1205 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const; 1206 // Emit bytes using C2_MacroAssembler 1207 virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const; 1208 // Size of instruction in bytes 1209 virtual uint size(PhaseRegAlloc *ra_) const; 1210 1211 // Convenience function to extract an integer constant from a node. 1212 // If it is not an integer constant (either Con, CastII, or Mach), 1213 // return value_if_unknown. 1214 jint find_int_con(jint value_if_unknown) const { 1215 const TypeInt* t = find_int_type(); 1216 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1217 } 1218 // Return the constant, knowing it is an integer constant already 1219 jint get_int() const { 1220 const TypeInt* t = find_int_type(); 1221 guarantee(t != nullptr, "must be con"); 1222 return t->get_con(); 1223 } 1224 // Here's where the work is done. Can produce non-constant int types too. 1225 const TypeInt* find_int_type() const; 1226 const TypeInteger* find_integer_type(BasicType bt) const; 1227 1228 // Same thing for long (and intptr_t, via type.hpp): 1229 jlong get_long() const { 1230 const TypeLong* t = find_long_type(); 1231 guarantee(t != nullptr, "must be con"); 1232 return t->get_con(); 1233 } 1234 jlong find_long_con(jint value_if_unknown) const { 1235 const TypeLong* t = find_long_type(); 1236 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1237 } 1238 const TypeLong* find_long_type() const; 1239 1240 jlong get_integer_as_long(BasicType bt) const { 1241 const TypeInteger* t = find_integer_type(bt); 1242 guarantee(t != nullptr && t->is_con(), "must be con"); 1243 return t->get_con_as_long(bt); 1244 } 1245 jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const { 1246 const TypeInteger* t = find_integer_type(bt); 1247 if (t == nullptr || !t->is_con()) return value_if_unknown; 1248 return t->get_con_as_long(bt); 1249 } 1250 const TypePtr* get_ptr_type() const; 1251 1252 // These guys are called by code generated by ADLC: 1253 intptr_t get_ptr() const; 1254 intptr_t get_narrowcon() const; 1255 jdouble getd() const; 1256 jfloat getf() const; 1257 1258 // Nodes which are pinned into basic blocks 1259 virtual bool pinned() const { return false; } 1260 1261 // Nodes which use memory without consuming it, hence need antidependences 1262 // More specifically, needs_anti_dependence_check returns true iff the node 1263 // (a) does a load, and (b) does not perform a store (except perhaps to a 1264 // stack slot or some other unaliased location). 1265 bool needs_anti_dependence_check() const; 1266 1267 // Return which operand this instruction may cisc-spill. In other words, 1268 // return operand position that can convert from reg to memory access 1269 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; } 1270 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; } 1271 1272 // Whether this is a memory-writing machine node. 1273 bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); } 1274 1275 // Whether this is a memory phi node 1276 bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; } 1277 1278 //----------------- Printing, etc 1279 #ifndef PRODUCT 1280 public: 1281 Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx. 1282 Node* find_ctrl(int idx); // Search control ancestors for the given idx. 1283 void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const; 1284 void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty 1285 void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr) 1286 class DumpConfig { 1287 public: 1288 // overridden to implement coloring of node idx 1289 virtual void pre_dump(outputStream *st, const Node* n) = 0; 1290 virtual void post_dump(outputStream *st) = 0; 1291 }; 1292 void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; 1293 void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const; 1294 void dump() const; // print node with newline 1295 void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node. 1296 void dump(int depth) const; // Print this node, recursively to depth d 1297 void dump_ctrl(int depth) const; // Print control nodes, to depth d 1298 void dump_comp() const; // Print this node in compact representation. 1299 // Print this node in compact representation. 1300 void dump_comp(const char* suffix, outputStream *st = tty) const; 1301 private: 1302 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print required-edge info 1303 virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print precedence-edge info 1304 virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print the output edge info 1305 public: 1306 virtual void dump_spec(outputStream *st) const {}; // Print per-node info 1307 // Print compact per-node info 1308 virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); } 1309 1310 static void verify(int verify_depth, VectorSet& visited, Node_List& worklist); 1311 1312 // This call defines a class-unique string used to identify class instances 1313 virtual const char *Name() const; 1314 1315 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...) 1316 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call 1317 #endif 1318 #ifdef ASSERT 1319 void verify_construction(); 1320 bool verify_jvms(const JVMState* jvms) const; 1321 1322 Node* _debug_orig; // Original version of this, if any. 1323 Node* debug_orig() const { return _debug_orig; } 1324 void set_debug_orig(Node* orig); // _debug_orig = orig 1325 void dump_orig(outputStream *st, bool print_key = true) const; 1326 1327 uint64_t _debug_idx; // Unique value assigned to every node. 1328 uint64_t debug_idx() const { return _debug_idx; } 1329 void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; } 1330 1331 int _hash_lock; // Barrier to modifications of nodes in the hash table 1332 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); } 1333 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); } 1334 1335 static void init_NodeProperty(); 1336 1337 #if OPTO_DU_ITERATOR_ASSERT 1338 const Node* _last_del; // The last deleted node. 1339 uint _del_tick; // Bumped when a deletion happens.. 1340 #endif 1341 #endif 1342 }; 1343 1344 inline bool not_a_node(const Node* n) { 1345 if (n == nullptr) return true; 1346 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 1347 if (*(address*)n == badAddress) return true; // kill by Node::destruct 1348 return false; 1349 } 1350 1351 //----------------------------------------------------------------------------- 1352 // Iterators over DU info, and associated Node functions. 1353 1354 #if OPTO_DU_ITERATOR_ASSERT 1355 1356 // Common code for assertion checking on DU iterators. 1357 class DUIterator_Common { 1358 #ifdef ASSERT 1359 protected: 1360 bool _vdui; // cached value of VerifyDUIterators 1361 const Node* _node; // the node containing the _out array 1362 uint _outcnt; // cached node->_outcnt 1363 uint _del_tick; // cached node->_del_tick 1364 Node* _last; // last value produced by the iterator 1365 1366 void sample(const Node* node); // used by c'tor to set up for verifies 1367 void verify(const Node* node, bool at_end_ok = false); 1368 void verify_resync(); 1369 void reset(const DUIterator_Common& that); 1370 1371 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators 1372 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } } 1373 #else 1374 #define I_VDUI_ONLY(i,x) { } 1375 #endif //ASSERT 1376 }; 1377 1378 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x) 1379 1380 // Default DU iterator. Allows appends onto the out array. 1381 // Allows deletion from the out array only at the current point. 1382 // Usage: 1383 // for (DUIterator i = x->outs(); x->has_out(i); i++) { 1384 // Node* y = x->out(i); 1385 // ... 1386 // } 1387 // Compiles in product mode to a unsigned integer index, which indexes 1388 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate 1389 // also reloads x->_outcnt. If you delete, you must perform "--i" just 1390 // before continuing the loop. You must delete only the last-produced 1391 // edge. You must delete only a single copy of the last-produced edge, 1392 // or else you must delete all copies at once (the first time the edge 1393 // is produced by the iterator). 1394 class DUIterator : public DUIterator_Common { 1395 friend class Node; 1396 1397 // This is the index which provides the product-mode behavior. 1398 // Whatever the product-mode version of the system does to the 1399 // DUI index is done to this index. All other fields in 1400 // this class are used only for assertion checking. 1401 uint _idx; 1402 1403 #ifdef ASSERT 1404 uint _refresh_tick; // Records the refresh activity. 1405 1406 void sample(const Node* node); // Initialize _refresh_tick etc. 1407 void verify(const Node* node, bool at_end_ok = false); 1408 void verify_increment(); // Verify an increment operation. 1409 void verify_resync(); // Verify that we can back up over a deletion. 1410 void verify_finish(); // Verify that the loop terminated properly. 1411 void refresh(); // Resample verification info. 1412 void reset(const DUIterator& that); // Resample after assignment. 1413 #endif 1414 1415 DUIterator(const Node* node, int dummy_to_avoid_conversion) 1416 { _idx = 0; debug_only(sample(node)); } 1417 1418 public: 1419 // initialize to garbage; clear _vdui to disable asserts 1420 DUIterator() 1421 { /*initialize to garbage*/ debug_only(_vdui = false); } 1422 1423 DUIterator(const DUIterator& that) 1424 { _idx = that._idx; debug_only(_vdui = false; reset(that)); } 1425 1426 void operator++(int dummy_to_specify_postfix_op) 1427 { _idx++; VDUI_ONLY(verify_increment()); } 1428 1429 void operator--() 1430 { VDUI_ONLY(verify_resync()); --_idx; } 1431 1432 ~DUIterator() 1433 { VDUI_ONLY(verify_finish()); } 1434 1435 void operator=(const DUIterator& that) 1436 { _idx = that._idx; debug_only(reset(that)); } 1437 }; 1438 1439 DUIterator Node::outs() const 1440 { return DUIterator(this, 0); } 1441 DUIterator& Node::refresh_out_pos(DUIterator& i) const 1442 { I_VDUI_ONLY(i, i.refresh()); return i; } 1443 bool Node::has_out(DUIterator& i) const 1444 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; } 1445 Node* Node::out(DUIterator& i) const 1446 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; } 1447 1448 1449 // Faster DU iterator. Disallows insertions into the out array. 1450 // Allows deletion from the out array only at the current point. 1451 // Usage: 1452 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 1453 // Node* y = x->fast_out(i); 1454 // ... 1455 // } 1456 // Compiles in product mode to raw Node** pointer arithmetic, with 1457 // no reloading of pointers from the original node x. If you delete, 1458 // you must perform "--i; --imax" just before continuing the loop. 1459 // If you delete multiple copies of the same edge, you must decrement 1460 // imax, but not i, multiple times: "--i, imax -= num_edges". 1461 class DUIterator_Fast : public DUIterator_Common { 1462 friend class Node; 1463 friend class DUIterator_Last; 1464 1465 // This is the pointer which provides the product-mode behavior. 1466 // Whatever the product-mode version of the system does to the 1467 // DUI pointer is done to this pointer. All other fields in 1468 // this class are used only for assertion checking. 1469 Node** _outp; 1470 1471 #ifdef ASSERT 1472 void verify(const Node* node, bool at_end_ok = false); 1473 void verify_limit(); 1474 void verify_resync(); 1475 void verify_relimit(uint n); 1476 void reset(const DUIterator_Fast& that); 1477 #endif 1478 1479 // Note: offset must be signed, since -1 is sometimes passed 1480 DUIterator_Fast(const Node* node, ptrdiff_t offset) 1481 { _outp = node->_out + offset; debug_only(sample(node)); } 1482 1483 public: 1484 // initialize to garbage; clear _vdui to disable asserts 1485 DUIterator_Fast() 1486 { /*initialize to garbage*/ debug_only(_vdui = false); } 1487 1488 DUIterator_Fast(const DUIterator_Fast& that) 1489 { _outp = that._outp; debug_only(_vdui = false; reset(that)); } 1490 1491 void operator++(int dummy_to_specify_postfix_op) 1492 { _outp++; VDUI_ONLY(verify(_node, true)); } 1493 1494 void operator--() 1495 { VDUI_ONLY(verify_resync()); --_outp; } 1496 1497 void operator-=(uint n) // applied to the limit only 1498 { _outp -= n; VDUI_ONLY(verify_relimit(n)); } 1499 1500 bool operator<(DUIterator_Fast& limit) { 1501 I_VDUI_ONLY(*this, this->verify(_node, true)); 1502 I_VDUI_ONLY(limit, limit.verify_limit()); 1503 return _outp < limit._outp; 1504 } 1505 1506 void operator=(const DUIterator_Fast& that) 1507 { _outp = that._outp; debug_only(reset(that)); } 1508 }; 1509 1510 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const { 1511 // Assign a limit pointer to the reference argument: 1512 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt); 1513 // Return the base pointer: 1514 return DUIterator_Fast(this, 0); 1515 } 1516 Node* Node::fast_out(DUIterator_Fast& i) const { 1517 I_VDUI_ONLY(i, i.verify(this)); 1518 return debug_only(i._last=) *i._outp; 1519 } 1520 1521 1522 // Faster DU iterator. Requires each successive edge to be removed. 1523 // Does not allow insertion of any edges. 1524 // Usage: 1525 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) { 1526 // Node* y = x->last_out(i); 1527 // ... 1528 // } 1529 // Compiles in product mode to raw Node** pointer arithmetic, with 1530 // no reloading of pointers from the original node x. 1531 class DUIterator_Last : private DUIterator_Fast { 1532 friend class Node; 1533 1534 #ifdef ASSERT 1535 void verify(const Node* node, bool at_end_ok = false); 1536 void verify_limit(); 1537 void verify_step(uint num_edges); 1538 #endif 1539 1540 // Note: offset must be signed, since -1 is sometimes passed 1541 DUIterator_Last(const Node* node, ptrdiff_t offset) 1542 : DUIterator_Fast(node, offset) { } 1543 1544 void operator++(int dummy_to_specify_postfix_op) {} // do not use 1545 void operator<(int) {} // do not use 1546 1547 public: 1548 DUIterator_Last() { } 1549 // initialize to garbage 1550 1551 DUIterator_Last(const DUIterator_Last& that) = default; 1552 1553 void operator--() 1554 { _outp--; VDUI_ONLY(verify_step(1)); } 1555 1556 void operator-=(uint n) 1557 { _outp -= n; VDUI_ONLY(verify_step(n)); } 1558 1559 bool operator>=(DUIterator_Last& limit) { 1560 I_VDUI_ONLY(*this, this->verify(_node, true)); 1561 I_VDUI_ONLY(limit, limit.verify_limit()); 1562 return _outp >= limit._outp; 1563 } 1564 1565 DUIterator_Last& operator=(const DUIterator_Last& that) = default; 1566 }; 1567 1568 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const { 1569 // Assign a limit pointer to the reference argument: 1570 imin = DUIterator_Last(this, 0); 1571 // Return the initial pointer: 1572 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1); 1573 } 1574 Node* Node::last_out(DUIterator_Last& i) const { 1575 I_VDUI_ONLY(i, i.verify(this)); 1576 return debug_only(i._last=) *i._outp; 1577 } 1578 1579 #endif //OPTO_DU_ITERATOR_ASSERT 1580 1581 #undef I_VDUI_ONLY 1582 #undef VDUI_ONLY 1583 1584 // An Iterator that truly follows the iterator pattern. Doesn't 1585 // support deletion but could be made to. 1586 // 1587 // for (SimpleDUIterator i(n); i.has_next(); i.next()) { 1588 // Node* m = i.get(); 1589 // 1590 class SimpleDUIterator : public StackObj { 1591 private: 1592 Node* node; 1593 DUIterator_Fast imax; 1594 DUIterator_Fast i; 1595 public: 1596 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {} 1597 bool has_next() { return i < imax; } 1598 void next() { i++; } 1599 Node* get() { return node->fast_out(i); } 1600 }; 1601 1602 1603 //----------------------------------------------------------------------------- 1604 // Map dense integer indices to Nodes. Uses classic doubling-array trick. 1605 // Abstractly provides an infinite array of Node*'s, initialized to null. 1606 // Note that the constructor just zeros things, and since I use Arena 1607 // allocation I do not need a destructor to reclaim storage. 1608 class Node_Array : public AnyObj { 1609 friend class VMStructs; 1610 protected: 1611 Arena* _a; // Arena to allocate in 1612 uint _max; 1613 Node** _nodes; 1614 ReallocMark _nesting; // Safety checks for arena reallocation 1615 1616 // Grow array to required capacity 1617 void maybe_grow(uint i) { 1618 if (i >= _max) { 1619 grow(i); 1620 } 1621 } 1622 void grow(uint i); 1623 1624 public: 1625 Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) { 1626 _nodes = NEW_ARENA_ARRAY(a, Node*, max); 1627 clear(); 1628 } 1629 Node_Array() : Node_Array(Thread::current()->resource_area()) {} 1630 1631 NONCOPYABLE(Node_Array); 1632 Node_Array& operator=(Node_Array&&) = delete; 1633 // Allow move constructor for && (eg. capture return of function) 1634 Node_Array(Node_Array&&) = default; 1635 1636 Node *operator[] ( uint i ) const // Lookup, or null for not mapped 1637 { return (i<_max) ? _nodes[i] : (Node*)nullptr; } 1638 Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; } 1639 Node** adr() { return _nodes; } 1640 // Extend the mapping: index i maps to Node *n. 1641 void map( uint i, Node *n ) { maybe_grow(i); _nodes[i] = n; } 1642 void insert( uint i, Node *n ); 1643 void remove( uint i ); // Remove, preserving order 1644 // Clear all entries in _nodes to null but keep storage 1645 void clear() { 1646 Copy::zero_to_bytes(_nodes, _max * sizeof(Node*)); 1647 } 1648 1649 uint max() const { return _max; } 1650 void dump() const; 1651 }; 1652 1653 class Node_List : public Node_Array { 1654 friend class VMStructs; 1655 uint _cnt; 1656 public: 1657 Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {} 1658 Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {} 1659 1660 NONCOPYABLE(Node_List); 1661 Node_List& operator=(Node_List&&) = delete; 1662 // Allow move constructor for && (eg. capture return of function) 1663 Node_List(Node_List&&) = default; 1664 1665 bool contains(const Node* n) const { 1666 for (uint e = 0; e < size(); e++) { 1667 if (at(e) == n) return true; 1668 } 1669 return false; 1670 } 1671 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; } 1672 void remove( uint i ) { Node_Array::remove(i); _cnt--; } 1673 void push( Node *b ) { map(_cnt++,b); } 1674 void yank( Node *n ); // Find and remove 1675 Node *pop() { return _nodes[--_cnt]; } 1676 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage 1677 void copy(const Node_List& from) { 1678 if (from._max > _max) { 1679 grow(from._max); 1680 } 1681 _cnt = from._cnt; 1682 Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*)); 1683 } 1684 1685 uint size() const { return _cnt; } 1686 void dump() const; 1687 void dump_simple() const; 1688 }; 1689 1690 // Definition must appear after complete type definition of Node_List 1691 template <typename Callback, typename Check> 1692 void Node::visit_uses(Callback callback, Check is_boundary) const { 1693 ResourceMark rm; 1694 VectorSet visited; 1695 Node_List worklist; 1696 1697 // The initial worklist consists of the direct uses 1698 for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) { 1699 Node* out = fast_out(k); 1700 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1701 } 1702 1703 while (worklist.size() > 0) { 1704 Node* use = worklist.pop(); 1705 // Apply callback on boundary nodes 1706 if (is_boundary(use)) { 1707 callback(use); 1708 } else { 1709 // Not a boundary node, continue search 1710 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 1711 Node* out = use->fast_out(k); 1712 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1713 } 1714 } 1715 } 1716 } 1717 1718 1719 //------------------------------Unique_Node_List------------------------------- 1720 class Unique_Node_List : public Node_List { 1721 friend class VMStructs; 1722 VectorSet _in_worklist; 1723 uint _clock_index; // Index in list where to pop from next 1724 public: 1725 Unique_Node_List() : Node_List(), _clock_index(0) {} 1726 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {} 1727 1728 NONCOPYABLE(Unique_Node_List); 1729 Unique_Node_List& operator=(Unique_Node_List&&) = delete; 1730 // Allow move constructor for && (eg. capture return of function) 1731 Unique_Node_List(Unique_Node_List&&) = default; 1732 1733 void remove( Node *n ); 1734 bool member( Node *n ) { return _in_worklist.test(n->_idx) != 0; } 1735 VectorSet& member_set(){ return _in_worklist; } 1736 1737 void push(Node* b) { 1738 if( !_in_worklist.test_set(b->_idx) ) 1739 Node_List::push(b); 1740 } 1741 void push_non_cfg_inputs_of(const Node* node) { 1742 for (uint i = 1; i < node->req(); i++) { 1743 Node* input = node->in(i); 1744 if (input != nullptr && !input->is_CFG()) { 1745 push(input); 1746 } 1747 } 1748 } 1749 1750 void push_outputs_of(const Node* node) { 1751 for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) { 1752 Node* output = node->fast_out(i); 1753 push(output); 1754 } 1755 } 1756 1757 Node *pop() { 1758 if( _clock_index >= size() ) _clock_index = 0; 1759 Node *b = at(_clock_index); 1760 map( _clock_index, Node_List::pop()); 1761 if (size() != 0) _clock_index++; // Always start from 0 1762 _in_worklist.remove(b->_idx); 1763 return b; 1764 } 1765 Node *remove(uint i) { 1766 Node *b = Node_List::at(i); 1767 _in_worklist.remove(b->_idx); 1768 map(i,Node_List::pop()); 1769 return b; 1770 } 1771 void yank(Node *n) { 1772 _in_worklist.remove(n->_idx); 1773 Node_List::yank(n); 1774 } 1775 void clear() { 1776 _in_worklist.clear(); // Discards storage but grows automatically 1777 Node_List::clear(); 1778 _clock_index = 0; 1779 } 1780 void ensure_empty() { 1781 assert(size() == 0, "must be empty"); 1782 clear(); // just in case 1783 } 1784 1785 // Used after parsing to remove useless nodes before Iterative GVN 1786 void remove_useless_nodes(VectorSet& useful); 1787 1788 // If the idx of the Nodes change, we must recompute the VectorSet 1789 void recompute_idx_set() { 1790 _in_worklist.clear(); 1791 for (uint i = 0; i < size(); i++) { 1792 Node* n = at(i); 1793 _in_worklist.set(n->_idx); 1794 } 1795 } 1796 1797 #ifdef ASSERT 1798 bool is_subset_of(Unique_Node_List& other) { 1799 for (uint i = 0; i < size(); i++) { 1800 Node* n = at(i); 1801 if (!other.member(n)) { 1802 return false; 1803 } 1804 } 1805 return true; 1806 } 1807 #endif 1808 1809 bool contains(const Node* n) const { 1810 fatal("use faster member() instead"); 1811 return false; 1812 } 1813 1814 #ifndef PRODUCT 1815 void print_set() const { _in_worklist.print(); } 1816 #endif 1817 }; 1818 1819 // Unique_Mixed_Node_List 1820 // unique: nodes are added only once 1821 // mixed: allow new and old nodes 1822 class Unique_Mixed_Node_List : public ResourceObj { 1823 public: 1824 Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {} 1825 1826 void add(Node* node) { 1827 if (not_a_node(node)) { 1828 return; // Gracefully handle null, -1, 0xabababab, etc. 1829 } 1830 if (_visited_set[node] == nullptr) { 1831 _visited_set.Insert(node, node); 1832 _worklist.push(node); 1833 } 1834 } 1835 1836 Node* operator[] (uint i) const { 1837 return _worklist[i]; 1838 } 1839 1840 size_t size() { 1841 return _worklist.size(); 1842 } 1843 1844 private: 1845 Dict _visited_set; 1846 Node_List _worklist; 1847 }; 1848 1849 // Inline definition of Compile::record_for_igvn must be deferred to this point. 1850 inline void Compile::record_for_igvn(Node* n) { 1851 _igvn_worklist->push(n); 1852 } 1853 1854 // Inline definition of Compile::remove_for_igvn must be deferred to this point. 1855 inline void Compile::remove_for_igvn(Node* n) { 1856 _igvn_worklist->remove(n); 1857 } 1858 1859 //------------------------------Node_Stack------------------------------------- 1860 class Node_Stack { 1861 friend class VMStructs; 1862 protected: 1863 struct INode { 1864 Node *node; // Processed node 1865 uint indx; // Index of next node's child 1866 }; 1867 INode *_inode_top; // tos, stack grows up 1868 INode *_inode_max; // End of _inodes == _inodes + _max 1869 INode *_inodes; // Array storage for the stack 1870 Arena *_a; // Arena to allocate in 1871 ReallocMark _nesting; // Safety checks for arena reallocation 1872 void grow(); 1873 public: 1874 Node_Stack(int size) { 1875 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1876 _a = Thread::current()->resource_area(); 1877 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1878 _inode_max = _inodes + max; 1879 _inode_top = _inodes - 1; // stack is empty 1880 } 1881 1882 Node_Stack(Arena *a, int size) : _a(a) { 1883 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1884 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1885 _inode_max = _inodes + max; 1886 _inode_top = _inodes - 1; // stack is empty 1887 } 1888 1889 void pop() { 1890 assert(_inode_top >= _inodes, "node stack underflow"); 1891 --_inode_top; 1892 } 1893 void push(Node *n, uint i) { 1894 ++_inode_top; 1895 grow(); 1896 INode *top = _inode_top; // optimization 1897 top->node = n; 1898 top->indx = i; 1899 } 1900 Node *node() const { 1901 return _inode_top->node; 1902 } 1903 Node* node_at(uint i) const { 1904 assert(_inodes + i <= _inode_top, "in range"); 1905 return _inodes[i].node; 1906 } 1907 uint index() const { 1908 return _inode_top->indx; 1909 } 1910 uint index_at(uint i) const { 1911 assert(_inodes + i <= _inode_top, "in range"); 1912 return _inodes[i].indx; 1913 } 1914 void set_node(Node *n) { 1915 _inode_top->node = n; 1916 } 1917 void set_index(uint i) { 1918 _inode_top->indx = i; 1919 } 1920 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size 1921 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size 1922 bool is_nonempty() const { return (_inode_top >= _inodes); } 1923 bool is_empty() const { return (_inode_top < _inodes); } 1924 void clear() { _inode_top = _inodes - 1; } // retain storage 1925 1926 // Node_Stack is used to map nodes. 1927 Node* find(uint idx) const; 1928 1929 NONCOPYABLE(Node_Stack); 1930 }; 1931 1932 1933 //-----------------------------Node_Notes-------------------------------------- 1934 // Debugging or profiling annotations loosely and sparsely associated 1935 // with some nodes. See Compile::node_notes_at for the accessor. 1936 class Node_Notes { 1937 friend class VMStructs; 1938 JVMState* _jvms; 1939 1940 public: 1941 Node_Notes(JVMState* jvms = nullptr) { 1942 _jvms = jvms; 1943 } 1944 1945 JVMState* jvms() { return _jvms; } 1946 void set_jvms(JVMState* x) { _jvms = x; } 1947 1948 // True if there is nothing here. 1949 bool is_clear() { 1950 return (_jvms == nullptr); 1951 } 1952 1953 // Make there be nothing here. 1954 void clear() { 1955 _jvms = nullptr; 1956 } 1957 1958 // Make a new, clean node notes. 1959 static Node_Notes* make(Compile* C) { 1960 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1961 nn->clear(); 1962 return nn; 1963 } 1964 1965 Node_Notes* clone(Compile* C) { 1966 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1967 (*nn) = (*this); 1968 return nn; 1969 } 1970 1971 // Absorb any information from source. 1972 bool update_from(Node_Notes* source) { 1973 bool changed = false; 1974 if (source != nullptr) { 1975 if (source->jvms() != nullptr) { 1976 set_jvms(source->jvms()); 1977 changed = true; 1978 } 1979 } 1980 return changed; 1981 } 1982 }; 1983 1984 // Inlined accessors for Compile::node_nodes that require the preceding class: 1985 inline Node_Notes* 1986 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr, 1987 int idx, bool can_grow) { 1988 assert(idx >= 0, "oob"); 1989 int block_idx = (idx >> _log2_node_notes_block_size); 1990 int grow_by = (block_idx - (arr == nullptr? 0: arr->length())); 1991 if (grow_by >= 0) { 1992 if (!can_grow) return nullptr; 1993 grow_node_notes(arr, grow_by + 1); 1994 } 1995 if (arr == nullptr) return nullptr; 1996 // (Every element of arr is a sub-array of length _node_notes_block_size.) 1997 return arr->at(block_idx) + (idx & (_node_notes_block_size-1)); 1998 } 1999 2000 inline bool 2001 Compile::set_node_notes_at(int idx, Node_Notes* value) { 2002 if (value == nullptr || value->is_clear()) 2003 return false; // nothing to write => write nothing 2004 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true); 2005 assert(loc != nullptr, ""); 2006 return loc->update_from(value); 2007 } 2008 2009 2010 //------------------------------TypeNode--------------------------------------- 2011 // Node with a Type constant. 2012 class TypeNode : public Node { 2013 protected: 2014 virtual uint hash() const; // Check the type 2015 virtual bool cmp( const Node &n ) const; 2016 virtual uint size_of() const; // Size is bigger 2017 const Type* const _type; 2018 public: 2019 void set_type(const Type* t) { 2020 assert(t != nullptr, "sanity"); 2021 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 2022 *(const Type**)&_type = t; // cast away const-ness 2023 // If this node is in the hash table, make sure it doesn't need a rehash. 2024 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); 2025 } 2026 const Type* type() const { assert(_type != nullptr, "sanity"); return _type; }; 2027 TypeNode( const Type *t, uint required ) : Node(required), _type(t) { 2028 init_class_id(Class_Type); 2029 } 2030 virtual const Type* Value(PhaseGVN* phase) const; 2031 virtual const Type *bottom_type() const; 2032 virtual uint ideal_reg() const; 2033 #ifndef PRODUCT 2034 virtual void dump_spec(outputStream *st) const; 2035 virtual void dump_compact_spec(outputStream *st) const; 2036 #endif 2037 }; 2038 2039 #include "opto/opcodes.hpp" 2040 2041 #define Op_IL(op) \ 2042 inline int Op_ ## op(BasicType bt) { \ 2043 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \ 2044 if (bt == T_INT) { \ 2045 return Op_## op ## I; \ 2046 } \ 2047 return Op_## op ## L; \ 2048 } 2049 2050 Op_IL(Add) 2051 Op_IL(Sub) 2052 Op_IL(Mul) 2053 Op_IL(URShift) 2054 Op_IL(LShift) 2055 Op_IL(Xor) 2056 Op_IL(Cmp) 2057 2058 inline int Op_ConIL(BasicType bt) { 2059 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2060 if (bt == T_INT) { 2061 return Op_ConI; 2062 } 2063 return Op_ConL; 2064 } 2065 2066 inline int Op_Cmp_unsigned(BasicType bt) { 2067 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2068 if (bt == T_INT) { 2069 return Op_CmpU; 2070 } 2071 return Op_CmpUL; 2072 } 2073 2074 inline int Op_Cast(BasicType bt) { 2075 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2076 if (bt == T_INT) { 2077 return Op_CastII; 2078 } 2079 return Op_CastLL; 2080 } 2081 2082 inline int Op_DivIL(BasicType bt, bool is_unsigned) { 2083 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2084 if (bt == T_INT) { 2085 if (is_unsigned) { 2086 return Op_UDivI; 2087 } else { 2088 return Op_DivI; 2089 } 2090 } 2091 if (is_unsigned) { 2092 return Op_UDivL; 2093 } else { 2094 return Op_DivL; 2095 } 2096 } 2097 2098 inline int Op_DivModIL(BasicType bt, bool is_unsigned) { 2099 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2100 if (bt == T_INT) { 2101 if (is_unsigned) { 2102 return Op_UDivModI; 2103 } else { 2104 return Op_DivModI; 2105 } 2106 } 2107 if (is_unsigned) { 2108 return Op_UDivModL; 2109 } else { 2110 return Op_DivModL; 2111 } 2112 } 2113 2114 #endif // SHARE_OPTO_NODE_HPP