1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef SHARE_OPTO_NODE_HPP
  27 #define SHARE_OPTO_NODE_HPP
  28 
  29 #include "libadt/vectset.hpp"
  30 #include "opto/compile.hpp"
  31 #include "opto/type.hpp"
  32 #include "utilities/copy.hpp"
  33 
  34 // Portions of code courtesy of Clifford Click
  35 
  36 // Optimization - Graph Style
  37 
  38 
  39 class AbstractLockNode;
  40 class AddNode;
  41 class AddPNode;
  42 class AliasInfo;
  43 class AllocateArrayNode;
  44 class AllocateNode;
  45 class ArrayCopyNode;
  46 class BaseCountedLoopNode;
  47 class BaseCountedLoopEndNode;
  48 class BlackholeNode;
  49 class Block;
  50 class BoolNode;
  51 class BoxLockNode;
  52 class CMoveNode;
  53 class CallDynamicJavaNode;
  54 class CallJavaNode;
  55 class CallLeafNode;
  56 class CallLeafNoFPNode;
  57 class CallNode;
  58 class CallRuntimeNode;
  59 class CallStaticJavaNode;
  60 class CastFFNode;
  61 class CastHHNode;
  62 class CastDDNode;
  63 class CastVVNode;
  64 class CastIINode;
  65 class CastLLNode;
  66 class CastPPNode;
  67 class CatchNode;
  68 class CatchProjNode;
  69 class CheckCastPPNode;
  70 class ClearArrayNode;
  71 class CmpNode;
  72 class CodeBuffer;
  73 class ConstraintCastNode;
  74 class ConNode;
  75 class ConINode;
  76 class ConvertNode;
  77 class CompareAndSwapNode;
  78 class CompareAndExchangeNode;
  79 class CountedLoopNode;
  80 class CountedLoopEndNode;
  81 class DecodeNarrowPtrNode;
  82 class DecodeNNode;
  83 class DecodeNKlassNode;
  84 class EncodeNarrowPtrNode;
  85 class EncodePNode;
  86 class EncodePKlassNode;
  87 class FastLockNode;
  88 class FastUnlockNode;
  89 class HaltNode;
  90 class IfNode;
  91 class IfProjNode;
  92 class IfFalseNode;
  93 class IfTrueNode;
  94 class InitializeNode;
  95 class JVMState;
  96 class JumpNode;
  97 class JumpProjNode;
  98 class LoadNode;
  99 class LoadStoreNode;
 100 class LoadStoreConditionalNode;
 101 class LockNode;
 102 class LongCountedLoopNode;
 103 class LongCountedLoopEndNode;
 104 class LoopNode;
 105 class LShiftNode;
 106 class MachBranchNode;
 107 class MachCallDynamicJavaNode;
 108 class MachCallJavaNode;
 109 class MachCallLeafNode;
 110 class MachCallNode;
 111 class MachCallRuntimeNode;
 112 class MachCallStaticJavaNode;
 113 class MachConstantBaseNode;
 114 class MachConstantNode;
 115 class MachGotoNode;
 116 class MachIfNode;
 117 class MachJumpNode;
 118 class MachNode;
 119 class MachNullCheckNode;
 120 class MachProjNode;
 121 class MachReturnNode;
 122 class MachSafePointNode;
 123 class MachSpillCopyNode;
 124 class MachTempNode;
 125 class MachMergeNode;
 126 class MachMemBarNode;
 127 class Matcher;
 128 class MemBarNode;
 129 class MemBarStoreStoreNode;
 130 class MemNode;
 131 class MergeMemNode;
 132 class MoveNode;
 133 class MulNode;
 134 class MultiNode;
 135 class MultiBranchNode;
 136 class NegNode;
 137 class NegVNode;
 138 class NeverBranchNode;
 139 class Opaque1Node;
 140 class OpaqueLoopInitNode;
 141 class OpaqueLoopStrideNode;
 142 class OpaqueMultiversioningNode;
 143 class OpaqueNotNullNode;
 144 class OpaqueInitializedAssertionPredicateNode;
 145 class OpaqueTemplateAssertionPredicateNode;
 146 class OuterStripMinedLoopNode;
 147 class OuterStripMinedLoopEndNode;
 148 class Node;
 149 class Node_Array;
 150 class Node_List;
 151 class Node_Stack;
 152 class OopMap;
 153 class ParmNode;
 154 class ParsePredicateNode;
 155 class PCTableNode;
 156 class PhaseCCP;
 157 class PhaseGVN;
 158 class PhaseIterGVN;
 159 class PhaseRegAlloc;
 160 class PhaseTransform;
 161 class PhaseValues;
 162 class PhiNode;
 163 class Pipeline;
 164 class PopulateIndexNode;
 165 class ProjNode;
 166 class RangeCheckNode;
 167 class ReductionNode;
 168 class RegMask;
 169 class RegionNode;
 170 class RootNode;
 171 class SafePointNode;
 172 class SafePointScalarObjectNode;
 173 class SafePointScalarMergeNode;
 174 class SaturatingVectorNode;
 175 class StartNode;
 176 class State;
 177 class StoreNode;
 178 class SubNode;
 179 class SubTypeCheckNode;
 180 class Type;
 181 class TypeNode;
 182 class UnlockNode;
 183 class VectorNode;
 184 class LoadVectorNode;
 185 class LoadVectorMaskedNode;
 186 class StoreVectorMaskedNode;
 187 class LoadVectorGatherNode;
 188 class LoadVectorGatherMaskedNode;
 189 class StoreVectorNode;
 190 class StoreVectorScatterNode;
 191 class StoreVectorScatterMaskedNode;
 192 class VerifyVectorAlignmentNode;
 193 class VectorMaskCmpNode;
 194 class VectorUnboxNode;
 195 class VectorSet;
 196 class VectorReinterpretNode;
 197 class ShiftVNode;
 198 class MulVLNode;
 199 class ExpandVNode;
 200 class CompressVNode;
 201 class CompressMNode;
 202 class C2_MacroAssembler;
 203 
 204 
 205 #ifndef OPTO_DU_ITERATOR_ASSERT
 206 #ifdef ASSERT
 207 #define OPTO_DU_ITERATOR_ASSERT 1
 208 #else
 209 #define OPTO_DU_ITERATOR_ASSERT 0
 210 #endif
 211 #endif //OPTO_DU_ITERATOR_ASSERT
 212 
 213 #if OPTO_DU_ITERATOR_ASSERT
 214 class DUIterator;
 215 class DUIterator_Fast;
 216 class DUIterator_Last;
 217 #else
 218 typedef uint   DUIterator;
 219 typedef Node** DUIterator_Fast;
 220 typedef Node** DUIterator_Last;
 221 #endif
 222 
 223 typedef ResizeableResourceHashtable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable;
 224 
 225 // Node Sentinel
 226 #define NodeSentinel (Node*)-1
 227 
 228 // Unknown count frequency
 229 #define COUNT_UNKNOWN (-1.0f)
 230 
 231 //------------------------------Node-------------------------------------------
 232 // Nodes define actions in the program.  They create values, which have types.
 233 // They are both vertices in a directed graph and program primitives.  Nodes
 234 // are labeled; the label is the "opcode", the primitive function in the lambda
 235 // calculus sense that gives meaning to the Node.  Node inputs are ordered (so
 236 // that "a-b" is different from "b-a").  The inputs to a Node are the inputs to
 237 // the Node's function.  These inputs also define a Type equation for the Node.
 238 // Solving these Type equations amounts to doing dataflow analysis.
 239 // Control and data are uniformly represented in the graph.  Finally, Nodes
 240 // have a unique dense integer index which is used to index into side arrays
 241 // whenever I have phase-specific information.
 242 
 243 class Node {
 244 
 245   // Lots of restrictions on cloning Nodes
 246   NONCOPYABLE(Node);
 247 
 248 public:
 249   friend class Compile;
 250   #if OPTO_DU_ITERATOR_ASSERT
 251   friend class DUIterator_Common;
 252   friend class DUIterator;
 253   friend class DUIterator_Fast;
 254   friend class DUIterator_Last;
 255   #endif
 256 
 257   // Because Nodes come and go, I define an Arena of Node structures to pull
 258   // from.  This should allow fast access to node creation & deletion.  This
 259   // field is a local cache of a value defined in some "program fragment" for
 260   // which these Nodes are just a part of.
 261 
 262   inline void* operator new(size_t x) throw() {
 263     Compile* C = Compile::current();
 264     Node* n = (Node*)C->node_arena()->AmallocWords(x);
 265     return (void*)n;
 266   }
 267 
 268   // Delete is a NOP
 269   void operator delete( void *ptr ) {}
 270   // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 271   void destruct(PhaseValues* phase);
 272 
 273   // Create a new Node.  Required is the number is of inputs required for
 274   // semantic correctness.
 275   Node( uint required );
 276 
 277   // Create a new Node with given input edges.
 278   // This version requires use of the "edge-count" new.
 279   // E.g.  new (C,3) FooNode( C, nullptr, left, right );
 280   Node( Node *n0 );
 281   Node( Node *n0, Node *n1 );
 282   Node( Node *n0, Node *n1, Node *n2 );
 283   Node( Node *n0, Node *n1, Node *n2, Node *n3 );
 284   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 );
 285   Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 );
 286   Node( Node *n0, Node *n1, Node *n2, Node *n3,
 287             Node *n4, Node *n5, Node *n6 );
 288 
 289   // Clone an inherited Node given only the base Node type.
 290   Node* clone() const;
 291 
 292   // Clone a Node, immediately supplying one or two new edges.
 293   // The first and second arguments, if non-null, replace in(1) and in(2),
 294   // respectively.
 295   Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const {
 296     Node* nn = clone();
 297     if (in1 != nullptr)  nn->set_req(1, in1);
 298     if (in2 != nullptr)  nn->set_req(2, in2);
 299     return nn;
 300   }
 301 
 302 private:
 303   // Shared setup for the above constructors.
 304   // Handles all interactions with Compile::current.
 305   // Puts initial values in all Node fields except _idx.
 306   // Returns the initial value for _idx, which cannot
 307   // be initialized by assignment.
 308   inline int Init(int req);
 309 
 310 //----------------- input edge handling
 311 protected:
 312   friend class PhaseCFG;        // Access to address of _in array elements
 313   Node **_in;                   // Array of use-def references to Nodes
 314   Node **_out;                  // Array of def-use references to Nodes
 315 
 316   // Input edges are split into two categories.  Required edges are required
 317   // for semantic correctness; order is important and nulls are allowed.
 318   // Precedence edges are used to help determine execution order and are
 319   // added, e.g., for scheduling purposes.  They are unordered and not
 320   // duplicated; they have no embedded nulls.  Edges from 0 to _cnt-1
 321   // are required, from _cnt to _max-1 are precedence edges.
 322   node_idx_t _cnt;              // Total number of required Node inputs.
 323 
 324   node_idx_t _max;              // Actual length of input array.
 325 
 326   // Output edges are an unordered list of def-use edges which exactly
 327   // correspond to required input edges which point from other nodes
 328   // to this one.  Thus the count of the output edges is the number of
 329   // users of this node.
 330   node_idx_t _outcnt;           // Total number of Node outputs.
 331 
 332   node_idx_t _outmax;           // Actual length of output array.
 333 
 334   // Grow the actual input array to the next larger power-of-2 bigger than len.
 335   void grow( uint len );
 336   // Grow the output array to the next larger power-of-2 bigger than len.
 337   void out_grow( uint len );
 338   // Resize input or output array to grow it to the next larger power-of-2
 339   // bigger than len.
 340   void resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing);
 341 
 342 public:
 343   // Each Node is assigned a unique small/dense number. This number is used
 344   // to index into auxiliary arrays of data and bit vectors.
 345   // The value of _idx can be changed using the set_idx() method.
 346   //
 347   // The PhaseRenumberLive phase renumbers nodes based on liveness information.
 348   // Therefore, it updates the value of the _idx field. The parse-time _idx is
 349   // preserved in _parse_idx.
 350   node_idx_t _idx;
 351   DEBUG_ONLY(const node_idx_t _parse_idx;)
 352   // IGV node identifier. Two nodes, possibly in different compilation phases,
 353   // have the same IGV identifier if (and only if) they are the very same node
 354   // (same memory address) or one is "derived" from the other (by e.g.
 355   // renumbering or matching). This identifier makes it possible to follow the
 356   // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes.
 357   NOT_PRODUCT(node_idx_t _igv_idx;)
 358 
 359   // Get the (read-only) number of input edges
 360   uint req() const { return _cnt; }
 361   uint len() const { return _max; }
 362   // Get the (read-only) number of output edges
 363   uint outcnt() const { return _outcnt; }
 364 
 365 #if OPTO_DU_ITERATOR_ASSERT
 366   // Iterate over the out-edges of this node.  Deletions are illegal.
 367   inline DUIterator outs() const;
 368   // Use this when the out array might have changed to suppress asserts.
 369   inline DUIterator& refresh_out_pos(DUIterator& i) const;
 370   // Does the node have an out at this position?  (Used for iteration.)
 371   inline bool has_out(DUIterator& i) const;
 372   inline Node*    out(DUIterator& i) const;
 373   // Iterate over the out-edges of this node.  All changes are illegal.
 374   inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const;
 375   inline Node*    fast_out(DUIterator_Fast& i) const;
 376   // Iterate over the out-edges of this node, deleting one at a time.
 377   inline DUIterator_Last last_outs(DUIterator_Last& min) const;
 378   inline Node*    last_out(DUIterator_Last& i) const;
 379   // The inline bodies of all these methods are after the iterator definitions.
 380 #else
 381   // Iterate over the out-edges of this node.  Deletions are illegal.
 382   // This iteration uses integral indexes, to decouple from array reallocations.
 383   DUIterator outs() const  { return 0; }
 384   // Use this when the out array might have changed to suppress asserts.
 385   DUIterator refresh_out_pos(DUIterator i) const { return i; }
 386 
 387   // Reference to the i'th output Node.  Error if out of bounds.
 388   Node*    out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; }
 389   // Does the node have an out at this position?  (Used for iteration.)
 390   bool has_out(DUIterator i) const { return i < _outcnt; }
 391 
 392   // Iterate over the out-edges of this node.  All changes are illegal.
 393   // This iteration uses a pointer internal to the out array.
 394   DUIterator_Fast fast_outs(DUIterator_Fast& max) const {
 395     Node** out = _out;
 396     // Assign a limit pointer to the reference argument:
 397     max = out + (ptrdiff_t)_outcnt;
 398     // Return the base pointer:
 399     return out;
 400   }
 401   Node*    fast_out(DUIterator_Fast i) const  { return *i; }
 402   // Iterate over the out-edges of this node, deleting one at a time.
 403   // This iteration uses a pointer internal to the out array.
 404   DUIterator_Last last_outs(DUIterator_Last& min) const {
 405     Node** out = _out;
 406     // Assign a limit pointer to the reference argument:
 407     min = out;
 408     // Return the pointer to the start of the iteration:
 409     return out + (ptrdiff_t)_outcnt - 1;
 410   }
 411   Node*    last_out(DUIterator_Last i) const  { return *i; }
 412 #endif
 413 
 414   // Reference to the i'th input Node.  Error if out of bounds.
 415   Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; }
 416   // Reference to the i'th input Node.  null if out of bounds.
 417   Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); }
 418   // Reference to the i'th output Node.  Error if out of bounds.
 419   // Use this accessor sparingly.  We are going trying to use iterators instead.
 420   Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; }
 421   // Return the unique out edge.
 422   Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; }
 423   // Delete out edge at position 'i' by moving last out edge to position 'i'
 424   void  raw_del_out(uint i) {
 425     assert(i < _outcnt,"oob");
 426     assert(_outcnt > 0,"oob");
 427     #if OPTO_DU_ITERATOR_ASSERT
 428     // Record that a change happened here.
 429     debug_only(_last_del = _out[i]; ++_del_tick);
 430     #endif
 431     _out[i] = _out[--_outcnt];
 432     // Smash the old edge so it can't be used accidentally.
 433     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 434   }
 435 
 436 #ifdef ASSERT
 437   bool is_dead() const;
 438   static bool is_not_dead(const Node* n);
 439   bool is_reachable_from_root() const;
 440 #endif
 441   // Check whether node has become unreachable
 442   bool is_unreachable(PhaseIterGVN &igvn) const;
 443 
 444   // Set a required input edge, also updates corresponding output edge
 445   void add_req( Node *n ); // Append a NEW required input
 446   void add_req( Node *n0, Node *n1 ) {
 447     add_req(n0); add_req(n1); }
 448   void add_req( Node *n0, Node *n1, Node *n2 ) {
 449     add_req(n0); add_req(n1); add_req(n2); }
 450   void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
 451   void del_req( uint idx ); // Delete required edge & compact
 452   void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
 453   void ins_req( uint i, Node *n ); // Insert a NEW required input
 454   void set_req( uint i, Node *n ) {
 455     assert( is_not_dead(n), "can not use dead node");
 456     assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt);
 457     assert( !VerifyHashTableKeys || _hash_lock == 0,
 458             "remove node from hash table before modifying it");
 459     Node** p = &_in[i];    // cache this._in, across the del_out call
 460     if (*p != nullptr)  (*p)->del_out((Node *)this);
 461     (*p) = n;
 462     if (n != nullptr)      n->add_out((Node *)this);
 463     Compile::current()->record_modified_node(this);
 464   }
 465   // Light version of set_req() to init inputs after node creation.
 466   void init_req( uint i, Node *n ) {
 467     assert( (i == 0 && this == n) ||
 468             is_not_dead(n), "can not use dead node");
 469     assert( i < _cnt, "oob");
 470     assert( !VerifyHashTableKeys || _hash_lock == 0,
 471             "remove node from hash table before modifying it");
 472     assert( _in[i] == nullptr, "sanity");
 473     _in[i] = n;
 474     if (n != nullptr)      n->add_out((Node *)this);
 475     Compile::current()->record_modified_node(this);
 476   }
 477   // Find first occurrence of n among my edges:
 478   int find_edge(Node* n);
 479   int find_prec_edge(Node* n) {
 480     for (uint i = req(); i < len(); i++) {
 481       if (_in[i] == n) return i;
 482       if (_in[i] == nullptr) {
 483         DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); )
 484         break;
 485       }
 486     }
 487     return -1;
 488   }
 489   int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr);
 490   int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn);
 491   // null out all inputs to eliminate incoming Def-Use edges.
 492   void disconnect_inputs(Compile* C);
 493 
 494   // Quickly, return true if and only if I am Compile::current()->top().
 495   bool is_top() const {
 496     assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), "");
 497     return (_out == nullptr);
 498   }
 499   // Reaffirm invariants for is_top.  (Only from Compile::set_cached_top_node.)
 500   void setup_is_top();
 501 
 502   // Strip away casting.  (It is depth-limited.)
 503   Node* uncast(bool keep_deps = false) const;
 504   // Return whether two Nodes are equivalent, after stripping casting.
 505   bool eqv_uncast(const Node* n, bool keep_deps = false) const {
 506     return (this->uncast(keep_deps) == n->uncast(keep_deps));
 507   }
 508 
 509   // Find out of current node that matches opcode.
 510   Node* find_out_with(int opcode);
 511   // Return true if the current node has an out that matches opcode.
 512   bool has_out_with(int opcode);
 513   // Return true if the current node has an out that matches any of the opcodes.
 514   bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4);
 515 
 516 private:
 517   static Node* uncast_helper(const Node* n, bool keep_deps);
 518 
 519   // Add an output edge to the end of the list
 520   void add_out( Node *n ) {
 521     if (is_top())  return;
 522     if( _outcnt == _outmax ) out_grow(_outcnt);
 523     _out[_outcnt++] = n;
 524   }
 525   // Delete an output edge
 526   void del_out( Node *n ) {
 527     if (is_top())  return;
 528     Node** outp = &_out[_outcnt];
 529     // Find and remove n
 530     do {
 531       assert(outp > _out, "Missing Def-Use edge");
 532     } while (*--outp != n);
 533     *outp = _out[--_outcnt];
 534     // Smash the old edge so it can't be used accidentally.
 535     debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef);
 536     // Record that a change happened here.
 537     #if OPTO_DU_ITERATOR_ASSERT
 538     debug_only(_last_del = n; ++_del_tick);
 539     #endif
 540   }
 541   // Close gap after removing edge.
 542   void close_prec_gap_at(uint gap) {
 543     assert(_cnt <= gap && gap < _max, "no valid prec edge");
 544     uint i = gap;
 545     Node *last = nullptr;
 546     for (; i < _max-1; ++i) {
 547       Node *next = _in[i+1];
 548       if (next == nullptr) break;
 549       last = next;
 550     }
 551     _in[gap] = last;  // Move last slot to empty one.
 552     _in[i] = nullptr; // null out last slot.
 553   }
 554 
 555 public:
 556   // Globally replace this node by a given new node, updating all uses.
 557   void replace_by(Node* new_node);
 558   // Globally replace this node by a given new node, updating all uses
 559   // and cutting input edges of old node.
 560   void subsume_by(Node* new_node, Compile* c) {
 561     replace_by(new_node);
 562     disconnect_inputs(c);
 563   }
 564   void set_req_X(uint i, Node *n, PhaseIterGVN *igvn);
 565   void set_req_X(uint i, Node *n, PhaseGVN *gvn);
 566   // Find the one non-null required input.  RegionNode only
 567   Node *nonnull_req() const;
 568   // Add or remove precedence edges
 569   void add_prec( Node *n );
 570   void rm_prec( uint i );
 571 
 572   // Note: prec(i) will not necessarily point to n if edge already exists.
 573   void set_prec( uint i, Node *n ) {
 574     assert(i < _max, "oob: i=%d, _max=%d", i, _max);
 575     assert(is_not_dead(n), "can not use dead node");
 576     assert(i >= _cnt, "not a precedence edge");
 577     // Avoid spec violation: duplicated prec edge.
 578     if (_in[i] == n) return;
 579     if (n == nullptr || find_prec_edge(n) != -1) {
 580       rm_prec(i);
 581       return;
 582     }
 583     if (_in[i] != nullptr) _in[i]->del_out((Node *)this);
 584     _in[i] = n;
 585     n->add_out((Node *)this);
 586     Compile::current()->record_modified_node(this);
 587   }
 588 
 589   // Set this node's index, used by cisc_version to replace current node
 590   void set_idx(uint new_idx) {
 591     _idx = new_idx;
 592   }
 593   // Swap input edge order.  (Edge indexes i1 and i2 are usually 1 and 2.)
 594   void swap_edges(uint i1, uint i2) {
 595     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 596     // Def-Use info is unchanged
 597     Node* n1 = in(i1);
 598     Node* n2 = in(i2);
 599     _in[i1] = n2;
 600     _in[i2] = n1;
 601     // If this node is in the hash table, make sure it doesn't need a rehash.
 602     assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code");
 603     // Flip swapped edges flag.
 604     if (has_swapped_edges()) {
 605       remove_flag(Node::Flag_has_swapped_edges);
 606     } else {
 607       add_flag(Node::Flag_has_swapped_edges);
 608     }
 609   }
 610 
 611   // Iterators over input Nodes for a Node X are written as:
 612   // for( i = 0; i < X.req(); i++ ) ... X[i] ...
 613   // NOTE: Required edges can contain embedded null pointers.
 614 
 615 //----------------- Other Node Properties
 616 
 617   // Generate class IDs for (some) ideal nodes so that it is possible to determine
 618   // the type of a node using a non-virtual method call (the method is_<Node>() below).
 619   //
 620   // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines
 621   // the type of the node the ID represents; another subset of an ID's bits are reserved
 622   // for the superclasses of the node represented by the ID.
 623   //
 624   // By design, if A is a supertype of B, A.is_B() returns true and B.is_A()
 625   // returns false. A.is_A() returns true.
 626   //
 627   // If two classes, A and B, have the same superclass, a different bit of A's class id
 628   // is reserved for A's type than for B's type. That bit is specified by the third
 629   // parameter in the macro DEFINE_CLASS_ID.
 630   //
 631   // By convention, classes with deeper hierarchy are declared first. Moreover,
 632   // classes with the same hierarchy depth are sorted by usage frequency.
 633   //
 634   // The query method masks the bits to cut off bits of subclasses and then compares
 635   // the result with the class id (see the macro DEFINE_CLASS_QUERY below).
 636   //
 637   //  Class_MachCall=30, ClassMask_MachCall=31
 638   // 12               8               4               0
 639   //  0   0   0   0   0   0   0   0   1   1   1   1   0
 640   //                                  |   |   |   |
 641   //                                  |   |   |   Bit_Mach=2
 642   //                                  |   |   Bit_MachReturn=4
 643   //                                  |   Bit_MachSafePoint=8
 644   //                                  Bit_MachCall=16
 645   //
 646   //  Class_CountedLoop=56, ClassMask_CountedLoop=63
 647   // 12               8               4               0
 648   //  0   0   0   0   0   0   0   1   1   1   0   0   0
 649   //                              |   |   |
 650   //                              |   |   Bit_Region=8
 651   //                              |   Bit_Loop=16
 652   //                              Bit_CountedLoop=32
 653 
 654   #define DEFINE_CLASS_ID(cl, supcl, subn) \
 655   Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \
 656   Class_##cl = Class_##supcl + Bit_##cl , \
 657   ClassMask_##cl = ((Bit_##cl << 1) - 1) ,
 658 
 659   // This enum is used only for C2 ideal and mach nodes with is_<node>() methods
 660   // so that its values fit into 32 bits.
 661   enum NodeClasses {
 662     Bit_Node   = 0x00000000,
 663     Class_Node = 0x00000000,
 664     ClassMask_Node = 0xFFFFFFFF,
 665 
 666     DEFINE_CLASS_ID(Multi, Node, 0)
 667       DEFINE_CLASS_ID(SafePoint, Multi, 0)
 668         DEFINE_CLASS_ID(Call,      SafePoint, 0)
 669           DEFINE_CLASS_ID(CallJava,         Call, 0)
 670             DEFINE_CLASS_ID(CallStaticJava,   CallJava, 0)
 671             DEFINE_CLASS_ID(CallDynamicJava,  CallJava, 1)
 672           DEFINE_CLASS_ID(CallRuntime,      Call, 1)
 673             DEFINE_CLASS_ID(CallLeaf,         CallRuntime, 0)
 674               DEFINE_CLASS_ID(CallLeafNoFP,     CallLeaf, 0)
 675           DEFINE_CLASS_ID(Allocate,         Call, 2)
 676             DEFINE_CLASS_ID(AllocateArray,    Allocate, 0)
 677           DEFINE_CLASS_ID(AbstractLock,     Call, 3)
 678             DEFINE_CLASS_ID(Lock,             AbstractLock, 0)
 679             DEFINE_CLASS_ID(Unlock,           AbstractLock, 1)
 680           DEFINE_CLASS_ID(ArrayCopy,        Call, 4)
 681       DEFINE_CLASS_ID(MultiBranch, Multi, 1)
 682         DEFINE_CLASS_ID(PCTable,     MultiBranch, 0)
 683           DEFINE_CLASS_ID(Catch,       PCTable, 0)
 684           DEFINE_CLASS_ID(Jump,        PCTable, 1)
 685         DEFINE_CLASS_ID(If,          MultiBranch, 1)
 686           DEFINE_CLASS_ID(BaseCountedLoopEnd,     If, 0)
 687             DEFINE_CLASS_ID(CountedLoopEnd,       BaseCountedLoopEnd, 0)
 688             DEFINE_CLASS_ID(LongCountedLoopEnd,   BaseCountedLoopEnd, 1)
 689           DEFINE_CLASS_ID(RangeCheck,             If, 1)
 690           DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2)
 691           DEFINE_CLASS_ID(ParsePredicate,         If, 3)
 692         DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2)
 693       DEFINE_CLASS_ID(Start,       Multi, 2)
 694       DEFINE_CLASS_ID(MemBar,      Multi, 3)
 695         DEFINE_CLASS_ID(Initialize,       MemBar, 0)
 696         DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1)
 697 
 698     DEFINE_CLASS_ID(Mach,  Node, 1)
 699       DEFINE_CLASS_ID(MachReturn, Mach, 0)
 700         DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0)
 701           DEFINE_CLASS_ID(MachCall, MachSafePoint, 0)
 702             DEFINE_CLASS_ID(MachCallJava,         MachCall, 0)
 703               DEFINE_CLASS_ID(MachCallStaticJava,   MachCallJava, 0)
 704               DEFINE_CLASS_ID(MachCallDynamicJava,  MachCallJava, 1)
 705             DEFINE_CLASS_ID(MachCallRuntime,      MachCall, 1)
 706               DEFINE_CLASS_ID(MachCallLeaf,         MachCallRuntime, 0)
 707       DEFINE_CLASS_ID(MachBranch, Mach, 1)
 708         DEFINE_CLASS_ID(MachIf,         MachBranch, 0)
 709         DEFINE_CLASS_ID(MachGoto,       MachBranch, 1)
 710         DEFINE_CLASS_ID(MachNullCheck,  MachBranch, 2)
 711       DEFINE_CLASS_ID(MachSpillCopy,    Mach, 2)
 712       DEFINE_CLASS_ID(MachTemp,         Mach, 3)
 713       DEFINE_CLASS_ID(MachConstantBase, Mach, 4)
 714       DEFINE_CLASS_ID(MachConstant,     Mach, 5)
 715         DEFINE_CLASS_ID(MachJump,       MachConstant, 0)
 716       DEFINE_CLASS_ID(MachMerge,        Mach, 6)
 717       DEFINE_CLASS_ID(MachMemBar,       Mach, 7)
 718 
 719     DEFINE_CLASS_ID(Type,  Node, 2)
 720       DEFINE_CLASS_ID(Phi,   Type, 0)
 721       DEFINE_CLASS_ID(ConstraintCast, Type, 1)
 722         DEFINE_CLASS_ID(CastII, ConstraintCast, 0)
 723         DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1)
 724         DEFINE_CLASS_ID(CastLL, ConstraintCast, 2)
 725         DEFINE_CLASS_ID(CastFF, ConstraintCast, 3)
 726         DEFINE_CLASS_ID(CastDD, ConstraintCast, 4)
 727         DEFINE_CLASS_ID(CastVV, ConstraintCast, 5)
 728         DEFINE_CLASS_ID(CastPP, ConstraintCast, 6)
 729         DEFINE_CLASS_ID(CastHH, ConstraintCast, 7)
 730       DEFINE_CLASS_ID(CMove, Type, 3)
 731       DEFINE_CLASS_ID(SafePointScalarObject, Type, 4)
 732       DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5)
 733         DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0)
 734         DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1)
 735       DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6)
 736         DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0)
 737         DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1)
 738       DEFINE_CLASS_ID(Vector, Type, 7)
 739         DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0)
 740         DEFINE_CLASS_ID(VectorUnbox, Vector, 1)
 741         DEFINE_CLASS_ID(VectorReinterpret, Vector, 2)
 742         DEFINE_CLASS_ID(ShiftV, Vector, 3)
 743         DEFINE_CLASS_ID(CompressV, Vector, 4)
 744         DEFINE_CLASS_ID(ExpandV, Vector, 5)
 745         DEFINE_CLASS_ID(CompressM, Vector, 6)
 746         DEFINE_CLASS_ID(Reduction, Vector, 7)
 747         DEFINE_CLASS_ID(NegV, Vector, 8)
 748         DEFINE_CLASS_ID(SaturatingVector, Vector, 9)
 749         DEFINE_CLASS_ID(MulVL, Vector, 10)
 750       DEFINE_CLASS_ID(Con, Type, 8)
 751           DEFINE_CLASS_ID(ConI, Con, 0)
 752       DEFINE_CLASS_ID(SafePointScalarMerge, Type, 9)
 753       DEFINE_CLASS_ID(Convert, Type, 10)
 754 
 755 
 756     DEFINE_CLASS_ID(Proj,  Node, 3)
 757       DEFINE_CLASS_ID(CatchProj, Proj, 0)
 758       DEFINE_CLASS_ID(JumpProj,  Proj, 1)
 759       DEFINE_CLASS_ID(IfProj,    Proj, 2)
 760         DEFINE_CLASS_ID(IfTrue,    IfProj, 0)
 761         DEFINE_CLASS_ID(IfFalse,   IfProj, 1)
 762       DEFINE_CLASS_ID(Parm,      Proj, 4)
 763       DEFINE_CLASS_ID(MachProj,  Proj, 5)
 764 
 765     DEFINE_CLASS_ID(Mem, Node, 4)
 766       DEFINE_CLASS_ID(Load, Mem, 0)
 767         DEFINE_CLASS_ID(LoadVector,  Load, 0)
 768           DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0)
 769           DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1)
 770           DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2)
 771       DEFINE_CLASS_ID(Store, Mem, 1)
 772         DEFINE_CLASS_ID(StoreVector, Store, 0)
 773           DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0)
 774           DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1)
 775           DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2)
 776       DEFINE_CLASS_ID(LoadStore, Mem, 2)
 777         DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0)
 778           DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0)
 779         DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1)
 780 
 781     DEFINE_CLASS_ID(Region, Node, 5)
 782       DEFINE_CLASS_ID(Loop, Region, 0)
 783         DEFINE_CLASS_ID(Root,                Loop, 0)
 784         DEFINE_CLASS_ID(BaseCountedLoop,     Loop, 1)
 785           DEFINE_CLASS_ID(CountedLoop,       BaseCountedLoop, 0)
 786           DEFINE_CLASS_ID(LongCountedLoop,   BaseCountedLoop, 1)
 787         DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2)
 788 
 789     DEFINE_CLASS_ID(Sub,   Node, 6)
 790       DEFINE_CLASS_ID(Cmp,   Sub, 0)
 791         DEFINE_CLASS_ID(FastLock,   Cmp, 0)
 792         DEFINE_CLASS_ID(FastUnlock, Cmp, 1)
 793         DEFINE_CLASS_ID(SubTypeCheck,Cmp, 2)
 794 
 795     DEFINE_CLASS_ID(MergeMem, Node, 7)
 796     DEFINE_CLASS_ID(Bool,     Node, 8)
 797     DEFINE_CLASS_ID(AddP,     Node, 9)
 798     DEFINE_CLASS_ID(BoxLock,  Node, 10)
 799     DEFINE_CLASS_ID(Add,      Node, 11)
 800     DEFINE_CLASS_ID(Mul,      Node, 12)
 801     DEFINE_CLASS_ID(ClearArray, Node, 14)
 802     DEFINE_CLASS_ID(Halt,     Node, 15)
 803     DEFINE_CLASS_ID(Opaque1,  Node, 16)
 804       DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0)
 805       DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1)
 806       DEFINE_CLASS_ID(OpaqueMultiversioning, Opaque1, 2)
 807     DEFINE_CLASS_ID(OpaqueNotNull,  Node, 17)
 808     DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate,  Node, 18)
 809     DEFINE_CLASS_ID(OpaqueTemplateAssertionPredicate,  Node, 19)
 810     DEFINE_CLASS_ID(Move,     Node, 20)
 811     DEFINE_CLASS_ID(LShift,   Node, 21)
 812     DEFINE_CLASS_ID(Neg,      Node, 22)
 813 
 814     _max_classes  = ClassMask_Neg
 815   };
 816   #undef DEFINE_CLASS_ID
 817 
 818   // Flags are sorted by usage frequency.
 819   enum NodeFlags {
 820     Flag_is_Copy                     = 1 << 0, // should be first bit to avoid shift
 821     Flag_rematerialize               = 1 << 1,
 822     Flag_needs_anti_dependence_check = 1 << 2,
 823     Flag_is_macro                    = 1 << 3,
 824     Flag_is_Con                      = 1 << 4,
 825     Flag_is_cisc_alternate           = 1 << 5,
 826     Flag_is_dead_loop_safe           = 1 << 6,
 827     Flag_may_be_short_branch         = 1 << 7,
 828     Flag_avoid_back_to_back_before   = 1 << 8,
 829     Flag_avoid_back_to_back_after    = 1 << 9,
 830     Flag_has_call                    = 1 << 10,
 831     Flag_has_swapped_edges           = 1 << 11,
 832     Flag_is_scheduled                = 1 << 12,
 833     Flag_is_expensive                = 1 << 13,
 834     Flag_is_predicated_vector        = 1 << 14,
 835     Flag_for_post_loop_opts_igvn     = 1 << 15,
 836     Flag_for_merge_stores_igvn       = 1 << 16,
 837     Flag_is_removed_by_peephole      = 1 << 17,
 838     Flag_is_predicated_using_blend   = 1 << 18,
 839     _last_flag                       = Flag_is_predicated_using_blend
 840   };
 841 
 842   class PD;
 843 
 844 private:
 845   juint _class_id;
 846   juint _flags;
 847 
 848 #ifdef ASSERT
 849   static juint max_flags();
 850 #endif
 851 
 852 protected:
 853   // These methods should be called from constructors only.
 854   void init_class_id(juint c) {
 855     _class_id = c; // cast out const
 856   }
 857   void init_flags(uint fl) {
 858     assert(fl <= max_flags(), "invalid node flag");
 859     _flags |= fl;
 860   }
 861   void clear_flag(uint fl) {
 862     assert(fl <= max_flags(), "invalid node flag");
 863     _flags &= ~fl;
 864   }
 865 
 866 public:
 867   juint class_id() const { return _class_id; }
 868 
 869   juint flags() const { return _flags; }
 870 
 871   void add_flag(juint fl) { init_flags(fl); }
 872 
 873   void remove_flag(juint fl) { clear_flag(fl); }
 874 
 875   // Return a dense integer opcode number
 876   virtual int Opcode() const;
 877 
 878   // Virtual inherited Node size
 879   virtual uint size_of() const;
 880 
 881   // Other interesting Node properties
 882   #define DEFINE_CLASS_QUERY(type)                           \
 883   bool is_##type() const {                                   \
 884     return ((_class_id & ClassMask_##type) == Class_##type); \
 885   }                                                          \
 886   type##Node *as_##type() const {                            \
 887     assert(is_##type(), "invalid node class: %s", Name());   \
 888     return (type##Node*)this;                                \
 889   }                                                          \
 890   type##Node* isa_##type() const {                           \
 891     return (is_##type()) ? as_##type() : nullptr;            \
 892   }
 893 
 894   DEFINE_CLASS_QUERY(AbstractLock)
 895   DEFINE_CLASS_QUERY(Add)
 896   DEFINE_CLASS_QUERY(AddP)
 897   DEFINE_CLASS_QUERY(Allocate)
 898   DEFINE_CLASS_QUERY(AllocateArray)
 899   DEFINE_CLASS_QUERY(ArrayCopy)
 900   DEFINE_CLASS_QUERY(BaseCountedLoop)
 901   DEFINE_CLASS_QUERY(BaseCountedLoopEnd)
 902   DEFINE_CLASS_QUERY(Bool)
 903   DEFINE_CLASS_QUERY(BoxLock)
 904   DEFINE_CLASS_QUERY(Call)
 905   DEFINE_CLASS_QUERY(CallDynamicJava)
 906   DEFINE_CLASS_QUERY(CallJava)
 907   DEFINE_CLASS_QUERY(CallLeaf)
 908   DEFINE_CLASS_QUERY(CallLeafNoFP)
 909   DEFINE_CLASS_QUERY(CallRuntime)
 910   DEFINE_CLASS_QUERY(CallStaticJava)
 911   DEFINE_CLASS_QUERY(Catch)
 912   DEFINE_CLASS_QUERY(CatchProj)
 913   DEFINE_CLASS_QUERY(CheckCastPP)
 914   DEFINE_CLASS_QUERY(CastII)
 915   DEFINE_CLASS_QUERY(CastLL)
 916   DEFINE_CLASS_QUERY(CastFF)
 917   DEFINE_CLASS_QUERY(ConI)
 918   DEFINE_CLASS_QUERY(CastPP)
 919   DEFINE_CLASS_QUERY(ConstraintCast)
 920   DEFINE_CLASS_QUERY(ClearArray)
 921   DEFINE_CLASS_QUERY(CMove)
 922   DEFINE_CLASS_QUERY(Cmp)
 923   DEFINE_CLASS_QUERY(Convert)
 924   DEFINE_CLASS_QUERY(CountedLoop)
 925   DEFINE_CLASS_QUERY(CountedLoopEnd)
 926   DEFINE_CLASS_QUERY(DecodeNarrowPtr)
 927   DEFINE_CLASS_QUERY(DecodeN)
 928   DEFINE_CLASS_QUERY(DecodeNKlass)
 929   DEFINE_CLASS_QUERY(EncodeNarrowPtr)
 930   DEFINE_CLASS_QUERY(EncodeP)
 931   DEFINE_CLASS_QUERY(EncodePKlass)
 932   DEFINE_CLASS_QUERY(FastLock)
 933   DEFINE_CLASS_QUERY(FastUnlock)
 934   DEFINE_CLASS_QUERY(Halt)
 935   DEFINE_CLASS_QUERY(If)
 936   DEFINE_CLASS_QUERY(RangeCheck)
 937   DEFINE_CLASS_QUERY(IfProj)
 938   DEFINE_CLASS_QUERY(IfFalse)
 939   DEFINE_CLASS_QUERY(IfTrue)
 940   DEFINE_CLASS_QUERY(Initialize)
 941   DEFINE_CLASS_QUERY(Jump)
 942   DEFINE_CLASS_QUERY(JumpProj)
 943   DEFINE_CLASS_QUERY(LongCountedLoop)
 944   DEFINE_CLASS_QUERY(LongCountedLoopEnd)
 945   DEFINE_CLASS_QUERY(Load)
 946   DEFINE_CLASS_QUERY(LoadStore)
 947   DEFINE_CLASS_QUERY(LoadStoreConditional)
 948   DEFINE_CLASS_QUERY(Lock)
 949   DEFINE_CLASS_QUERY(Loop)
 950   DEFINE_CLASS_QUERY(LShift)
 951   DEFINE_CLASS_QUERY(Mach)
 952   DEFINE_CLASS_QUERY(MachBranch)
 953   DEFINE_CLASS_QUERY(MachCall)
 954   DEFINE_CLASS_QUERY(MachCallDynamicJava)
 955   DEFINE_CLASS_QUERY(MachCallJava)
 956   DEFINE_CLASS_QUERY(MachCallLeaf)
 957   DEFINE_CLASS_QUERY(MachCallRuntime)
 958   DEFINE_CLASS_QUERY(MachCallStaticJava)
 959   DEFINE_CLASS_QUERY(MachConstantBase)
 960   DEFINE_CLASS_QUERY(MachConstant)
 961   DEFINE_CLASS_QUERY(MachGoto)
 962   DEFINE_CLASS_QUERY(MachIf)
 963   DEFINE_CLASS_QUERY(MachJump)
 964   DEFINE_CLASS_QUERY(MachNullCheck)
 965   DEFINE_CLASS_QUERY(MachProj)
 966   DEFINE_CLASS_QUERY(MachReturn)
 967   DEFINE_CLASS_QUERY(MachSafePoint)
 968   DEFINE_CLASS_QUERY(MachSpillCopy)
 969   DEFINE_CLASS_QUERY(MachTemp)
 970   DEFINE_CLASS_QUERY(MachMemBar)
 971   DEFINE_CLASS_QUERY(MachMerge)
 972   DEFINE_CLASS_QUERY(Mem)
 973   DEFINE_CLASS_QUERY(MemBar)
 974   DEFINE_CLASS_QUERY(MemBarStoreStore)
 975   DEFINE_CLASS_QUERY(MergeMem)
 976   DEFINE_CLASS_QUERY(Move)
 977   DEFINE_CLASS_QUERY(Mul)
 978   DEFINE_CLASS_QUERY(Multi)
 979   DEFINE_CLASS_QUERY(MultiBranch)
 980   DEFINE_CLASS_QUERY(MulVL)
 981   DEFINE_CLASS_QUERY(Neg)
 982   DEFINE_CLASS_QUERY(NegV)
 983   DEFINE_CLASS_QUERY(NeverBranch)
 984   DEFINE_CLASS_QUERY(Opaque1)
 985   DEFINE_CLASS_QUERY(OpaqueNotNull)
 986   DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate)
 987   DEFINE_CLASS_QUERY(OpaqueTemplateAssertionPredicate)
 988   DEFINE_CLASS_QUERY(OpaqueLoopInit)
 989   DEFINE_CLASS_QUERY(OpaqueLoopStride)
 990   DEFINE_CLASS_QUERY(OpaqueMultiversioning)
 991   DEFINE_CLASS_QUERY(OuterStripMinedLoop)
 992   DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd)
 993   DEFINE_CLASS_QUERY(Parm)
 994   DEFINE_CLASS_QUERY(ParsePredicate)
 995   DEFINE_CLASS_QUERY(PCTable)
 996   DEFINE_CLASS_QUERY(Phi)
 997   DEFINE_CLASS_QUERY(Proj)
 998   DEFINE_CLASS_QUERY(Reduction)
 999   DEFINE_CLASS_QUERY(Region)
1000   DEFINE_CLASS_QUERY(Root)
1001   DEFINE_CLASS_QUERY(SafePoint)
1002   DEFINE_CLASS_QUERY(SafePointScalarObject)
1003   DEFINE_CLASS_QUERY(SafePointScalarMerge)
1004   DEFINE_CLASS_QUERY(Start)
1005   DEFINE_CLASS_QUERY(Store)
1006   DEFINE_CLASS_QUERY(Sub)
1007   DEFINE_CLASS_QUERY(SubTypeCheck)
1008   DEFINE_CLASS_QUERY(Type)
1009   DEFINE_CLASS_QUERY(Vector)
1010   DEFINE_CLASS_QUERY(VectorMaskCmp)
1011   DEFINE_CLASS_QUERY(VectorUnbox)
1012   DEFINE_CLASS_QUERY(VectorReinterpret)
1013   DEFINE_CLASS_QUERY(CompressV)
1014   DEFINE_CLASS_QUERY(ExpandV)
1015   DEFINE_CLASS_QUERY(CompressM)
1016   DEFINE_CLASS_QUERY(LoadVector)
1017   DEFINE_CLASS_QUERY(LoadVectorGather)
1018   DEFINE_CLASS_QUERY(LoadVectorMasked)
1019   DEFINE_CLASS_QUERY(LoadVectorGatherMasked)
1020   DEFINE_CLASS_QUERY(StoreVector)
1021   DEFINE_CLASS_QUERY(StoreVectorScatter)
1022   DEFINE_CLASS_QUERY(StoreVectorMasked)
1023   DEFINE_CLASS_QUERY(StoreVectorScatterMasked)
1024   DEFINE_CLASS_QUERY(SaturatingVector)
1025   DEFINE_CLASS_QUERY(ShiftV)
1026   DEFINE_CLASS_QUERY(Unlock)
1027 
1028   #undef DEFINE_CLASS_QUERY
1029 
1030   // duplicate of is_MachSpillCopy()
1031   bool is_SpillCopy () const {
1032     return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy);
1033   }
1034 
1035   bool is_Con () const { return (_flags & Flag_is_Con) != 0; }
1036   // The data node which is safe to leave in dead loop during IGVN optimization.
1037   bool is_dead_loop_safe() const;
1038 
1039   // is_Copy() returns copied edge index (0 or 1)
1040   uint is_Copy() const { return (_flags & Flag_is_Copy); }
1041 
1042   virtual bool is_CFG() const { return false; }
1043 
1044   // If this node is control-dependent on a test, can it be
1045   // rerouted to a dominating equivalent test?  This is usually
1046   // true of non-CFG nodes, but can be false for operations which
1047   // depend for their correct sequencing on more than one test.
1048   // (In that case, hoisting to a dominating test may silently
1049   // skip some other important test.)
1050   virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; };
1051 
1052   // When building basic blocks, I need to have a notion of block beginning
1053   // Nodes, next block selector Nodes (block enders), and next block
1054   // projections.  These calls need to work on their machine equivalents.  The
1055   // Ideal beginning Nodes are RootNode, RegionNode and StartNode.
1056   bool is_block_start() const {
1057     if ( is_Region() )
1058       return this == (const Node*)in(0);
1059     else
1060       return is_Start();
1061   }
1062 
1063   // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root,
1064   // Goto and Return.  This call also returns the block ending Node.
1065   virtual const Node *is_block_proj() const;
1066 
1067   // The node is a "macro" node which needs to be expanded before matching
1068   bool is_macro() const { return (_flags & Flag_is_macro) != 0; }
1069   // The node is expensive: the best control is set during loop opts
1070   bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; }
1071   // The node's original edge position is swapped.
1072   bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; }
1073 
1074   bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; }
1075 
1076   bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; }
1077 
1078   // Used in lcm to mark nodes that have scheduled
1079   bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; }
1080 
1081   bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; }
1082   bool for_merge_stores_igvn() const { return (_flags & Flag_for_merge_stores_igvn) != 0; }
1083 
1084   // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)?
1085   static bool may_be_loop_entry(Node* n) {
1086     return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate();
1087   }
1088 
1089 //----------------- Optimization
1090 
1091   // Get the worst-case Type output for this Node.
1092   virtual const class Type *bottom_type() const;
1093 
1094   // If we find a better type for a node, try to record it permanently.
1095   // Return true if this node actually changed.
1096   // Be sure to do the hash_delete game in the "rehash" variant.
1097   void raise_bottom_type(const Type* new_type);
1098 
1099   // Get the address type with which this node uses and/or defs memory,
1100   // or null if none.  The address type is conservatively wide.
1101   // Returns non-null for calls, membars, loads, stores, etc.
1102   // Returns TypePtr::BOTTOM if the node touches memory "broadly".
1103   virtual const class TypePtr *adr_type() const { return nullptr; }
1104 
1105   // Return an existing node which computes the same function as this node.
1106   // The optimistic combined algorithm requires this to return a Node which
1107   // is a small number of steps away (e.g., one of my inputs).
1108   virtual Node* Identity(PhaseGVN* phase);
1109 
1110   // Return the set of values this Node can take on at runtime.
1111   virtual const Type* Value(PhaseGVN* phase) const;
1112 
1113   // Return a node which is more "ideal" than the current node.
1114   // The invariants on this call are subtle.  If in doubt, read the
1115   // treatise in node.cpp above the default implementation AND TEST WITH
1116   // -XX:VerifyIterativeGVN=1
1117   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1118 
1119   // Some nodes have specific Ideal subgraph transformations only if they are
1120   // unique users of specific nodes. Such nodes should be put on IGVN worklist
1121   // for the transformations to happen.
1122   bool has_special_unique_user() const;
1123 
1124   // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1125   Node* find_exact_control(Node* ctrl);
1126 
1127   // Results of the dominance analysis.
1128   enum class DomResult {
1129     NotDominate,         // 'this' node does not dominate 'sub'.
1130     Dominate,            // 'this' node dominates or is equal to 'sub'.
1131     EncounteredDeadCode  // Result is undefined due to encountering dead code.
1132   };
1133   // Check if 'this' node dominates or equal to 'sub'.
1134   DomResult dominates(Node* sub, Node_List &nlist);
1135 
1136   bool remove_dead_region(PhaseGVN *phase, bool can_reshape);
1137 public:
1138 
1139   // See if there is valid pipeline info
1140   static  const Pipeline *pipeline_class();
1141   virtual const Pipeline *pipeline() const;
1142 
1143   // Compute the latency from the def to this instruction of the ith input node
1144   uint latency(uint i);
1145 
1146   // Hash & compare functions, for pessimistic value numbering
1147 
1148   // If the hash function returns the special sentinel value NO_HASH,
1149   // the node is guaranteed never to compare equal to any other node.
1150   // If we accidentally generate a hash with value NO_HASH the node
1151   // won't go into the table and we'll lose a little optimization.
1152   static const uint NO_HASH = 0;
1153   virtual uint hash() const;
1154   virtual bool cmp( const Node &n ) const;
1155 
1156   // Operation appears to be iteratively computed (such as an induction variable)
1157   // It is possible for this operation to return false for a loop-varying
1158   // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1159   bool is_iteratively_computed();
1160 
1161   // Determine if a node is a counted loop induction variable.
1162   // NOTE: The method is defined in "loopnode.cpp".
1163   bool is_cloop_ind_var() const;
1164 
1165   // Return a node with opcode "opc" and same inputs as "this" if one can
1166   // be found; Otherwise return null;
1167   Node* find_similar(int opc);
1168 
1169   // Return the unique control out if only one. Null if none or more than one.
1170   Node* unique_ctrl_out_or_null() const;
1171   // Return the unique control out. Asserts if none or more than one control out.
1172   Node* unique_ctrl_out() const;
1173 
1174   // Set control or add control as precedence edge
1175   void ensure_control_or_add_prec(Node* c);
1176   void add_prec_from(Node* n);
1177 
1178   // Visit boundary uses of the node and apply a callback function for each.
1179   // Recursively traverse uses, stopping and applying the callback when
1180   // reaching a boundary node, defined by is_boundary. Note: the function
1181   // definition appears after the complete type definition of Node_List.
1182   template <typename Callback, typename Check>
1183   void visit_uses(Callback callback, Check is_boundary) const;
1184 
1185   // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses
1186   // (Load and range check CastII nodes).
1187   // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication).
1188   virtual Node* pin_array_access_node() const {
1189     return nullptr;
1190   }
1191 
1192   //----------------- Code Generation
1193 
1194   // Ideal register class for Matching.  Zero means unmatched instruction
1195   // (these are cloned instead of converted to machine nodes).
1196   virtual uint ideal_reg() const;
1197 
1198   static const uint NotAMachineReg;   // must be > max. machine register
1199 
1200   // Do we Match on this edge index or not?  Generally false for Control
1201   // and true for everything else.  Weird for calls & returns.
1202   virtual uint match_edge(uint idx) const;
1203 
1204   // Register class output is returned in
1205   virtual const RegMask &out_RegMask() const;
1206   // Register class input is expected in
1207   virtual const RegMask &in_RegMask(uint) const;
1208   // Should we clone rather than spill this instruction?
1209   bool rematerialize() const;
1210 
1211   // Return JVM State Object if this Node carries debug info, or null otherwise
1212   virtual JVMState* jvms() const;
1213 
1214   // Print as assembly
1215   virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const;
1216   // Emit bytes using C2_MacroAssembler
1217   virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const;
1218   // Size of instruction in bytes
1219   virtual uint size(PhaseRegAlloc *ra_) const;
1220 
1221   // Convenience function to extract an integer constant from a node.
1222   // If it is not an integer constant (either Con, CastII, or Mach),
1223   // return value_if_unknown.
1224   jint find_int_con(jint value_if_unknown) const {
1225     const TypeInt* t = find_int_type();
1226     return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1227   }
1228   // Return the constant, knowing it is an integer constant already
1229   jint get_int() const {
1230     const TypeInt* t = find_int_type();
1231     guarantee(t != nullptr, "must be con");
1232     return t->get_con();
1233   }
1234   // Here's where the work is done.  Can produce non-constant int types too.
1235   const TypeInt* find_int_type() const;
1236   const TypeInteger* find_integer_type(BasicType bt) const;
1237 
1238   // Same thing for long (and intptr_t, via type.hpp):
1239   jlong get_long() const {
1240     const TypeLong* t = find_long_type();
1241     guarantee(t != nullptr, "must be con");
1242     return t->get_con();
1243   }
1244   jlong find_long_con(jint value_if_unknown) const {
1245     const TypeLong* t = find_long_type();
1246     return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown;
1247   }
1248   const TypeLong* find_long_type() const;
1249 
1250   jlong get_integer_as_long(BasicType bt) const {
1251     const TypeInteger* t = find_integer_type(bt);
1252     guarantee(t != nullptr && t->is_con(), "must be con");
1253     return t->get_con_as_long(bt);
1254   }
1255   jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const {
1256     const TypeInteger* t = find_integer_type(bt);
1257     if (t == nullptr || !t->is_con())  return value_if_unknown;
1258     return t->get_con_as_long(bt);
1259   }
1260   const TypePtr* get_ptr_type() const;
1261 
1262   // These guys are called by code generated by ADLC:
1263   intptr_t get_ptr() const;
1264   intptr_t get_narrowcon() const;
1265   jdouble getd() const;
1266   jfloat getf() const;
1267   jshort geth() const;
1268 
1269   // Nodes which are pinned into basic blocks
1270   virtual bool pinned() const { return false; }
1271 
1272   // Nodes which use memory without consuming it, hence need antidependences
1273   // More specifically, needs_anti_dependence_check returns true iff the node
1274   // (a) does a load, and (b) does not perform a store (except perhaps to a
1275   // stack slot or some other unaliased location).
1276   bool needs_anti_dependence_check() const;
1277 
1278   // Return which operand this instruction may cisc-spill. In other words,
1279   // return operand position that can convert from reg to memory access
1280   virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; }
1281   bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; }
1282 
1283   // Whether this is a memory-writing machine node.
1284   bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); }
1285 
1286   // Whether this is a memory phi node
1287   bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; }
1288 
1289   bool is_div_or_mod(BasicType bt) const;
1290 
1291   bool is_pure_function() const;
1292 
1293   bool is_data_proj_of_pure_function(const Node* maybe_pure_function) const;
1294 
1295 //----------------- Printing, etc
1296 #ifndef PRODUCT
1297  public:
1298   Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx.
1299   Node* find_ctrl(int idx); // Search control ancestors for the given idx.
1300   void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const;
1301   void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty
1302   void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr)
1303   class DumpConfig {
1304    public:
1305     // overridden to implement coloring of node idx
1306     virtual void pre_dump(outputStream *st, const Node* n) = 0;
1307     virtual void post_dump(outputStream *st) = 0;
1308   };
1309   void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const;
1310   void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const;
1311   void dump() const; // print node with newline
1312   void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node.
1313   void dump(int depth) const;        // Print this node, recursively to depth d
1314   void dump_ctrl(int depth) const;   // Print control nodes, to depth d
1315   void dump_comp() const;            // Print this node in compact representation.
1316   // Print this node in compact representation.
1317   void dump_comp(const char* suffix, outputStream *st = tty) const;
1318  private:
1319   virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const;    // Print required-edge info
1320   virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const;   // Print precedence-edge info
1321   virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const;    // Print the output edge info
1322  public:
1323   virtual void dump_spec(outputStream *st) const {};      // Print per-node info
1324   // Print compact per-node info
1325   virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); }
1326 
1327   static void verify(int verify_depth, VectorSet& visited, Node_List& worklist);
1328 
1329   // This call defines a class-unique string used to identify class instances
1330   virtual const char *Name() const;
1331 
1332   void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...)
1333   static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call
1334 #endif
1335 #ifdef ASSERT
1336   void verify_construction();
1337   bool verify_jvms(const JVMState* jvms) const;
1338 
1339   Node* _debug_orig;                   // Original version of this, if any.
1340   Node*  debug_orig() const            { return _debug_orig; }
1341   void   set_debug_orig(Node* orig);   // _debug_orig = orig
1342   void   dump_orig(outputStream *st, bool print_key = true) const;
1343 
1344   uint64_t _debug_idx;                 // Unique value assigned to every node.
1345   uint64_t debug_idx() const           { return _debug_idx; }
1346   void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; }
1347 
1348   int        _hash_lock;               // Barrier to modifications of nodes in the hash table
1349   void  enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); }
1350   void   exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); }
1351 
1352   static void init_NodeProperty();
1353 
1354   #if OPTO_DU_ITERATOR_ASSERT
1355   const Node* _last_del;               // The last deleted node.
1356   uint        _del_tick;               // Bumped when a deletion happens..
1357   #endif
1358 #endif
1359 };
1360 
1361 inline bool not_a_node(const Node* n) {
1362   if (n == nullptr)                return true;
1363   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1364   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1365   return false;
1366 }
1367 
1368 //-----------------------------------------------------------------------------
1369 // Iterators over DU info, and associated Node functions.
1370 
1371 #if OPTO_DU_ITERATOR_ASSERT
1372 
1373 // Common code for assertion checking on DU iterators.
1374 class DUIterator_Common {
1375 #ifdef ASSERT
1376  protected:
1377   bool         _vdui;               // cached value of VerifyDUIterators
1378   const Node*  _node;               // the node containing the _out array
1379   uint         _outcnt;             // cached node->_outcnt
1380   uint         _del_tick;           // cached node->_del_tick
1381   Node*        _last;               // last value produced by the iterator
1382 
1383   void sample(const Node* node);    // used by c'tor to set up for verifies
1384   void verify(const Node* node, bool at_end_ok = false);
1385   void verify_resync();
1386   void reset(const DUIterator_Common& that);
1387 
1388 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators
1389   #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } }
1390 #else
1391   #define I_VDUI_ONLY(i,x) { }
1392 #endif //ASSERT
1393 };
1394 
1395 #define VDUI_ONLY(x)     I_VDUI_ONLY(*this, x)
1396 
1397 // Default DU iterator.  Allows appends onto the out array.
1398 // Allows deletion from the out array only at the current point.
1399 // Usage:
1400 //  for (DUIterator i = x->outs(); x->has_out(i); i++) {
1401 //    Node* y = x->out(i);
1402 //    ...
1403 //  }
1404 // Compiles in product mode to a unsigned integer index, which indexes
1405 // onto a repeatedly reloaded base pointer of x->_out.  The loop predicate
1406 // also reloads x->_outcnt.  If you delete, you must perform "--i" just
1407 // before continuing the loop.  You must delete only the last-produced
1408 // edge.  You must delete only a single copy of the last-produced edge,
1409 // or else you must delete all copies at once (the first time the edge
1410 // is produced by the iterator).
1411 class DUIterator : public DUIterator_Common {
1412   friend class Node;
1413 
1414   // This is the index which provides the product-mode behavior.
1415   // Whatever the product-mode version of the system does to the
1416   // DUI index is done to this index.  All other fields in
1417   // this class are used only for assertion checking.
1418   uint         _idx;
1419 
1420   #ifdef ASSERT
1421   uint         _refresh_tick;    // Records the refresh activity.
1422 
1423   void sample(const Node* node); // Initialize _refresh_tick etc.
1424   void verify(const Node* node, bool at_end_ok = false);
1425   void verify_increment();       // Verify an increment operation.
1426   void verify_resync();          // Verify that we can back up over a deletion.
1427   void verify_finish();          // Verify that the loop terminated properly.
1428   void refresh();                // Resample verification info.
1429   void reset(const DUIterator& that);  // Resample after assignment.
1430   #endif
1431 
1432   DUIterator(const Node* node, int dummy_to_avoid_conversion)
1433     { _idx = 0;                         debug_only(sample(node)); }
1434 
1435  public:
1436   // initialize to garbage; clear _vdui to disable asserts
1437   DUIterator()
1438     { /*initialize to garbage*/         debug_only(_vdui = false); }
1439 
1440   DUIterator(const DUIterator& that)
1441     { _idx = that._idx;                 debug_only(_vdui = false; reset(that)); }
1442 
1443   void operator++(int dummy_to_specify_postfix_op)
1444     { _idx++;                           VDUI_ONLY(verify_increment()); }
1445 
1446   void operator--()
1447     { VDUI_ONLY(verify_resync());       --_idx; }
1448 
1449   ~DUIterator()
1450     { VDUI_ONLY(verify_finish()); }
1451 
1452   void operator=(const DUIterator& that)
1453     { _idx = that._idx;                 debug_only(reset(that)); }
1454 };
1455 
1456 DUIterator Node::outs() const
1457   { return DUIterator(this, 0); }
1458 DUIterator& Node::refresh_out_pos(DUIterator& i) const
1459   { I_VDUI_ONLY(i, i.refresh());        return i; }
1460 bool Node::has_out(DUIterator& i) const
1461   { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; }
1462 Node*    Node::out(DUIterator& i) const
1463   { I_VDUI_ONLY(i, i.verify(this));     return debug_only(i._last=) _out[i._idx]; }
1464 
1465 
1466 // Faster DU iterator.  Disallows insertions into the out array.
1467 // Allows deletion from the out array only at the current point.
1468 // Usage:
1469 //  for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) {
1470 //    Node* y = x->fast_out(i);
1471 //    ...
1472 //  }
1473 // Compiles in product mode to raw Node** pointer arithmetic, with
1474 // no reloading of pointers from the original node x.  If you delete,
1475 // you must perform "--i; --imax" just before continuing the loop.
1476 // If you delete multiple copies of the same edge, you must decrement
1477 // imax, but not i, multiple times:  "--i, imax -= num_edges".
1478 class DUIterator_Fast : public DUIterator_Common {
1479   friend class Node;
1480   friend class DUIterator_Last;
1481 
1482   // This is the pointer which provides the product-mode behavior.
1483   // Whatever the product-mode version of the system does to the
1484   // DUI pointer is done to this pointer.  All other fields in
1485   // this class are used only for assertion checking.
1486   Node**       _outp;
1487 
1488   #ifdef ASSERT
1489   void verify(const Node* node, bool at_end_ok = false);
1490   void verify_limit();
1491   void verify_resync();
1492   void verify_relimit(uint n);
1493   void reset(const DUIterator_Fast& that);
1494   #endif
1495 
1496   // Note:  offset must be signed, since -1 is sometimes passed
1497   DUIterator_Fast(const Node* node, ptrdiff_t offset)
1498     { _outp = node->_out + offset;      debug_only(sample(node)); }
1499 
1500  public:
1501   // initialize to garbage; clear _vdui to disable asserts
1502   DUIterator_Fast()
1503     { /*initialize to garbage*/         debug_only(_vdui = false); }
1504 
1505   DUIterator_Fast(const DUIterator_Fast& that)
1506     { _outp = that._outp;               debug_only(_vdui = false; reset(that)); }
1507 
1508   void operator++(int dummy_to_specify_postfix_op)
1509     { _outp++;                          VDUI_ONLY(verify(_node, true)); }
1510 
1511   void operator--()
1512     { VDUI_ONLY(verify_resync());       --_outp; }
1513 
1514   void operator-=(uint n)   // applied to the limit only
1515     { _outp -= n;           VDUI_ONLY(verify_relimit(n));  }
1516 
1517   bool operator<(DUIterator_Fast& limit) {
1518     I_VDUI_ONLY(*this, this->verify(_node, true));
1519     I_VDUI_ONLY(limit, limit.verify_limit());
1520     return _outp < limit._outp;
1521   }
1522 
1523   void operator=(const DUIterator_Fast& that)
1524     { _outp = that._outp;               debug_only(reset(that)); }
1525 };
1526 
1527 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const {
1528   // Assign a limit pointer to the reference argument:
1529   imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt);
1530   // Return the base pointer:
1531   return DUIterator_Fast(this, 0);
1532 }
1533 Node* Node::fast_out(DUIterator_Fast& i) const {
1534   I_VDUI_ONLY(i, i.verify(this));
1535   return debug_only(i._last=) *i._outp;
1536 }
1537 
1538 
1539 // Faster DU iterator.  Requires each successive edge to be removed.
1540 // Does not allow insertion of any edges.
1541 // Usage:
1542 //  for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) {
1543 //    Node* y = x->last_out(i);
1544 //    ...
1545 //  }
1546 // Compiles in product mode to raw Node** pointer arithmetic, with
1547 // no reloading of pointers from the original node x.
1548 class DUIterator_Last : private DUIterator_Fast {
1549   friend class Node;
1550 
1551   #ifdef ASSERT
1552   void verify(const Node* node, bool at_end_ok = false);
1553   void verify_limit();
1554   void verify_step(uint num_edges);
1555   #endif
1556 
1557   // Note:  offset must be signed, since -1 is sometimes passed
1558   DUIterator_Last(const Node* node, ptrdiff_t offset)
1559     : DUIterator_Fast(node, offset) { }
1560 
1561   void operator++(int dummy_to_specify_postfix_op) {} // do not use
1562   void operator<(int)                              {} // do not use
1563 
1564  public:
1565   DUIterator_Last() { }
1566   // initialize to garbage
1567 
1568   DUIterator_Last(const DUIterator_Last& that) = default;
1569 
1570   void operator--()
1571     { _outp--;              VDUI_ONLY(verify_step(1));  }
1572 
1573   void operator-=(uint n)
1574     { _outp -= n;           VDUI_ONLY(verify_step(n));  }
1575 
1576   bool operator>=(DUIterator_Last& limit) {
1577     I_VDUI_ONLY(*this, this->verify(_node, true));
1578     I_VDUI_ONLY(limit, limit.verify_limit());
1579     return _outp >= limit._outp;
1580   }
1581 
1582   DUIterator_Last& operator=(const DUIterator_Last& that) = default;
1583 };
1584 
1585 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const {
1586   // Assign a limit pointer to the reference argument:
1587   imin = DUIterator_Last(this, 0);
1588   // Return the initial pointer:
1589   return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1);
1590 }
1591 Node* Node::last_out(DUIterator_Last& i) const {
1592   I_VDUI_ONLY(i, i.verify(this));
1593   return debug_only(i._last=) *i._outp;
1594 }
1595 
1596 #endif //OPTO_DU_ITERATOR_ASSERT
1597 
1598 #undef I_VDUI_ONLY
1599 #undef VDUI_ONLY
1600 
1601 // An Iterator that truly follows the iterator pattern.  Doesn't
1602 // support deletion but could be made to.
1603 //
1604 //   for (SimpleDUIterator i(n); i.has_next(); i.next()) {
1605 //     Node* m = i.get();
1606 //
1607 class SimpleDUIterator : public StackObj {
1608  private:
1609   Node* node;
1610   DUIterator_Fast imax;
1611   DUIterator_Fast i;
1612  public:
1613   SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {}
1614   bool has_next() { return i < imax; }
1615   void next() { i++; }
1616   Node* get() { return node->fast_out(i); }
1617 };
1618 
1619 
1620 //-----------------------------------------------------------------------------
1621 // Map dense integer indices to Nodes.  Uses classic doubling-array trick.
1622 // Abstractly provides an infinite array of Node*'s, initialized to null.
1623 // Note that the constructor just zeros things, and since I use Arena
1624 // allocation I do not need a destructor to reclaim storage.
1625 class Node_Array : public AnyObj {
1626 protected:
1627   Arena* _a;                    // Arena to allocate in
1628   uint   _max;
1629   Node** _nodes;
1630   ReallocMark _nesting;         // Safety checks for arena reallocation
1631 
1632   // Grow array to required capacity
1633   void maybe_grow(uint i) {
1634     if (i >= _max) {
1635       grow(i);
1636     }
1637   }
1638   void grow(uint i);
1639 
1640 public:
1641   Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) {
1642     _nodes = NEW_ARENA_ARRAY(a, Node*, max);
1643     clear();
1644   }
1645   Node_Array() : Node_Array(Thread::current()->resource_area()) {}
1646 
1647   NONCOPYABLE(Node_Array);
1648   Node_Array& operator=(Node_Array&&) = delete;
1649   // Allow move constructor for && (eg. capture return of function)
1650   Node_Array(Node_Array&&) = default;
1651 
1652   Node *operator[] ( uint i ) const // Lookup, or null for not mapped
1653   { return (i<_max) ? _nodes[i] : (Node*)nullptr; }
1654   Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; }
1655   Node** adr() { return _nodes; }
1656   // Extend the mapping: index i maps to Node *n.
1657   void map( uint i, Node *n ) { maybe_grow(i); _nodes[i] = n; }
1658   void insert( uint i, Node *n );
1659   void remove( uint i );        // Remove, preserving order
1660   // Clear all entries in _nodes to null but keep storage
1661   void clear() {
1662     Copy::zero_to_bytes(_nodes, _max * sizeof(Node*));
1663   }
1664 
1665   uint max() const { return _max; }
1666   void dump() const;
1667 };
1668 
1669 class Node_List : public Node_Array {
1670   uint _cnt;
1671 public:
1672   Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {}
1673   Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {}
1674 
1675   NONCOPYABLE(Node_List);
1676   Node_List& operator=(Node_List&&) = delete;
1677   // Allow move constructor for && (eg. capture return of function)
1678   Node_List(Node_List&&) = default;
1679 
1680   bool contains(const Node* n) const {
1681     for (uint e = 0; e < size(); e++) {
1682       if (at(e) == n) return true;
1683     }
1684     return false;
1685   }
1686   void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; }
1687   void remove( uint i ) { Node_Array::remove(i); _cnt--; }
1688   void push( Node *b ) { map(_cnt++,b); }
1689   void yank( Node *n );         // Find and remove
1690   Node *pop() { return _nodes[--_cnt]; }
1691   void clear() { _cnt = 0; Node_Array::clear(); } // retain storage
1692   void copy(const Node_List& from) {
1693     if (from._max > _max) {
1694       grow(from._max);
1695     }
1696     _cnt = from._cnt;
1697     Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*));
1698   }
1699 
1700   uint size() const { return _cnt; }
1701   void dump() const;
1702   void dump_simple() const;
1703 };
1704 
1705 // Definition must appear after complete type definition of Node_List
1706 template <typename Callback, typename Check>
1707 void Node::visit_uses(Callback callback, Check is_boundary) const {
1708   ResourceMark rm;
1709   VectorSet visited;
1710   Node_List worklist;
1711 
1712   // The initial worklist consists of the direct uses
1713   for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) {
1714     Node* out = fast_out(k);
1715     if (!visited.test_set(out->_idx)) { worklist.push(out); }
1716   }
1717 
1718   while (worklist.size() > 0) {
1719     Node* use = worklist.pop();
1720     // Apply callback on boundary nodes
1721     if (is_boundary(use)) {
1722       callback(use);
1723     } else {
1724       // Not a boundary node, continue search
1725       for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) {
1726         Node* out = use->fast_out(k);
1727         if (!visited.test_set(out->_idx)) { worklist.push(out); }
1728       }
1729     }
1730   }
1731 }
1732 
1733 
1734 //------------------------------Unique_Node_List-------------------------------
1735 class Unique_Node_List : public Node_List {
1736   VectorSet _in_worklist;
1737   uint _clock_index;            // Index in list where to pop from next
1738 public:
1739   Unique_Node_List() : Node_List(), _clock_index(0) {}
1740   Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {}
1741 
1742   NONCOPYABLE(Unique_Node_List);
1743   Unique_Node_List& operator=(Unique_Node_List&&) = delete;
1744   // Allow move constructor for && (eg. capture return of function)
1745   Unique_Node_List(Unique_Node_List&&) = default;
1746 
1747   void remove( Node *n );
1748   bool member(const Node* n) const { return _in_worklist.test(n->_idx) != 0; }
1749   VectorSet& member_set(){ return _in_worklist; }
1750 
1751   void push(Node* b) {
1752     if( !_in_worklist.test_set(b->_idx) )
1753       Node_List::push(b);
1754   }
1755   void push_non_cfg_inputs_of(const Node* node) {
1756     for (uint i = 1; i < node->req(); i++) {
1757       Node* input = node->in(i);
1758       if (input != nullptr && !input->is_CFG()) {
1759         push(input);
1760       }
1761     }
1762   }
1763 
1764   void push_outputs_of(const Node* node) {
1765     for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) {
1766       Node* output = node->fast_out(i);
1767       push(output);
1768     }
1769   }
1770 
1771   Node *pop() {
1772     if( _clock_index >= size() ) _clock_index = 0;
1773     Node *b = at(_clock_index);
1774     map( _clock_index, Node_List::pop());
1775     if (size() != 0) _clock_index++; // Always start from 0
1776     _in_worklist.remove(b->_idx);
1777     return b;
1778   }
1779   Node *remove(uint i) {
1780     Node *b = Node_List::at(i);
1781     _in_worklist.remove(b->_idx);
1782     map(i,Node_List::pop());
1783     return b;
1784   }
1785   void yank(Node *n) {
1786     _in_worklist.remove(n->_idx);
1787     Node_List::yank(n);
1788   }
1789   void  clear() {
1790     _in_worklist.clear();        // Discards storage but grows automatically
1791     Node_List::clear();
1792     _clock_index = 0;
1793   }
1794   void ensure_empty() {
1795     assert(size() == 0, "must be empty");
1796     clear(); // just in case
1797   }
1798 
1799   // Used after parsing to remove useless nodes before Iterative GVN
1800   void remove_useless_nodes(VectorSet& useful);
1801 
1802   // If the idx of the Nodes change, we must recompute the VectorSet
1803   void recompute_idx_set() {
1804     _in_worklist.clear();
1805     for (uint i = 0; i < size(); i++) {
1806       Node* n = at(i);
1807       _in_worklist.set(n->_idx);
1808     }
1809   }
1810 
1811 #ifdef ASSERT
1812   bool is_subset_of(Unique_Node_List& other) {
1813     for (uint i = 0; i < size(); i++) {
1814       Node* n = at(i);
1815       if (!other.member(n)) {
1816         return false;
1817       }
1818     }
1819     return true;
1820   }
1821 #endif
1822 
1823   bool contains(const Node* n) const {
1824     fatal("use faster member() instead");
1825     return false;
1826   }
1827 
1828 #ifndef PRODUCT
1829   void print_set() const { _in_worklist.print(); }
1830 #endif
1831 };
1832 
1833 // Unique_Mixed_Node_List
1834 // unique: nodes are added only once
1835 // mixed: allow new and old nodes
1836 class Unique_Mixed_Node_List : public ResourceObj {
1837 public:
1838   Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {}
1839 
1840   void add(Node* node) {
1841     if (not_a_node(node)) {
1842       return; // Gracefully handle null, -1, 0xabababab, etc.
1843     }
1844     if (_visited_set[node] == nullptr) {
1845       _visited_set.Insert(node, node);
1846       _worklist.push(node);
1847     }
1848   }
1849 
1850   Node* operator[] (uint i) const {
1851     return _worklist[i];
1852   }
1853 
1854   size_t size() {
1855     return _worklist.size();
1856   }
1857 
1858 private:
1859   Dict _visited_set;
1860   Node_List _worklist;
1861 };
1862 
1863 // Inline definition of Compile::record_for_igvn must be deferred to this point.
1864 inline void Compile::record_for_igvn(Node* n) {
1865   _igvn_worklist->push(n);
1866 }
1867 
1868 // Inline definition of Compile::remove_for_igvn must be deferred to this point.
1869 inline void Compile::remove_for_igvn(Node* n) {
1870   _igvn_worklist->remove(n);
1871 }
1872 
1873 //------------------------------Node_Stack-------------------------------------
1874 class Node_Stack {
1875 protected:
1876   struct INode {
1877     Node *node; // Processed node
1878     uint  indx; // Index of next node's child
1879   };
1880   INode *_inode_top; // tos, stack grows up
1881   INode *_inode_max; // End of _inodes == _inodes + _max
1882   INode *_inodes;    // Array storage for the stack
1883   Arena *_a;         // Arena to allocate in
1884   ReallocMark _nesting; // Safety checks for arena reallocation
1885   void grow();
1886 public:
1887   Node_Stack(int size) {
1888     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1889     _a = Thread::current()->resource_area();
1890     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1891     _inode_max = _inodes + max;
1892     _inode_top = _inodes - 1; // stack is empty
1893   }
1894 
1895   Node_Stack(Arena *a, int size) : _a(a) {
1896     size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize;
1897     _inodes = NEW_ARENA_ARRAY( _a, INode, max );
1898     _inode_max = _inodes + max;
1899     _inode_top = _inodes - 1; // stack is empty
1900   }
1901 
1902   void pop() {
1903     assert(_inode_top >= _inodes, "node stack underflow");
1904     --_inode_top;
1905   }
1906   void push(Node *n, uint i) {
1907     ++_inode_top;
1908     grow();
1909     INode *top = _inode_top; // optimization
1910     top->node = n;
1911     top->indx = i;
1912   }
1913   Node *node() const {
1914     return _inode_top->node;
1915   }
1916   Node* node_at(uint i) const {
1917     assert(_inodes + i <= _inode_top, "in range");
1918     return _inodes[i].node;
1919   }
1920   uint index() const {
1921     return _inode_top->indx;
1922   }
1923   uint index_at(uint i) const {
1924     assert(_inodes + i <= _inode_top, "in range");
1925     return _inodes[i].indx;
1926   }
1927   void set_node(Node *n) {
1928     _inode_top->node = n;
1929   }
1930   void set_index(uint i) {
1931     _inode_top->indx = i;
1932   }
1933   uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes,  sizeof(INode)); } // Max size
1934   uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes,  sizeof(INode)); } // Current size
1935   bool is_nonempty() const { return (_inode_top >= _inodes); }
1936   bool is_empty() const { return (_inode_top < _inodes); }
1937   void clear() { _inode_top = _inodes - 1; } // retain storage
1938 
1939   // Node_Stack is used to map nodes.
1940   Node* find(uint idx) const;
1941 
1942   NONCOPYABLE(Node_Stack);
1943 };
1944 
1945 
1946 //-----------------------------Node_Notes--------------------------------------
1947 // Debugging or profiling annotations loosely and sparsely associated
1948 // with some nodes.  See Compile::node_notes_at for the accessor.
1949 class Node_Notes {
1950   JVMState* _jvms;
1951 
1952 public:
1953   Node_Notes(JVMState* jvms = nullptr) {
1954     _jvms = jvms;
1955   }
1956 
1957   JVMState* jvms()            { return _jvms; }
1958   void  set_jvms(JVMState* x) {        _jvms = x; }
1959 
1960   // True if there is nothing here.
1961   bool is_clear() {
1962     return (_jvms == nullptr);
1963   }
1964 
1965   // Make there be nothing here.
1966   void clear() {
1967     _jvms = nullptr;
1968   }
1969 
1970   // Make a new, clean node notes.
1971   static Node_Notes* make(Compile* C) {
1972     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1973     nn->clear();
1974     return nn;
1975   }
1976 
1977   Node_Notes* clone(Compile* C) {
1978     Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1);
1979     (*nn) = (*this);
1980     return nn;
1981   }
1982 
1983   // Absorb any information from source.
1984   bool update_from(Node_Notes* source) {
1985     bool changed = false;
1986     if (source != nullptr) {
1987       if (source->jvms() != nullptr) {
1988         set_jvms(source->jvms());
1989         changed = true;
1990       }
1991     }
1992     return changed;
1993   }
1994 };
1995 
1996 // Inlined accessors for Compile::node_nodes that require the preceding class:
1997 inline Node_Notes*
1998 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr,
1999                            int idx, bool can_grow) {
2000   assert(idx >= 0, "oob");
2001   int block_idx = (idx >> _log2_node_notes_block_size);
2002   int grow_by = (block_idx - (arr == nullptr? 0: arr->length()));
2003   if (grow_by >= 0) {
2004     if (!can_grow) return nullptr;
2005     grow_node_notes(arr, grow_by + 1);
2006   }
2007   if (arr == nullptr) return nullptr;
2008   // (Every element of arr is a sub-array of length _node_notes_block_size.)
2009   return arr->at(block_idx) + (idx & (_node_notes_block_size-1));
2010 }
2011 
2012 inline Node_Notes* Compile::node_notes_at(int idx) {
2013   return locate_node_notes(_node_note_array, idx, false);
2014 }
2015 
2016 inline bool
2017 Compile::set_node_notes_at(int idx, Node_Notes* value) {
2018   if (value == nullptr || value->is_clear())
2019     return false;  // nothing to write => write nothing
2020   Node_Notes* loc = locate_node_notes(_node_note_array, idx, true);
2021   assert(loc != nullptr, "");
2022   return loc->update_from(value);
2023 }
2024 
2025 
2026 //------------------------------TypeNode---------------------------------------
2027 // Node with a Type constant.
2028 class TypeNode : public Node {
2029 protected:
2030   virtual uint hash() const;    // Check the type
2031   virtual bool cmp( const Node &n ) const;
2032   virtual uint size_of() const; // Size is bigger
2033   const Type* const _type;
2034 public:
2035   void set_type(const Type* t) {
2036     assert(t != nullptr, "sanity");
2037     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
2038     *(const Type**)&_type = t;   // cast away const-ness
2039     // If this node is in the hash table, make sure it doesn't need a rehash.
2040     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
2041   }
2042   const Type* type() const { assert(_type != nullptr, "sanity"); return _type; };
2043   TypeNode( const Type *t, uint required ) : Node(required), _type(t) {
2044     init_class_id(Class_Type);
2045   }
2046   virtual const Type* Value(PhaseGVN* phase) const;
2047   virtual const Type *bottom_type() const;
2048   virtual       uint  ideal_reg() const;
2049 #ifndef PRODUCT
2050   virtual void dump_spec(outputStream *st) const;
2051   virtual void dump_compact_spec(outputStream *st) const;
2052 #endif
2053 };
2054 
2055 #include "opto/opcodes.hpp"
2056 
2057 #define Op_IL(op) \
2058   inline int Op_ ## op(BasicType bt) { \
2059   assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \
2060   if (bt == T_INT) { \
2061     return Op_## op ## I; \
2062   } \
2063   return Op_## op ## L; \
2064 }
2065 
2066 Op_IL(Add)
2067 Op_IL(And)
2068 Op_IL(Sub)
2069 Op_IL(Mul)
2070 Op_IL(URShift)
2071 Op_IL(LShift)
2072 Op_IL(Xor)
2073 Op_IL(Cmp)
2074 Op_IL(Div)
2075 Op_IL(Mod)
2076 Op_IL(UDiv)
2077 Op_IL(UMod)
2078 
2079 inline int Op_ConIL(BasicType bt) {
2080   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2081   if (bt == T_INT) {
2082     return Op_ConI;
2083   }
2084   return Op_ConL;
2085 }
2086 
2087 inline int Op_Cmp_unsigned(BasicType bt) {
2088   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2089   if (bt == T_INT) {
2090     return Op_CmpU;
2091   }
2092   return Op_CmpUL;
2093 }
2094 
2095 inline int Op_Cast(BasicType bt) {
2096   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2097   if (bt == T_INT) {
2098     return Op_CastII;
2099   }
2100   return Op_CastLL;
2101 }
2102 
2103 inline int Op_DivIL(BasicType bt, bool is_unsigned) {
2104   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2105   if (bt == T_INT) {
2106     if (is_unsigned) {
2107       return Op_UDivI;
2108     } else {
2109       return Op_DivI;
2110     }
2111   }
2112   if (is_unsigned) {
2113     return Op_UDivL;
2114   } else {
2115     return Op_DivL;
2116   }
2117 }
2118 
2119 inline int Op_DivModIL(BasicType bt, bool is_unsigned) {
2120   assert(bt == T_INT || bt == T_LONG, "only for int or longs");
2121   if (bt == T_INT) {
2122     if (is_unsigned) {
2123       return Op_UDivModI;
2124     } else {
2125       return Op_DivModI;
2126     }
2127   }
2128   if (is_unsigned) {
2129     return Op_UDivModL;
2130   } else {
2131     return Op_DivModL;
2132   }
2133 }
2134 
2135 // Interface to define actions that should be taken when running DataNodeBFS. Each use can extend this class to specify
2136 // a customized BFS.
2137 class BFSActions : public StackObj {
2138  public:
2139   // Should a node's inputs further be visited in the BFS traversal? By default, we visit all data inputs. Override this
2140   // method to provide a custom filter.
2141   virtual bool should_visit(Node* node) const {
2142     // By default, visit all inputs.
2143     return true;
2144   };
2145 
2146   // Is the visited node a target node that we are looking for in the BFS traversal? We do not visit its inputs further
2147   // but the BFS will continue to visit all unvisited nodes in the queue.
2148   virtual bool is_target_node(Node* node) const = 0;
2149 
2150   // Defines an action that should be taken when we visit a target node in the BFS traversal.
2151   virtual void target_node_action(Node* target_node) = 0;
2152 };
2153 
2154 // Class to perform a BFS traversal on the data nodes from a given start node. The provided BFSActions guide which
2155 // data node's inputs should be further visited, which data nodes are target nodes and what to do with the target nodes.
2156 class DataNodeBFS : public StackObj {
2157   BFSActions& _bfs_actions;
2158 
2159  public:
2160   explicit DataNodeBFS(BFSActions& bfs_action) : _bfs_actions(bfs_action) {}
2161 
2162   // Run the BFS starting from 'start_node' and apply the actions provided to this class.
2163   void run(Node* start_node) {
2164     ResourceMark rm;
2165     Unique_Node_List _nodes_to_visit;
2166     _nodes_to_visit.push(start_node);
2167     for (uint i = 0; i < _nodes_to_visit.size(); i++) {
2168       Node* next = _nodes_to_visit[i];
2169       for (uint j = 1; j < next->req(); j++) {
2170         Node* input = next->in(j);
2171         if (_bfs_actions.is_target_node(input)) {
2172           assert(_bfs_actions.should_visit(input), "must also pass node filter");
2173           _bfs_actions.target_node_action(input);
2174         } else if (_bfs_actions.should_visit(input)) {
2175           _nodes_to_visit.push(input);
2176         }
2177       }
2178     }
2179   }
2180 };
2181 
2182 #endif // SHARE_OPTO_NODE_HPP