1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, 2025, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef SHARE_OPTO_NODE_HPP 27 #define SHARE_OPTO_NODE_HPP 28 29 #include "libadt/vectset.hpp" 30 #include "opto/compile.hpp" 31 #include "opto/type.hpp" 32 #include "utilities/copy.hpp" 33 34 // Portions of code courtesy of Clifford Click 35 36 // Optimization - Graph Style 37 38 39 class AbstractLockNode; 40 class AddNode; 41 class AddPNode; 42 class AliasInfo; 43 class AllocateArrayNode; 44 class AllocateNode; 45 class ArrayCopyNode; 46 class BaseCountedLoopNode; 47 class BaseCountedLoopEndNode; 48 class BlackholeNode; 49 class Block; 50 class BoolNode; 51 class BoxLockNode; 52 class CMoveNode; 53 class CallDynamicJavaNode; 54 class CallJavaNode; 55 class CallLeafNode; 56 class CallLeafNoFPNode; 57 class CallNode; 58 class CallRuntimeNode; 59 class CallStaticJavaNode; 60 class CastFFNode; 61 class CastHHNode; 62 class CastDDNode; 63 class CastVVNode; 64 class CastIINode; 65 class CastLLNode; 66 class CastPPNode; 67 class CatchNode; 68 class CatchProjNode; 69 class CheckCastPPNode; 70 class ClearArrayNode; 71 class CmpNode; 72 class CodeBuffer; 73 class ConstraintCastNode; 74 class ConNode; 75 class ConINode; 76 class ConvertNode; 77 class CompareAndSwapNode; 78 class CompareAndExchangeNode; 79 class CountedLoopNode; 80 class CountedLoopEndNode; 81 class DecodeNarrowPtrNode; 82 class DecodeNNode; 83 class DecodeNKlassNode; 84 class EncodeNarrowPtrNode; 85 class EncodePNode; 86 class EncodePKlassNode; 87 class FastLockNode; 88 class FastUnlockNode; 89 class FlatArrayCheckNode; 90 class HaltNode; 91 class IfNode; 92 class IfProjNode; 93 class IfFalseNode; 94 class IfTrueNode; 95 class InitializeNode; 96 class JVMState; 97 class JumpNode; 98 class JumpProjNode; 99 class LoadNode; 100 class LoadStoreNode; 101 class LoadStoreConditionalNode; 102 class LockNode; 103 class LongCountedLoopNode; 104 class LongCountedLoopEndNode; 105 class LoopNode; 106 class LShiftNode; 107 class MachBranchNode; 108 class MachCallDynamicJavaNode; 109 class MachCallJavaNode; 110 class MachCallLeafNode; 111 class MachCallNode; 112 class MachCallRuntimeNode; 113 class MachCallStaticJavaNode; 114 class MachConstantBaseNode; 115 class MachConstantNode; 116 class MachGotoNode; 117 class MachIfNode; 118 class MachJumpNode; 119 class MachNode; 120 class MachNullCheckNode; 121 class MachProjNode; 122 class MachPrologNode; 123 class MachReturnNode; 124 class MachSafePointNode; 125 class MachSpillCopyNode; 126 class MachTempNode; 127 class MachMergeNode; 128 class MachMemBarNode; 129 class MachVEPNode; 130 class Matcher; 131 class MemBarNode; 132 class MemBarStoreStoreNode; 133 class MemNode; 134 class MergeMemNode; 135 class MoveNode; 136 class MulNode; 137 class MultiNode; 138 class MultiBranchNode; 139 class NegNode; 140 class NegVNode; 141 class NeverBranchNode; 142 class Opaque1Node; 143 class OpaqueLoopInitNode; 144 class OpaqueLoopStrideNode; 145 class OpaqueMultiversioningNode; 146 class OpaqueNotNullNode; 147 class OpaqueInitializedAssertionPredicateNode; 148 class OpaqueTemplateAssertionPredicateNode; 149 class OuterStripMinedLoopNode; 150 class OuterStripMinedLoopEndNode; 151 class Node; 152 class Node_Array; 153 class Node_List; 154 class Node_Stack; 155 class OopMap; 156 class ParmNode; 157 class ParsePredicateNode; 158 class PCTableNode; 159 class PhaseCCP; 160 class PhaseGVN; 161 class PhaseIterGVN; 162 class PhaseRegAlloc; 163 class PhaseTransform; 164 class PhaseValues; 165 class PhiNode; 166 class Pipeline; 167 class PopulateIndexNode; 168 class ProjNode; 169 class RangeCheckNode; 170 class ReductionNode; 171 class RegMask; 172 class RegionNode; 173 class RootNode; 174 class SafePointNode; 175 class SafePointScalarObjectNode; 176 class SafePointScalarMergeNode; 177 class SaturatingVectorNode; 178 class StartNode; 179 class State; 180 class StoreNode; 181 class SubNode; 182 class SubTypeCheckNode; 183 class Type; 184 class TypeNode; 185 class UnlockNode; 186 class InlineTypeNode; 187 class VectorNode; 188 class LoadVectorNode; 189 class LoadVectorMaskedNode; 190 class StoreVectorMaskedNode; 191 class LoadVectorGatherNode; 192 class LoadVectorGatherMaskedNode; 193 class StoreVectorNode; 194 class StoreVectorScatterNode; 195 class StoreVectorScatterMaskedNode; 196 class VerifyVectorAlignmentNode; 197 class VectorMaskCmpNode; 198 class VectorUnboxNode; 199 class VectorSet; 200 class VectorReinterpretNode; 201 class ShiftVNode; 202 class MulVLNode; 203 class ExpandVNode; 204 class CompressVNode; 205 class CompressMNode; 206 class C2_MacroAssembler; 207 208 209 #ifndef OPTO_DU_ITERATOR_ASSERT 210 #ifdef ASSERT 211 #define OPTO_DU_ITERATOR_ASSERT 1 212 #else 213 #define OPTO_DU_ITERATOR_ASSERT 0 214 #endif 215 #endif //OPTO_DU_ITERATOR_ASSERT 216 217 #if OPTO_DU_ITERATOR_ASSERT 218 class DUIterator; 219 class DUIterator_Fast; 220 class DUIterator_Last; 221 #else 222 typedef uint DUIterator; 223 typedef Node** DUIterator_Fast; 224 typedef Node** DUIterator_Last; 225 #endif 226 227 typedef ResizeableResourceHashtable<Node*, Node*, AnyObj::RESOURCE_AREA, mtCompiler> OrigToNewHashtable; 228 229 // Node Sentinel 230 #define NodeSentinel (Node*)-1 231 232 // Unknown count frequency 233 #define COUNT_UNKNOWN (-1.0f) 234 235 //------------------------------Node------------------------------------------- 236 // Nodes define actions in the program. They create values, which have types. 237 // They are both vertices in a directed graph and program primitives. Nodes 238 // are labeled; the label is the "opcode", the primitive function in the lambda 239 // calculus sense that gives meaning to the Node. Node inputs are ordered (so 240 // that "a-b" is different from "b-a"). The inputs to a Node are the inputs to 241 // the Node's function. These inputs also define a Type equation for the Node. 242 // Solving these Type equations amounts to doing dataflow analysis. 243 // Control and data are uniformly represented in the graph. Finally, Nodes 244 // have a unique dense integer index which is used to index into side arrays 245 // whenever I have phase-specific information. 246 247 class Node { 248 249 // Lots of restrictions on cloning Nodes 250 NONCOPYABLE(Node); 251 252 public: 253 friend class Compile; 254 #if OPTO_DU_ITERATOR_ASSERT 255 friend class DUIterator_Common; 256 friend class DUIterator; 257 friend class DUIterator_Fast; 258 friend class DUIterator_Last; 259 #endif 260 261 // Because Nodes come and go, I define an Arena of Node structures to pull 262 // from. This should allow fast access to node creation & deletion. This 263 // field is a local cache of a value defined in some "program fragment" for 264 // which these Nodes are just a part of. 265 266 inline void* operator new(size_t x) throw() { 267 Compile* C = Compile::current(); 268 Node* n = (Node*)C->node_arena()->AmallocWords(x); 269 return (void*)n; 270 } 271 272 // Delete is a NOP 273 void operator delete( void *ptr ) {} 274 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage 275 void destruct(PhaseValues* phase); 276 277 // Create a new Node. Required is the number is of inputs required for 278 // semantic correctness. 279 Node( uint required ); 280 281 // Create a new Node with given input edges. 282 // This version requires use of the "edge-count" new. 283 // E.g. new (C,3) FooNode( C, nullptr, left, right ); 284 Node( Node *n0 ); 285 Node( Node *n0, Node *n1 ); 286 Node( Node *n0, Node *n1, Node *n2 ); 287 Node( Node *n0, Node *n1, Node *n2, Node *n3 ); 288 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4 ); 289 Node( Node *n0, Node *n1, Node *n2, Node *n3, Node *n4, Node *n5 ); 290 Node( Node *n0, Node *n1, Node *n2, Node *n3, 291 Node *n4, Node *n5, Node *n6 ); 292 293 // Clone an inherited Node given only the base Node type. 294 Node* clone() const; 295 296 // Clone a Node, immediately supplying one or two new edges. 297 // The first and second arguments, if non-null, replace in(1) and in(2), 298 // respectively. 299 Node* clone_with_data_edge(Node* in1, Node* in2 = nullptr) const { 300 Node* nn = clone(); 301 if (in1 != nullptr) nn->set_req(1, in1); 302 if (in2 != nullptr) nn->set_req(2, in2); 303 return nn; 304 } 305 306 private: 307 // Shared setup for the above constructors. 308 // Handles all interactions with Compile::current. 309 // Puts initial values in all Node fields except _idx. 310 // Returns the initial value for _idx, which cannot 311 // be initialized by assignment. 312 inline int Init(int req); 313 314 //----------------- input edge handling 315 protected: 316 friend class PhaseCFG; // Access to address of _in array elements 317 Node **_in; // Array of use-def references to Nodes 318 Node **_out; // Array of def-use references to Nodes 319 320 // Input edges are split into two categories. Required edges are required 321 // for semantic correctness; order is important and nulls are allowed. 322 // Precedence edges are used to help determine execution order and are 323 // added, e.g., for scheduling purposes. They are unordered and not 324 // duplicated; they have no embedded nulls. Edges from 0 to _cnt-1 325 // are required, from _cnt to _max-1 are precedence edges. 326 node_idx_t _cnt; // Total number of required Node inputs. 327 328 node_idx_t _max; // Actual length of input array. 329 330 // Output edges are an unordered list of def-use edges which exactly 331 // correspond to required input edges which point from other nodes 332 // to this one. Thus the count of the output edges is the number of 333 // users of this node. 334 node_idx_t _outcnt; // Total number of Node outputs. 335 336 node_idx_t _outmax; // Actual length of output array. 337 338 // Grow the actual input array to the next larger power-of-2 bigger than len. 339 void grow( uint len ); 340 // Grow the output array to the next larger power-of-2 bigger than len. 341 void out_grow( uint len ); 342 // Resize input or output array to grow it to the next larger power-of-2 343 // bigger than len. 344 void resize_array(Node**& array, node_idx_t& max_size, uint len, bool needs_clearing); 345 346 public: 347 // Each Node is assigned a unique small/dense number. This number is used 348 // to index into auxiliary arrays of data and bit vectors. 349 // The value of _idx can be changed using the set_idx() method. 350 // 351 // The PhaseRenumberLive phase renumbers nodes based on liveness information. 352 // Therefore, it updates the value of the _idx field. The parse-time _idx is 353 // preserved in _parse_idx. 354 node_idx_t _idx; 355 DEBUG_ONLY(const node_idx_t _parse_idx;) 356 // IGV node identifier. Two nodes, possibly in different compilation phases, 357 // have the same IGV identifier if (and only if) they are the very same node 358 // (same memory address) or one is "derived" from the other (by e.g. 359 // renumbering or matching). This identifier makes it possible to follow the 360 // entire lifetime of a node in IGV even if its C2 identifier (_idx) changes. 361 NOT_PRODUCT(node_idx_t _igv_idx;) 362 363 // Get the (read-only) number of input edges 364 uint req() const { return _cnt; } 365 uint len() const { return _max; } 366 // Get the (read-only) number of output edges 367 uint outcnt() const { return _outcnt; } 368 369 #if OPTO_DU_ITERATOR_ASSERT 370 // Iterate over the out-edges of this node. Deletions are illegal. 371 inline DUIterator outs() const; 372 // Use this when the out array might have changed to suppress asserts. 373 inline DUIterator& refresh_out_pos(DUIterator& i) const; 374 // Does the node have an out at this position? (Used for iteration.) 375 inline bool has_out(DUIterator& i) const; 376 inline Node* out(DUIterator& i) const; 377 // Iterate over the out-edges of this node. All changes are illegal. 378 inline DUIterator_Fast fast_outs(DUIterator_Fast& max) const; 379 inline Node* fast_out(DUIterator_Fast& i) const; 380 // Iterate over the out-edges of this node, deleting one at a time. 381 inline DUIterator_Last last_outs(DUIterator_Last& min) const; 382 inline Node* last_out(DUIterator_Last& i) const; 383 // The inline bodies of all these methods are after the iterator definitions. 384 #else 385 // Iterate over the out-edges of this node. Deletions are illegal. 386 // This iteration uses integral indexes, to decouple from array reallocations. 387 DUIterator outs() const { return 0; } 388 // Use this when the out array might have changed to suppress asserts. 389 DUIterator refresh_out_pos(DUIterator i) const { return i; } 390 391 // Reference to the i'th output Node. Error if out of bounds. 392 Node* out(DUIterator i) const { assert(i < _outcnt, "oob"); return _out[i]; } 393 // Does the node have an out at this position? (Used for iteration.) 394 bool has_out(DUIterator i) const { return i < _outcnt; } 395 396 // Iterate over the out-edges of this node. All changes are illegal. 397 // This iteration uses a pointer internal to the out array. 398 DUIterator_Fast fast_outs(DUIterator_Fast& max) const { 399 Node** out = _out; 400 // Assign a limit pointer to the reference argument: 401 max = out + (ptrdiff_t)_outcnt; 402 // Return the base pointer: 403 return out; 404 } 405 Node* fast_out(DUIterator_Fast i) const { return *i; } 406 // Iterate over the out-edges of this node, deleting one at a time. 407 // This iteration uses a pointer internal to the out array. 408 DUIterator_Last last_outs(DUIterator_Last& min) const { 409 Node** out = _out; 410 // Assign a limit pointer to the reference argument: 411 min = out; 412 // Return the pointer to the start of the iteration: 413 return out + (ptrdiff_t)_outcnt - 1; 414 } 415 Node* last_out(DUIterator_Last i) const { return *i; } 416 #endif 417 418 // Reference to the i'th input Node. Error if out of bounds. 419 Node* in(uint i) const { assert(i < _max, "oob: i=%d, _max=%d", i, _max); return _in[i]; } 420 // Reference to the i'th input Node. null if out of bounds. 421 Node* lookup(uint i) const { return ((i < _max) ? _in[i] : nullptr); } 422 // Reference to the i'th output Node. Error if out of bounds. 423 // Use this accessor sparingly. We are going trying to use iterators instead. 424 Node* raw_out(uint i) const { assert(i < _outcnt,"oob"); return _out[i]; } 425 // Return the unique out edge. 426 Node* unique_out() const { assert(_outcnt==1,"not unique"); return _out[0]; } 427 // Delete out edge at position 'i' by moving last out edge to position 'i' 428 void raw_del_out(uint i) { 429 assert(i < _outcnt,"oob"); 430 assert(_outcnt > 0,"oob"); 431 #if OPTO_DU_ITERATOR_ASSERT 432 // Record that a change happened here. 433 debug_only(_last_del = _out[i]; ++_del_tick); 434 #endif 435 _out[i] = _out[--_outcnt]; 436 // Smash the old edge so it can't be used accidentally. 437 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 438 } 439 440 #ifdef ASSERT 441 bool is_dead() const; 442 static bool is_not_dead(const Node* n); 443 bool is_reachable_from_root() const; 444 #endif 445 // Check whether node has become unreachable 446 bool is_unreachable(PhaseIterGVN &igvn) const; 447 448 // Set a required input edge, also updates corresponding output edge 449 void add_req( Node *n ); // Append a NEW required input 450 void add_req( Node *n0, Node *n1 ) { 451 add_req(n0); add_req(n1); } 452 void add_req( Node *n0, Node *n1, Node *n2 ) { 453 add_req(n0); add_req(n1); add_req(n2); } 454 void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n). 455 void del_req( uint idx ); // Delete required edge & compact 456 void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order 457 void ins_req( uint i, Node *n ); // Insert a NEW required input 458 void set_req( uint i, Node *n ) { 459 assert( is_not_dead(n), "can not use dead node"); 460 assert( i < _cnt, "oob: i=%d, _cnt=%d", i, _cnt); 461 assert( !VerifyHashTableKeys || _hash_lock == 0, 462 "remove node from hash table before modifying it"); 463 Node** p = &_in[i]; // cache this._in, across the del_out call 464 if (*p != nullptr) (*p)->del_out((Node *)this); 465 (*p) = n; 466 if (n != nullptr) n->add_out((Node *)this); 467 Compile::current()->record_modified_node(this); 468 } 469 // Light version of set_req() to init inputs after node creation. 470 void init_req( uint i, Node *n ) { 471 assert( (i == 0 && this == n) || 472 is_not_dead(n), "can not use dead node"); 473 assert( i < _cnt, "oob"); 474 assert( !VerifyHashTableKeys || _hash_lock == 0, 475 "remove node from hash table before modifying it"); 476 assert( _in[i] == nullptr, "sanity"); 477 _in[i] = n; 478 if (n != nullptr) n->add_out((Node *)this); 479 Compile::current()->record_modified_node(this); 480 } 481 // Find first occurrence of n among my edges: 482 int find_edge(Node* n); 483 int find_prec_edge(Node* n) { 484 for (uint i = req(); i < len(); i++) { 485 if (_in[i] == n) return i; 486 if (_in[i] == nullptr) { 487 DEBUG_ONLY( while ((++i) < len()) assert(_in[i] == nullptr, "Gap in prec edges!"); ) 488 break; 489 } 490 } 491 return -1; 492 } 493 int replace_edge(Node* old, Node* neww, PhaseGVN* gvn = nullptr); 494 int replace_edges_in_range(Node* old, Node* neww, int start, int end, PhaseGVN* gvn); 495 // null out all inputs to eliminate incoming Def-Use edges. 496 void disconnect_inputs(Compile* C); 497 498 // Quickly, return true if and only if I am Compile::current()->top(). 499 bool is_top() const { 500 assert((this == (Node*) Compile::current()->top()) == (_out == nullptr), ""); 501 return (_out == nullptr); 502 } 503 // Reaffirm invariants for is_top. (Only from Compile::set_cached_top_node.) 504 void setup_is_top(); 505 506 // Strip away casting. (It is depth-limited.) 507 Node* uncast(bool keep_deps = false) const; 508 // Return whether two Nodes are equivalent, after stripping casting. 509 bool eqv_uncast(const Node* n, bool keep_deps = false) const { 510 return (this->uncast(keep_deps) == n->uncast(keep_deps)); 511 } 512 513 // Find out of current node that matches opcode. 514 Node* find_out_with(int opcode); 515 // Return true if the current node has an out that matches opcode. 516 bool has_out_with(int opcode); 517 // Return true if the current node has an out that matches any of the opcodes. 518 bool has_out_with(int opcode1, int opcode2, int opcode3, int opcode4); 519 520 private: 521 static Node* uncast_helper(const Node* n, bool keep_deps); 522 523 // Add an output edge to the end of the list 524 void add_out( Node *n ) { 525 if (is_top()) return; 526 if( _outcnt == _outmax ) out_grow(_outcnt); 527 _out[_outcnt++] = n; 528 } 529 // Delete an output edge 530 void del_out( Node *n ) { 531 if (is_top()) return; 532 Node** outp = &_out[_outcnt]; 533 // Find and remove n 534 do { 535 assert(outp > _out, "Missing Def-Use edge"); 536 } while (*--outp != n); 537 *outp = _out[--_outcnt]; 538 // Smash the old edge so it can't be used accidentally. 539 debug_only(_out[_outcnt] = (Node *)(uintptr_t)0xdeadbeef); 540 // Record that a change happened here. 541 #if OPTO_DU_ITERATOR_ASSERT 542 debug_only(_last_del = n; ++_del_tick); 543 #endif 544 } 545 // Close gap after removing edge. 546 void close_prec_gap_at(uint gap) { 547 assert(_cnt <= gap && gap < _max, "no valid prec edge"); 548 uint i = gap; 549 Node *last = nullptr; 550 for (; i < _max-1; ++i) { 551 Node *next = _in[i+1]; 552 if (next == nullptr) break; 553 last = next; 554 } 555 _in[gap] = last; // Move last slot to empty one. 556 _in[i] = nullptr; // null out last slot. 557 } 558 559 public: 560 // Globally replace this node by a given new node, updating all uses. 561 void replace_by(Node* new_node); 562 // Globally replace this node by a given new node, updating all uses 563 // and cutting input edges of old node. 564 void subsume_by(Node* new_node, Compile* c) { 565 replace_by(new_node); 566 disconnect_inputs(c); 567 } 568 void set_req_X(uint i, Node *n, PhaseIterGVN *igvn); 569 void set_req_X(uint i, Node *n, PhaseGVN *gvn); 570 // Find the one non-null required input. RegionNode only 571 Node *nonnull_req() const; 572 // Add or remove precedence edges 573 void add_prec( Node *n ); 574 void rm_prec( uint i ); 575 576 // Note: prec(i) will not necessarily point to n if edge already exists. 577 void set_prec( uint i, Node *n ) { 578 assert(i < _max, "oob: i=%d, _max=%d", i, _max); 579 assert(is_not_dead(n), "can not use dead node"); 580 assert(i >= _cnt, "not a precedence edge"); 581 // Avoid spec violation: duplicated prec edge. 582 if (_in[i] == n) return; 583 if (n == nullptr || find_prec_edge(n) != -1) { 584 rm_prec(i); 585 return; 586 } 587 if (_in[i] != nullptr) _in[i]->del_out((Node *)this); 588 _in[i] = n; 589 n->add_out((Node *)this); 590 Compile::current()->record_modified_node(this); 591 } 592 593 // Set this node's index, used by cisc_version to replace current node 594 void set_idx(uint new_idx) { 595 _idx = new_idx; 596 } 597 // Swap input edge order. (Edge indexes i1 and i2 are usually 1 and 2.) 598 void swap_edges(uint i1, uint i2) { 599 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 600 // Def-Use info is unchanged 601 Node* n1 = in(i1); 602 Node* n2 = in(i2); 603 _in[i1] = n2; 604 _in[i2] = n1; 605 // If this node is in the hash table, make sure it doesn't need a rehash. 606 assert(check_hash == NO_HASH || check_hash == hash(), "edge swap must preserve hash code"); 607 // Flip swapped edges flag. 608 if (has_swapped_edges()) { 609 remove_flag(Node::Flag_has_swapped_edges); 610 } else { 611 add_flag(Node::Flag_has_swapped_edges); 612 } 613 } 614 615 // Iterators over input Nodes for a Node X are written as: 616 // for( i = 0; i < X.req(); i++ ) ... X[i] ... 617 // NOTE: Required edges can contain embedded null pointers. 618 619 //----------------- Other Node Properties 620 621 // Generate class IDs for (some) ideal nodes so that it is possible to determine 622 // the type of a node using a non-virtual method call (the method is_<Node>() below). 623 // 624 // A class ID of an ideal node is a set of bits. In a class ID, a single bit determines 625 // the type of the node the ID represents; another subset of an ID's bits are reserved 626 // for the superclasses of the node represented by the ID. 627 // 628 // By design, if A is a supertype of B, A.is_B() returns true and B.is_A() 629 // returns false. A.is_A() returns true. 630 // 631 // If two classes, A and B, have the same superclass, a different bit of A's class id 632 // is reserved for A's type than for B's type. That bit is specified by the third 633 // parameter in the macro DEFINE_CLASS_ID. 634 // 635 // By convention, classes with deeper hierarchy are declared first. Moreover, 636 // classes with the same hierarchy depth are sorted by usage frequency. 637 // 638 // The query method masks the bits to cut off bits of subclasses and then compares 639 // the result with the class id (see the macro DEFINE_CLASS_QUERY below). 640 // 641 // Class_MachCall=30, ClassMask_MachCall=31 642 // 12 8 4 0 643 // 0 0 0 0 0 0 0 0 1 1 1 1 0 644 // | | | | 645 // | | | Bit_Mach=2 646 // | | Bit_MachReturn=4 647 // | Bit_MachSafePoint=8 648 // Bit_MachCall=16 649 // 650 // Class_CountedLoop=56, ClassMask_CountedLoop=63 651 // 12 8 4 0 652 // 0 0 0 0 0 0 0 1 1 1 0 0 0 653 // | | | 654 // | | Bit_Region=8 655 // | Bit_Loop=16 656 // Bit_CountedLoop=32 657 658 #define DEFINE_CLASS_ID(cl, supcl, subn) \ 659 Bit_##cl = (Class_##supcl == 0) ? 1 << subn : (Bit_##supcl) << (1 + subn) , \ 660 Class_##cl = Class_##supcl + Bit_##cl , \ 661 ClassMask_##cl = ((Bit_##cl << 1) - 1) , 662 663 // This enum is used only for C2 ideal and mach nodes with is_<node>() methods 664 // so that its values fit into 32 bits. 665 enum NodeClasses { 666 Bit_Node = 0x00000000, 667 Class_Node = 0x00000000, 668 ClassMask_Node = 0xFFFFFFFF, 669 670 DEFINE_CLASS_ID(Multi, Node, 0) 671 DEFINE_CLASS_ID(SafePoint, Multi, 0) 672 DEFINE_CLASS_ID(Call, SafePoint, 0) 673 DEFINE_CLASS_ID(CallJava, Call, 0) 674 DEFINE_CLASS_ID(CallStaticJava, CallJava, 0) 675 DEFINE_CLASS_ID(CallDynamicJava, CallJava, 1) 676 DEFINE_CLASS_ID(CallRuntime, Call, 1) 677 DEFINE_CLASS_ID(CallLeaf, CallRuntime, 0) 678 DEFINE_CLASS_ID(CallLeafNoFP, CallLeaf, 0) 679 DEFINE_CLASS_ID(Allocate, Call, 2) 680 DEFINE_CLASS_ID(AllocateArray, Allocate, 0) 681 DEFINE_CLASS_ID(AbstractLock, Call, 3) 682 DEFINE_CLASS_ID(Lock, AbstractLock, 0) 683 DEFINE_CLASS_ID(Unlock, AbstractLock, 1) 684 DEFINE_CLASS_ID(ArrayCopy, Call, 4) 685 DEFINE_CLASS_ID(MultiBranch, Multi, 1) 686 DEFINE_CLASS_ID(PCTable, MultiBranch, 0) 687 DEFINE_CLASS_ID(Catch, PCTable, 0) 688 DEFINE_CLASS_ID(Jump, PCTable, 1) 689 DEFINE_CLASS_ID(If, MultiBranch, 1) 690 DEFINE_CLASS_ID(BaseCountedLoopEnd, If, 0) 691 DEFINE_CLASS_ID(CountedLoopEnd, BaseCountedLoopEnd, 0) 692 DEFINE_CLASS_ID(LongCountedLoopEnd, BaseCountedLoopEnd, 1) 693 DEFINE_CLASS_ID(RangeCheck, If, 1) 694 DEFINE_CLASS_ID(OuterStripMinedLoopEnd, If, 2) 695 DEFINE_CLASS_ID(ParsePredicate, If, 3) 696 DEFINE_CLASS_ID(NeverBranch, MultiBranch, 2) 697 DEFINE_CLASS_ID(Start, Multi, 2) 698 DEFINE_CLASS_ID(MemBar, Multi, 3) 699 DEFINE_CLASS_ID(Initialize, MemBar, 0) 700 DEFINE_CLASS_ID(MemBarStoreStore, MemBar, 1) 701 DEFINE_CLASS_ID(Blackhole, MemBar, 2) 702 703 DEFINE_CLASS_ID(Mach, Node, 1) 704 DEFINE_CLASS_ID(MachReturn, Mach, 0) 705 DEFINE_CLASS_ID(MachSafePoint, MachReturn, 0) 706 DEFINE_CLASS_ID(MachCall, MachSafePoint, 0) 707 DEFINE_CLASS_ID(MachCallJava, MachCall, 0) 708 DEFINE_CLASS_ID(MachCallStaticJava, MachCallJava, 0) 709 DEFINE_CLASS_ID(MachCallDynamicJava, MachCallJava, 1) 710 DEFINE_CLASS_ID(MachCallRuntime, MachCall, 1) 711 DEFINE_CLASS_ID(MachCallLeaf, MachCallRuntime, 0) 712 DEFINE_CLASS_ID(MachBranch, Mach, 1) 713 DEFINE_CLASS_ID(MachIf, MachBranch, 0) 714 DEFINE_CLASS_ID(MachGoto, MachBranch, 1) 715 DEFINE_CLASS_ID(MachNullCheck, MachBranch, 2) 716 DEFINE_CLASS_ID(MachSpillCopy, Mach, 2) 717 DEFINE_CLASS_ID(MachTemp, Mach, 3) 718 DEFINE_CLASS_ID(MachConstantBase, Mach, 4) 719 DEFINE_CLASS_ID(MachConstant, Mach, 5) 720 DEFINE_CLASS_ID(MachJump, MachConstant, 0) 721 DEFINE_CLASS_ID(MachMerge, Mach, 6) 722 DEFINE_CLASS_ID(MachMemBar, Mach, 7) 723 DEFINE_CLASS_ID(MachProlog, Mach, 8) 724 DEFINE_CLASS_ID(MachVEP, Mach, 9) 725 726 DEFINE_CLASS_ID(Type, Node, 2) 727 DEFINE_CLASS_ID(Phi, Type, 0) 728 DEFINE_CLASS_ID(ConstraintCast, Type, 1) 729 DEFINE_CLASS_ID(CastII, ConstraintCast, 0) 730 DEFINE_CLASS_ID(CheckCastPP, ConstraintCast, 1) 731 DEFINE_CLASS_ID(CastLL, ConstraintCast, 2) 732 DEFINE_CLASS_ID(CastFF, ConstraintCast, 3) 733 DEFINE_CLASS_ID(CastDD, ConstraintCast, 4) 734 DEFINE_CLASS_ID(CastVV, ConstraintCast, 5) 735 DEFINE_CLASS_ID(CastPP, ConstraintCast, 6) 736 DEFINE_CLASS_ID(CastHH, ConstraintCast, 7) 737 DEFINE_CLASS_ID(CMove, Type, 3) 738 DEFINE_CLASS_ID(SafePointScalarObject, Type, 4) 739 DEFINE_CLASS_ID(DecodeNarrowPtr, Type, 5) 740 DEFINE_CLASS_ID(DecodeN, DecodeNarrowPtr, 0) 741 DEFINE_CLASS_ID(DecodeNKlass, DecodeNarrowPtr, 1) 742 DEFINE_CLASS_ID(EncodeNarrowPtr, Type, 6) 743 DEFINE_CLASS_ID(EncodeP, EncodeNarrowPtr, 0) 744 DEFINE_CLASS_ID(EncodePKlass, EncodeNarrowPtr, 1) 745 DEFINE_CLASS_ID(Vector, Type, 7) 746 DEFINE_CLASS_ID(VectorMaskCmp, Vector, 0) 747 DEFINE_CLASS_ID(VectorUnbox, Vector, 1) 748 DEFINE_CLASS_ID(VectorReinterpret, Vector, 2) 749 DEFINE_CLASS_ID(ShiftV, Vector, 3) 750 DEFINE_CLASS_ID(CompressV, Vector, 4) 751 DEFINE_CLASS_ID(ExpandV, Vector, 5) 752 DEFINE_CLASS_ID(CompressM, Vector, 6) 753 DEFINE_CLASS_ID(Reduction, Vector, 7) 754 DEFINE_CLASS_ID(NegV, Vector, 8) 755 DEFINE_CLASS_ID(SaturatingVector, Vector, 9) 756 DEFINE_CLASS_ID(MulVL, Vector, 10) 757 DEFINE_CLASS_ID(InlineType, Type, 8) 758 DEFINE_CLASS_ID(Con, Type, 9) 759 DEFINE_CLASS_ID(ConI, Con, 0) 760 DEFINE_CLASS_ID(SafePointScalarMerge, Type, 10) 761 DEFINE_CLASS_ID(Convert, Type, 11) 762 763 764 DEFINE_CLASS_ID(Proj, Node, 3) 765 DEFINE_CLASS_ID(CatchProj, Proj, 0) 766 DEFINE_CLASS_ID(JumpProj, Proj, 1) 767 DEFINE_CLASS_ID(IfProj, Proj, 2) 768 DEFINE_CLASS_ID(IfTrue, IfProj, 0) 769 DEFINE_CLASS_ID(IfFalse, IfProj, 1) 770 DEFINE_CLASS_ID(Parm, Proj, 4) 771 DEFINE_CLASS_ID(MachProj, Proj, 5) 772 773 DEFINE_CLASS_ID(Mem, Node, 4) 774 DEFINE_CLASS_ID(Load, Mem, 0) 775 DEFINE_CLASS_ID(LoadVector, Load, 0) 776 DEFINE_CLASS_ID(LoadVectorGather, LoadVector, 0) 777 DEFINE_CLASS_ID(LoadVectorGatherMasked, LoadVector, 1) 778 DEFINE_CLASS_ID(LoadVectorMasked, LoadVector, 2) 779 DEFINE_CLASS_ID(Store, Mem, 1) 780 DEFINE_CLASS_ID(StoreVector, Store, 0) 781 DEFINE_CLASS_ID(StoreVectorScatter, StoreVector, 0) 782 DEFINE_CLASS_ID(StoreVectorScatterMasked, StoreVector, 1) 783 DEFINE_CLASS_ID(StoreVectorMasked, StoreVector, 2) 784 DEFINE_CLASS_ID(LoadStore, Mem, 2) 785 DEFINE_CLASS_ID(LoadStoreConditional, LoadStore, 0) 786 DEFINE_CLASS_ID(CompareAndSwap, LoadStoreConditional, 0) 787 DEFINE_CLASS_ID(CompareAndExchangeNode, LoadStore, 1) 788 789 DEFINE_CLASS_ID(Region, Node, 5) 790 DEFINE_CLASS_ID(Loop, Region, 0) 791 DEFINE_CLASS_ID(Root, Loop, 0) 792 DEFINE_CLASS_ID(BaseCountedLoop, Loop, 1) 793 DEFINE_CLASS_ID(CountedLoop, BaseCountedLoop, 0) 794 DEFINE_CLASS_ID(LongCountedLoop, BaseCountedLoop, 1) 795 DEFINE_CLASS_ID(OuterStripMinedLoop, Loop, 2) 796 797 DEFINE_CLASS_ID(Sub, Node, 6) 798 DEFINE_CLASS_ID(Cmp, Sub, 0) 799 DEFINE_CLASS_ID(FastLock, Cmp, 0) 800 DEFINE_CLASS_ID(FastUnlock, Cmp, 1) 801 DEFINE_CLASS_ID(SubTypeCheck, Cmp, 2) 802 DEFINE_CLASS_ID(FlatArrayCheck, Cmp, 3) 803 804 DEFINE_CLASS_ID(MergeMem, Node, 7) 805 DEFINE_CLASS_ID(Bool, Node, 8) 806 DEFINE_CLASS_ID(AddP, Node, 9) 807 DEFINE_CLASS_ID(BoxLock, Node, 10) 808 DEFINE_CLASS_ID(Add, Node, 11) 809 DEFINE_CLASS_ID(Mul, Node, 12) 810 DEFINE_CLASS_ID(ClearArray, Node, 14) 811 DEFINE_CLASS_ID(Halt, Node, 15) 812 DEFINE_CLASS_ID(Opaque1, Node, 16) 813 DEFINE_CLASS_ID(OpaqueLoopInit, Opaque1, 0) 814 DEFINE_CLASS_ID(OpaqueLoopStride, Opaque1, 1) 815 DEFINE_CLASS_ID(OpaqueMultiversioning, Opaque1, 2) 816 DEFINE_CLASS_ID(OpaqueNotNull, Node, 17) 817 DEFINE_CLASS_ID(OpaqueInitializedAssertionPredicate, Node, 18) 818 DEFINE_CLASS_ID(OpaqueTemplateAssertionPredicate, Node, 19) 819 DEFINE_CLASS_ID(Move, Node, 20) 820 DEFINE_CLASS_ID(LShift, Node, 21) 821 DEFINE_CLASS_ID(Neg, Node, 22) 822 823 _max_classes = ClassMask_Neg 824 }; 825 #undef DEFINE_CLASS_ID 826 827 // Flags are sorted by usage frequency. 828 enum NodeFlags { 829 Flag_is_Copy = 1 << 0, // should be first bit to avoid shift 830 Flag_rematerialize = 1 << 1, 831 Flag_needs_anti_dependence_check = 1 << 2, 832 Flag_is_macro = 1 << 3, 833 Flag_is_Con = 1 << 4, 834 Flag_is_cisc_alternate = 1 << 5, 835 Flag_is_dead_loop_safe = 1 << 6, 836 Flag_may_be_short_branch = 1 << 7, 837 Flag_avoid_back_to_back_before = 1 << 8, 838 Flag_avoid_back_to_back_after = 1 << 9, 839 Flag_has_call = 1 << 10, 840 Flag_has_swapped_edges = 1 << 11, 841 Flag_is_scheduled = 1 << 12, 842 Flag_is_expensive = 1 << 13, 843 Flag_is_predicated_vector = 1 << 14, 844 Flag_for_post_loop_opts_igvn = 1 << 15, 845 Flag_for_merge_stores_igvn = 1 << 16, 846 Flag_is_removed_by_peephole = 1 << 17, 847 Flag_is_predicated_using_blend = 1 << 18, 848 _last_flag = Flag_is_predicated_using_blend 849 }; 850 851 class PD; 852 853 private: 854 juint _class_id; 855 juint _flags; 856 857 #ifdef ASSERT 858 static juint max_flags(); 859 #endif 860 861 protected: 862 // These methods should be called from constructors only. 863 void init_class_id(juint c) { 864 _class_id = c; // cast out const 865 } 866 void init_flags(uint fl) { 867 assert(fl <= max_flags(), "invalid node flag"); 868 _flags |= fl; 869 } 870 void clear_flag(uint fl) { 871 assert(fl <= max_flags(), "invalid node flag"); 872 _flags &= ~fl; 873 } 874 875 public: 876 juint class_id() const { return _class_id; } 877 878 juint flags() const { return _flags; } 879 880 void add_flag(juint fl) { init_flags(fl); } 881 882 void remove_flag(juint fl) { clear_flag(fl); } 883 884 // Return a dense integer opcode number 885 virtual int Opcode() const; 886 887 // Virtual inherited Node size 888 virtual uint size_of() const; 889 890 // Other interesting Node properties 891 #define DEFINE_CLASS_QUERY(type) \ 892 bool is_##type() const { \ 893 return ((_class_id & ClassMask_##type) == Class_##type); \ 894 } \ 895 type##Node *as_##type() const { \ 896 assert(is_##type(), "invalid node class: %s", Name()); \ 897 return (type##Node*)this; \ 898 } \ 899 type##Node* isa_##type() const { \ 900 return (is_##type()) ? as_##type() : nullptr; \ 901 } 902 903 DEFINE_CLASS_QUERY(AbstractLock) 904 DEFINE_CLASS_QUERY(Add) 905 DEFINE_CLASS_QUERY(AddP) 906 DEFINE_CLASS_QUERY(Allocate) 907 DEFINE_CLASS_QUERY(AllocateArray) 908 DEFINE_CLASS_QUERY(ArrayCopy) 909 DEFINE_CLASS_QUERY(BaseCountedLoop) 910 DEFINE_CLASS_QUERY(BaseCountedLoopEnd) 911 DEFINE_CLASS_QUERY(Blackhole) 912 DEFINE_CLASS_QUERY(Bool) 913 DEFINE_CLASS_QUERY(BoxLock) 914 DEFINE_CLASS_QUERY(Call) 915 DEFINE_CLASS_QUERY(CallDynamicJava) 916 DEFINE_CLASS_QUERY(CallJava) 917 DEFINE_CLASS_QUERY(CallLeaf) 918 DEFINE_CLASS_QUERY(CallLeafNoFP) 919 DEFINE_CLASS_QUERY(CallRuntime) 920 DEFINE_CLASS_QUERY(CallStaticJava) 921 DEFINE_CLASS_QUERY(Catch) 922 DEFINE_CLASS_QUERY(CatchProj) 923 DEFINE_CLASS_QUERY(CheckCastPP) 924 DEFINE_CLASS_QUERY(CastII) 925 DEFINE_CLASS_QUERY(CastLL) 926 DEFINE_CLASS_QUERY(CastFF) 927 DEFINE_CLASS_QUERY(ConI) 928 DEFINE_CLASS_QUERY(CastPP) 929 DEFINE_CLASS_QUERY(ConstraintCast) 930 DEFINE_CLASS_QUERY(ClearArray) 931 DEFINE_CLASS_QUERY(CMove) 932 DEFINE_CLASS_QUERY(Cmp) 933 DEFINE_CLASS_QUERY(Convert) 934 DEFINE_CLASS_QUERY(CountedLoop) 935 DEFINE_CLASS_QUERY(CountedLoopEnd) 936 DEFINE_CLASS_QUERY(DecodeNarrowPtr) 937 DEFINE_CLASS_QUERY(DecodeN) 938 DEFINE_CLASS_QUERY(DecodeNKlass) 939 DEFINE_CLASS_QUERY(EncodeNarrowPtr) 940 DEFINE_CLASS_QUERY(EncodeP) 941 DEFINE_CLASS_QUERY(EncodePKlass) 942 DEFINE_CLASS_QUERY(FastLock) 943 DEFINE_CLASS_QUERY(FastUnlock) 944 DEFINE_CLASS_QUERY(FlatArrayCheck) 945 DEFINE_CLASS_QUERY(Halt) 946 DEFINE_CLASS_QUERY(If) 947 DEFINE_CLASS_QUERY(RangeCheck) 948 DEFINE_CLASS_QUERY(IfProj) 949 DEFINE_CLASS_QUERY(IfFalse) 950 DEFINE_CLASS_QUERY(IfTrue) 951 DEFINE_CLASS_QUERY(Initialize) 952 DEFINE_CLASS_QUERY(Jump) 953 DEFINE_CLASS_QUERY(JumpProj) 954 DEFINE_CLASS_QUERY(LongCountedLoop) 955 DEFINE_CLASS_QUERY(LongCountedLoopEnd) 956 DEFINE_CLASS_QUERY(Load) 957 DEFINE_CLASS_QUERY(LoadStore) 958 DEFINE_CLASS_QUERY(LoadStoreConditional) 959 DEFINE_CLASS_QUERY(Lock) 960 DEFINE_CLASS_QUERY(Loop) 961 DEFINE_CLASS_QUERY(LShift) 962 DEFINE_CLASS_QUERY(Mach) 963 DEFINE_CLASS_QUERY(MachBranch) 964 DEFINE_CLASS_QUERY(MachCall) 965 DEFINE_CLASS_QUERY(MachCallDynamicJava) 966 DEFINE_CLASS_QUERY(MachCallJava) 967 DEFINE_CLASS_QUERY(MachCallLeaf) 968 DEFINE_CLASS_QUERY(MachCallRuntime) 969 DEFINE_CLASS_QUERY(MachCallStaticJava) 970 DEFINE_CLASS_QUERY(MachConstantBase) 971 DEFINE_CLASS_QUERY(MachConstant) 972 DEFINE_CLASS_QUERY(MachGoto) 973 DEFINE_CLASS_QUERY(MachIf) 974 DEFINE_CLASS_QUERY(MachJump) 975 DEFINE_CLASS_QUERY(MachNullCheck) 976 DEFINE_CLASS_QUERY(MachProj) 977 DEFINE_CLASS_QUERY(MachProlog) 978 DEFINE_CLASS_QUERY(MachReturn) 979 DEFINE_CLASS_QUERY(MachSafePoint) 980 DEFINE_CLASS_QUERY(MachSpillCopy) 981 DEFINE_CLASS_QUERY(MachTemp) 982 DEFINE_CLASS_QUERY(MachMemBar) 983 DEFINE_CLASS_QUERY(MachMerge) 984 DEFINE_CLASS_QUERY(MachVEP) 985 DEFINE_CLASS_QUERY(Mem) 986 DEFINE_CLASS_QUERY(MemBar) 987 DEFINE_CLASS_QUERY(MemBarStoreStore) 988 DEFINE_CLASS_QUERY(MergeMem) 989 DEFINE_CLASS_QUERY(Move) 990 DEFINE_CLASS_QUERY(Mul) 991 DEFINE_CLASS_QUERY(Multi) 992 DEFINE_CLASS_QUERY(MultiBranch) 993 DEFINE_CLASS_QUERY(MulVL) 994 DEFINE_CLASS_QUERY(Neg) 995 DEFINE_CLASS_QUERY(NegV) 996 DEFINE_CLASS_QUERY(NeverBranch) 997 DEFINE_CLASS_QUERY(Opaque1) 998 DEFINE_CLASS_QUERY(OpaqueNotNull) 999 DEFINE_CLASS_QUERY(OpaqueInitializedAssertionPredicate) 1000 DEFINE_CLASS_QUERY(OpaqueTemplateAssertionPredicate) 1001 DEFINE_CLASS_QUERY(OpaqueLoopInit) 1002 DEFINE_CLASS_QUERY(OpaqueLoopStride) 1003 DEFINE_CLASS_QUERY(OpaqueMultiversioning) 1004 DEFINE_CLASS_QUERY(OuterStripMinedLoop) 1005 DEFINE_CLASS_QUERY(OuterStripMinedLoopEnd) 1006 DEFINE_CLASS_QUERY(Parm) 1007 DEFINE_CLASS_QUERY(ParsePredicate) 1008 DEFINE_CLASS_QUERY(PCTable) 1009 DEFINE_CLASS_QUERY(Phi) 1010 DEFINE_CLASS_QUERY(Proj) 1011 DEFINE_CLASS_QUERY(Reduction) 1012 DEFINE_CLASS_QUERY(Region) 1013 DEFINE_CLASS_QUERY(Root) 1014 DEFINE_CLASS_QUERY(SafePoint) 1015 DEFINE_CLASS_QUERY(SafePointScalarObject) 1016 DEFINE_CLASS_QUERY(SafePointScalarMerge) 1017 DEFINE_CLASS_QUERY(Start) 1018 DEFINE_CLASS_QUERY(Store) 1019 DEFINE_CLASS_QUERY(Sub) 1020 DEFINE_CLASS_QUERY(SubTypeCheck) 1021 DEFINE_CLASS_QUERY(Type) 1022 DEFINE_CLASS_QUERY(InlineType) 1023 DEFINE_CLASS_QUERY(Vector) 1024 DEFINE_CLASS_QUERY(VectorMaskCmp) 1025 DEFINE_CLASS_QUERY(VectorUnbox) 1026 DEFINE_CLASS_QUERY(VectorReinterpret) 1027 DEFINE_CLASS_QUERY(CompressV) 1028 DEFINE_CLASS_QUERY(ExpandV) 1029 DEFINE_CLASS_QUERY(CompressM) 1030 DEFINE_CLASS_QUERY(LoadVector) 1031 DEFINE_CLASS_QUERY(LoadVectorGather) 1032 DEFINE_CLASS_QUERY(LoadVectorMasked) 1033 DEFINE_CLASS_QUERY(LoadVectorGatherMasked) 1034 DEFINE_CLASS_QUERY(StoreVector) 1035 DEFINE_CLASS_QUERY(StoreVectorScatter) 1036 DEFINE_CLASS_QUERY(StoreVectorMasked) 1037 DEFINE_CLASS_QUERY(StoreVectorScatterMasked) 1038 DEFINE_CLASS_QUERY(SaturatingVector) 1039 DEFINE_CLASS_QUERY(ShiftV) 1040 DEFINE_CLASS_QUERY(Unlock) 1041 1042 #undef DEFINE_CLASS_QUERY 1043 1044 // duplicate of is_MachSpillCopy() 1045 bool is_SpillCopy () const { 1046 return ((_class_id & ClassMask_MachSpillCopy) == Class_MachSpillCopy); 1047 } 1048 1049 bool is_Con () const { return (_flags & Flag_is_Con) != 0; } 1050 // The data node which is safe to leave in dead loop during IGVN optimization. 1051 bool is_dead_loop_safe() const; 1052 1053 // is_Copy() returns copied edge index (0 or 1) 1054 uint is_Copy() const { return (_flags & Flag_is_Copy); } 1055 1056 virtual bool is_CFG() const { return false; } 1057 1058 // If this node is control-dependent on a test, can it be 1059 // rerouted to a dominating equivalent test? This is usually 1060 // true of non-CFG nodes, but can be false for operations which 1061 // depend for their correct sequencing on more than one test. 1062 // (In that case, hoisting to a dominating test may silently 1063 // skip some other important test.) 1064 virtual bool depends_only_on_test() const { assert(!is_CFG(), ""); return true; }; 1065 1066 // When building basic blocks, I need to have a notion of block beginning 1067 // Nodes, next block selector Nodes (block enders), and next block 1068 // projections. These calls need to work on their machine equivalents. The 1069 // Ideal beginning Nodes are RootNode, RegionNode and StartNode. 1070 bool is_block_start() const { 1071 if ( is_Region() ) 1072 return this == (const Node*)in(0); 1073 else 1074 return is_Start(); 1075 } 1076 1077 // The Ideal control projection Nodes are IfTrue/IfFalse, JumpProjNode, Root, 1078 // Goto and Return. This call also returns the block ending Node. 1079 virtual const Node *is_block_proj() const; 1080 1081 // The node is a "macro" node which needs to be expanded before matching 1082 bool is_macro() const { return (_flags & Flag_is_macro) != 0; } 1083 // The node is expensive: the best control is set during loop opts 1084 bool is_expensive() const { return (_flags & Flag_is_expensive) != 0 && in(0) != nullptr; } 1085 // The node's original edge position is swapped. 1086 bool has_swapped_edges() const { return (_flags & Flag_has_swapped_edges) != 0; } 1087 1088 bool is_predicated_vector() const { return (_flags & Flag_is_predicated_vector) != 0; } 1089 1090 bool is_predicated_using_blend() const { return (_flags & Flag_is_predicated_using_blend) != 0; } 1091 1092 // Used in lcm to mark nodes that have scheduled 1093 bool is_scheduled() const { return (_flags & Flag_is_scheduled) != 0; } 1094 1095 bool for_post_loop_opts_igvn() const { return (_flags & Flag_for_post_loop_opts_igvn) != 0; } 1096 bool for_merge_stores_igvn() const { return (_flags & Flag_for_merge_stores_igvn) != 0; } 1097 1098 // Is 'n' possibly a loop entry (i.e. a Parse Predicate projection)? 1099 static bool may_be_loop_entry(Node* n) { 1100 return n != nullptr && n->is_IfProj() && n->in(0)->is_ParsePredicate(); 1101 } 1102 1103 //----------------- Optimization 1104 1105 // Get the worst-case Type output for this Node. 1106 virtual const class Type *bottom_type() const; 1107 1108 // If we find a better type for a node, try to record it permanently. 1109 // Return true if this node actually changed. 1110 // Be sure to do the hash_delete game in the "rehash" variant. 1111 void raise_bottom_type(const Type* new_type); 1112 1113 // Get the address type with which this node uses and/or defs memory, 1114 // or null if none. The address type is conservatively wide. 1115 // Returns non-null for calls, membars, loads, stores, etc. 1116 // Returns TypePtr::BOTTOM if the node touches memory "broadly". 1117 virtual const class TypePtr *adr_type() const { return nullptr; } 1118 1119 // Return an existing node which computes the same function as this node. 1120 // The optimistic combined algorithm requires this to return a Node which 1121 // is a small number of steps away (e.g., one of my inputs). 1122 virtual Node* Identity(PhaseGVN* phase); 1123 1124 // Return the set of values this Node can take on at runtime. 1125 virtual const Type* Value(PhaseGVN* phase) const; 1126 1127 // Return a node which is more "ideal" than the current node. 1128 // The invariants on this call are subtle. If in doubt, read the 1129 // treatise in node.cpp above the default implementation AND TEST WITH 1130 // -XX:VerifyIterativeGVN=1 1131 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); 1132 1133 // Some nodes have specific Ideal subgraph transformations only if they are 1134 // unique users of specific nodes. Such nodes should be put on IGVN worklist 1135 // for the transformations to happen. 1136 bool has_special_unique_user() const; 1137 1138 // Skip Proj and CatchProj nodes chains. Check for Null and Top. 1139 Node* find_exact_control(Node* ctrl); 1140 1141 // Results of the dominance analysis. 1142 enum class DomResult { 1143 NotDominate, // 'this' node does not dominate 'sub'. 1144 Dominate, // 'this' node dominates or is equal to 'sub'. 1145 EncounteredDeadCode // Result is undefined due to encountering dead code. 1146 }; 1147 // Check if 'this' node dominates or equal to 'sub'. 1148 DomResult dominates(Node* sub, Node_List &nlist); 1149 1150 bool remove_dead_region(PhaseGVN *phase, bool can_reshape); 1151 public: 1152 1153 // See if there is valid pipeline info 1154 static const Pipeline *pipeline_class(); 1155 virtual const Pipeline *pipeline() const; 1156 1157 // Compute the latency from the def to this instruction of the ith input node 1158 uint latency(uint i); 1159 1160 // Hash & compare functions, for pessimistic value numbering 1161 1162 // If the hash function returns the special sentinel value NO_HASH, 1163 // the node is guaranteed never to compare equal to any other node. 1164 // If we accidentally generate a hash with value NO_HASH the node 1165 // won't go into the table and we'll lose a little optimization. 1166 static const uint NO_HASH = 0; 1167 virtual uint hash() const; 1168 virtual bool cmp( const Node &n ) const; 1169 1170 // Operation appears to be iteratively computed (such as an induction variable) 1171 // It is possible for this operation to return false for a loop-varying 1172 // value, if it appears (by local graph inspection) to be computed by a simple conditional. 1173 bool is_iteratively_computed(); 1174 1175 // Determine if a node is a counted loop induction variable. 1176 // NOTE: The method is defined in "loopnode.cpp". 1177 bool is_cloop_ind_var() const; 1178 1179 // Return a node with opcode "opc" and same inputs as "this" if one can 1180 // be found; Otherwise return null; 1181 Node* find_similar(int opc); 1182 1183 // Return the unique control out if only one. Null if none or more than one. 1184 Node* unique_ctrl_out_or_null() const; 1185 // Return the unique control out. Asserts if none or more than one control out. 1186 Node* unique_ctrl_out() const; 1187 1188 // Set control or add control as precedence edge 1189 void ensure_control_or_add_prec(Node* c); 1190 void add_prec_from(Node* n); 1191 1192 // Visit boundary uses of the node and apply a callback function for each. 1193 // Recursively traverse uses, stopping and applying the callback when 1194 // reaching a boundary node, defined by is_boundary. Note: the function 1195 // definition appears after the complete type definition of Node_List. 1196 template <typename Callback, typename Check> 1197 void visit_uses(Callback callback, Check is_boundary) const; 1198 1199 // Returns a clone of the current node that's pinned (if the current node is not) for nodes found in array accesses 1200 // (Load and range check CastII nodes). 1201 // This is used when an array access is made dependent on 2 or more range checks (range check smearing or Loop Predication). 1202 virtual Node* pin_array_access_node() const { 1203 return nullptr; 1204 } 1205 1206 //----------------- Code Generation 1207 1208 // Ideal register class for Matching. Zero means unmatched instruction 1209 // (these are cloned instead of converted to machine nodes). 1210 virtual uint ideal_reg() const; 1211 1212 static const uint NotAMachineReg; // must be > max. machine register 1213 1214 // Do we Match on this edge index or not? Generally false for Control 1215 // and true for everything else. Weird for calls & returns. 1216 virtual uint match_edge(uint idx) const; 1217 1218 // Register class output is returned in 1219 virtual const RegMask &out_RegMask() const; 1220 // Register class input is expected in 1221 virtual const RegMask &in_RegMask(uint) const; 1222 // Should we clone rather than spill this instruction? 1223 bool rematerialize() const; 1224 1225 // Return JVM State Object if this Node carries debug info, or null otherwise 1226 virtual JVMState* jvms() const; 1227 1228 // Print as assembly 1229 virtual void format( PhaseRegAlloc *, outputStream* st = tty ) const; 1230 // Emit bytes using C2_MacroAssembler 1231 virtual void emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const; 1232 // Size of instruction in bytes 1233 virtual uint size(PhaseRegAlloc *ra_) const; 1234 1235 // Convenience function to extract an integer constant from a node. 1236 // If it is not an integer constant (either Con, CastII, or Mach), 1237 // return value_if_unknown. 1238 jint find_int_con(jint value_if_unknown) const { 1239 const TypeInt* t = find_int_type(); 1240 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1241 } 1242 // Return the constant, knowing it is an integer constant already 1243 jint get_int() const { 1244 const TypeInt* t = find_int_type(); 1245 guarantee(t != nullptr, "must be con"); 1246 return t->get_con(); 1247 } 1248 // Here's where the work is done. Can produce non-constant int types too. 1249 const TypeInt* find_int_type() const; 1250 const TypeInteger* find_integer_type(BasicType bt) const; 1251 1252 // Same thing for long (and intptr_t, via type.hpp): 1253 jlong get_long() const { 1254 const TypeLong* t = find_long_type(); 1255 guarantee(t != nullptr, "must be con"); 1256 return t->get_con(); 1257 } 1258 jlong find_long_con(jint value_if_unknown) const { 1259 const TypeLong* t = find_long_type(); 1260 return (t != nullptr && t->is_con()) ? t->get_con() : value_if_unknown; 1261 } 1262 const TypeLong* find_long_type() const; 1263 1264 jlong get_integer_as_long(BasicType bt) const { 1265 const TypeInteger* t = find_integer_type(bt); 1266 guarantee(t != nullptr && t->is_con(), "must be con"); 1267 return t->get_con_as_long(bt); 1268 } 1269 jlong find_integer_as_long(BasicType bt, jlong value_if_unknown) const { 1270 const TypeInteger* t = find_integer_type(bt); 1271 if (t == nullptr || !t->is_con()) return value_if_unknown; 1272 return t->get_con_as_long(bt); 1273 } 1274 const TypePtr* get_ptr_type() const; 1275 1276 // These guys are called by code generated by ADLC: 1277 intptr_t get_ptr() const; 1278 intptr_t get_narrowcon() const; 1279 jdouble getd() const; 1280 jfloat getf() const; 1281 jshort geth() const; 1282 1283 // Nodes which are pinned into basic blocks 1284 virtual bool pinned() const { return false; } 1285 1286 // Nodes which use memory without consuming it, hence need antidependences 1287 // More specifically, needs_anti_dependence_check returns true iff the node 1288 // (a) does a load, and (b) does not perform a store (except perhaps to a 1289 // stack slot or some other unaliased location). 1290 bool needs_anti_dependence_check() const; 1291 1292 // Return which operand this instruction may cisc-spill. In other words, 1293 // return operand position that can convert from reg to memory access 1294 virtual int cisc_operand() const { return AdlcVMDeps::Not_cisc_spillable; } 1295 bool is_cisc_alternate() const { return (_flags & Flag_is_cisc_alternate) != 0; } 1296 1297 // Whether this is a memory-writing machine node. 1298 bool is_memory_writer() const { return is_Mach() && bottom_type()->has_memory(); } 1299 1300 // Whether this is a memory phi node 1301 bool is_memory_phi() const { return is_Phi() && bottom_type() == Type::MEMORY; } 1302 1303 bool is_div_or_mod(BasicType bt) const; 1304 1305 bool is_pure_function() const; 1306 1307 bool is_data_proj_of_pure_function(const Node* maybe_pure_function) const; 1308 1309 //----------------- Printing, etc 1310 #ifndef PRODUCT 1311 public: 1312 Node* find(int idx, bool only_ctrl = false); // Search the graph for the given idx. 1313 Node* find_ctrl(int idx); // Search control ancestors for the given idx. 1314 void dump_bfs(const int max_distance, Node* target, const char* options, outputStream* st) const; 1315 void dump_bfs(const int max_distance, Node* target, const char* options) const; // directly to tty 1316 void dump_bfs(const int max_distance) const; // dump_bfs(max_distance, nullptr, nullptr) 1317 class DumpConfig { 1318 public: 1319 // overridden to implement coloring of node idx 1320 virtual void pre_dump(outputStream *st, const Node* n) = 0; 1321 virtual void post_dump(outputStream *st) = 0; 1322 }; 1323 void dump_idx(bool align = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; 1324 void dump_name(outputStream* st = tty, DumpConfig* dc = nullptr) const; 1325 void dump() const; // print node with newline 1326 void dump(const char* suffix, bool mark = false, outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print this node. 1327 void dump(int depth) const; // Print this node, recursively to depth d 1328 void dump_ctrl(int depth) const; // Print control nodes, to depth d 1329 void dump_comp() const; // Print this node in compact representation. 1330 // Print this node in compact representation. 1331 void dump_comp(const char* suffix, outputStream *st = tty) const; 1332 private: 1333 virtual void dump_req(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print required-edge info 1334 virtual void dump_prec(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print precedence-edge info 1335 virtual void dump_out(outputStream* st = tty, DumpConfig* dc = nullptr) const; // Print the output edge info 1336 public: 1337 virtual void dump_spec(outputStream *st) const {}; // Print per-node info 1338 // Print compact per-node info 1339 virtual void dump_compact_spec(outputStream *st) const { dump_spec(st); } 1340 1341 static void verify(int verify_depth, VectorSet& visited, Node_List& worklist); 1342 1343 // This call defines a class-unique string used to identify class instances 1344 virtual const char *Name() const; 1345 1346 void dump_format(PhaseRegAlloc *ra) const; // debug access to MachNode::format(...) 1347 static bool in_dump() { return Compile::current()->_in_dump_cnt > 0; } // check if we are in a dump call 1348 #endif 1349 #ifdef ASSERT 1350 void verify_construction(); 1351 bool verify_jvms(const JVMState* jvms) const; 1352 1353 Node* _debug_orig; // Original version of this, if any. 1354 Node* debug_orig() const { return _debug_orig; } 1355 void set_debug_orig(Node* orig); // _debug_orig = orig 1356 void dump_orig(outputStream *st, bool print_key = true) const; 1357 1358 uint64_t _debug_idx; // Unique value assigned to every node. 1359 uint64_t debug_idx() const { return _debug_idx; } 1360 void set_debug_idx(uint64_t debug_idx) { _debug_idx = debug_idx; } 1361 1362 int _hash_lock; // Barrier to modifications of nodes in the hash table 1363 void enter_hash_lock() { ++_hash_lock; assert(_hash_lock < 99, "in too many hash tables?"); } 1364 void exit_hash_lock() { --_hash_lock; assert(_hash_lock >= 0, "mispaired hash locks"); } 1365 1366 static void init_NodeProperty(); 1367 1368 #if OPTO_DU_ITERATOR_ASSERT 1369 const Node* _last_del; // The last deleted node. 1370 uint _del_tick; // Bumped when a deletion happens.. 1371 #endif 1372 #endif 1373 }; 1374 1375 inline bool not_a_node(const Node* n) { 1376 if (n == nullptr) return true; 1377 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc. 1378 if (*(address*)n == badAddress) return true; // kill by Node::destruct 1379 return false; 1380 } 1381 1382 //----------------------------------------------------------------------------- 1383 // Iterators over DU info, and associated Node functions. 1384 1385 #if OPTO_DU_ITERATOR_ASSERT 1386 1387 // Common code for assertion checking on DU iterators. 1388 class DUIterator_Common { 1389 #ifdef ASSERT 1390 protected: 1391 bool _vdui; // cached value of VerifyDUIterators 1392 const Node* _node; // the node containing the _out array 1393 uint _outcnt; // cached node->_outcnt 1394 uint _del_tick; // cached node->_del_tick 1395 Node* _last; // last value produced by the iterator 1396 1397 void sample(const Node* node); // used by c'tor to set up for verifies 1398 void verify(const Node* node, bool at_end_ok = false); 1399 void verify_resync(); 1400 void reset(const DUIterator_Common& that); 1401 1402 // The VDUI_ONLY macro protects code conditionalized on VerifyDUIterators 1403 #define I_VDUI_ONLY(i,x) { if ((i)._vdui) { x; } } 1404 #else 1405 #define I_VDUI_ONLY(i,x) { } 1406 #endif //ASSERT 1407 }; 1408 1409 #define VDUI_ONLY(x) I_VDUI_ONLY(*this, x) 1410 1411 // Default DU iterator. Allows appends onto the out array. 1412 // Allows deletion from the out array only at the current point. 1413 // Usage: 1414 // for (DUIterator i = x->outs(); x->has_out(i); i++) { 1415 // Node* y = x->out(i); 1416 // ... 1417 // } 1418 // Compiles in product mode to a unsigned integer index, which indexes 1419 // onto a repeatedly reloaded base pointer of x->_out. The loop predicate 1420 // also reloads x->_outcnt. If you delete, you must perform "--i" just 1421 // before continuing the loop. You must delete only the last-produced 1422 // edge. You must delete only a single copy of the last-produced edge, 1423 // or else you must delete all copies at once (the first time the edge 1424 // is produced by the iterator). 1425 class DUIterator : public DUIterator_Common { 1426 friend class Node; 1427 1428 // This is the index which provides the product-mode behavior. 1429 // Whatever the product-mode version of the system does to the 1430 // DUI index is done to this index. All other fields in 1431 // this class are used only for assertion checking. 1432 uint _idx; 1433 1434 #ifdef ASSERT 1435 uint _refresh_tick; // Records the refresh activity. 1436 1437 void sample(const Node* node); // Initialize _refresh_tick etc. 1438 void verify(const Node* node, bool at_end_ok = false); 1439 void verify_increment(); // Verify an increment operation. 1440 void verify_resync(); // Verify that we can back up over a deletion. 1441 void verify_finish(); // Verify that the loop terminated properly. 1442 void refresh(); // Resample verification info. 1443 void reset(const DUIterator& that); // Resample after assignment. 1444 #endif 1445 1446 DUIterator(const Node* node, int dummy_to_avoid_conversion) 1447 { _idx = 0; debug_only(sample(node)); } 1448 1449 public: 1450 // initialize to garbage; clear _vdui to disable asserts 1451 DUIterator() 1452 { /*initialize to garbage*/ debug_only(_vdui = false); } 1453 1454 DUIterator(const DUIterator& that) 1455 { _idx = that._idx; debug_only(_vdui = false; reset(that)); } 1456 1457 void operator++(int dummy_to_specify_postfix_op) 1458 { _idx++; VDUI_ONLY(verify_increment()); } 1459 1460 void operator--() 1461 { VDUI_ONLY(verify_resync()); --_idx; } 1462 1463 ~DUIterator() 1464 { VDUI_ONLY(verify_finish()); } 1465 1466 void operator=(const DUIterator& that) 1467 { _idx = that._idx; debug_only(reset(that)); } 1468 }; 1469 1470 DUIterator Node::outs() const 1471 { return DUIterator(this, 0); } 1472 DUIterator& Node::refresh_out_pos(DUIterator& i) const 1473 { I_VDUI_ONLY(i, i.refresh()); return i; } 1474 bool Node::has_out(DUIterator& i) const 1475 { I_VDUI_ONLY(i, i.verify(this,true));return i._idx < _outcnt; } 1476 Node* Node::out(DUIterator& i) const 1477 { I_VDUI_ONLY(i, i.verify(this)); return debug_only(i._last=) _out[i._idx]; } 1478 1479 1480 // Faster DU iterator. Disallows insertions into the out array. 1481 // Allows deletion from the out array only at the current point. 1482 // Usage: 1483 // for (DUIterator_Fast imax, i = x->fast_outs(imax); i < imax; i++) { 1484 // Node* y = x->fast_out(i); 1485 // ... 1486 // } 1487 // Compiles in product mode to raw Node** pointer arithmetic, with 1488 // no reloading of pointers from the original node x. If you delete, 1489 // you must perform "--i; --imax" just before continuing the loop. 1490 // If you delete multiple copies of the same edge, you must decrement 1491 // imax, but not i, multiple times: "--i, imax -= num_edges". 1492 class DUIterator_Fast : public DUIterator_Common { 1493 friend class Node; 1494 friend class DUIterator_Last; 1495 1496 // This is the pointer which provides the product-mode behavior. 1497 // Whatever the product-mode version of the system does to the 1498 // DUI pointer is done to this pointer. All other fields in 1499 // this class are used only for assertion checking. 1500 Node** _outp; 1501 1502 #ifdef ASSERT 1503 void verify(const Node* node, bool at_end_ok = false); 1504 void verify_limit(); 1505 void verify_resync(); 1506 void verify_relimit(uint n); 1507 void reset(const DUIterator_Fast& that); 1508 #endif 1509 1510 // Note: offset must be signed, since -1 is sometimes passed 1511 DUIterator_Fast(const Node* node, ptrdiff_t offset) 1512 { _outp = node->_out + offset; debug_only(sample(node)); } 1513 1514 public: 1515 // initialize to garbage; clear _vdui to disable asserts 1516 DUIterator_Fast() 1517 { /*initialize to garbage*/ debug_only(_vdui = false); } 1518 1519 DUIterator_Fast(const DUIterator_Fast& that) 1520 { _outp = that._outp; debug_only(_vdui = false; reset(that)); } 1521 1522 void operator++(int dummy_to_specify_postfix_op) 1523 { _outp++; VDUI_ONLY(verify(_node, true)); } 1524 1525 void operator--() 1526 { VDUI_ONLY(verify_resync()); --_outp; } 1527 1528 void operator-=(uint n) // applied to the limit only 1529 { _outp -= n; VDUI_ONLY(verify_relimit(n)); } 1530 1531 bool operator<(DUIterator_Fast& limit) { 1532 I_VDUI_ONLY(*this, this->verify(_node, true)); 1533 I_VDUI_ONLY(limit, limit.verify_limit()); 1534 return _outp < limit._outp; 1535 } 1536 1537 void operator=(const DUIterator_Fast& that) 1538 { _outp = that._outp; debug_only(reset(that)); } 1539 }; 1540 1541 DUIterator_Fast Node::fast_outs(DUIterator_Fast& imax) const { 1542 // Assign a limit pointer to the reference argument: 1543 imax = DUIterator_Fast(this, (ptrdiff_t)_outcnt); 1544 // Return the base pointer: 1545 return DUIterator_Fast(this, 0); 1546 } 1547 Node* Node::fast_out(DUIterator_Fast& i) const { 1548 I_VDUI_ONLY(i, i.verify(this)); 1549 return debug_only(i._last=) *i._outp; 1550 } 1551 1552 1553 // Faster DU iterator. Requires each successive edge to be removed. 1554 // Does not allow insertion of any edges. 1555 // Usage: 1556 // for (DUIterator_Last imin, i = x->last_outs(imin); i >= imin; i -= num_edges) { 1557 // Node* y = x->last_out(i); 1558 // ... 1559 // } 1560 // Compiles in product mode to raw Node** pointer arithmetic, with 1561 // no reloading of pointers from the original node x. 1562 class DUIterator_Last : private DUIterator_Fast { 1563 friend class Node; 1564 1565 #ifdef ASSERT 1566 void verify(const Node* node, bool at_end_ok = false); 1567 void verify_limit(); 1568 void verify_step(uint num_edges); 1569 #endif 1570 1571 // Note: offset must be signed, since -1 is sometimes passed 1572 DUIterator_Last(const Node* node, ptrdiff_t offset) 1573 : DUIterator_Fast(node, offset) { } 1574 1575 void operator++(int dummy_to_specify_postfix_op) {} // do not use 1576 void operator<(int) {} // do not use 1577 1578 public: 1579 DUIterator_Last() { } 1580 // initialize to garbage 1581 1582 DUIterator_Last(const DUIterator_Last& that) = default; 1583 1584 void operator--() 1585 { _outp--; VDUI_ONLY(verify_step(1)); } 1586 1587 void operator-=(uint n) 1588 { _outp -= n; VDUI_ONLY(verify_step(n)); } 1589 1590 bool operator>=(DUIterator_Last& limit) { 1591 I_VDUI_ONLY(*this, this->verify(_node, true)); 1592 I_VDUI_ONLY(limit, limit.verify_limit()); 1593 return _outp >= limit._outp; 1594 } 1595 1596 DUIterator_Last& operator=(const DUIterator_Last& that) = default; 1597 }; 1598 1599 DUIterator_Last Node::last_outs(DUIterator_Last& imin) const { 1600 // Assign a limit pointer to the reference argument: 1601 imin = DUIterator_Last(this, 0); 1602 // Return the initial pointer: 1603 return DUIterator_Last(this, (ptrdiff_t)_outcnt - 1); 1604 } 1605 Node* Node::last_out(DUIterator_Last& i) const { 1606 I_VDUI_ONLY(i, i.verify(this)); 1607 return debug_only(i._last=) *i._outp; 1608 } 1609 1610 #endif //OPTO_DU_ITERATOR_ASSERT 1611 1612 #undef I_VDUI_ONLY 1613 #undef VDUI_ONLY 1614 1615 // An Iterator that truly follows the iterator pattern. Doesn't 1616 // support deletion but could be made to. 1617 // 1618 // for (SimpleDUIterator i(n); i.has_next(); i.next()) { 1619 // Node* m = i.get(); 1620 // 1621 class SimpleDUIterator : public StackObj { 1622 private: 1623 Node* node; 1624 DUIterator_Fast imax; 1625 DUIterator_Fast i; 1626 public: 1627 SimpleDUIterator(Node* n): node(n), i(n->fast_outs(imax)) {} 1628 bool has_next() { return i < imax; } 1629 void next() { i++; } 1630 Node* get() { return node->fast_out(i); } 1631 }; 1632 1633 1634 //----------------------------------------------------------------------------- 1635 // Map dense integer indices to Nodes. Uses classic doubling-array trick. 1636 // Abstractly provides an infinite array of Node*'s, initialized to null. 1637 // Note that the constructor just zeros things, and since I use Arena 1638 // allocation I do not need a destructor to reclaim storage. 1639 class Node_Array : public AnyObj { 1640 protected: 1641 Arena* _a; // Arena to allocate in 1642 uint _max; 1643 Node** _nodes; 1644 ReallocMark _nesting; // Safety checks for arena reallocation 1645 1646 // Grow array to required capacity 1647 void maybe_grow(uint i) { 1648 if (i >= _max) { 1649 grow(i); 1650 } 1651 } 1652 void grow(uint i); 1653 1654 public: 1655 Node_Array(Arena* a, uint max = OptoNodeListSize) : _a(a), _max(max) { 1656 _nodes = NEW_ARENA_ARRAY(a, Node*, max); 1657 clear(); 1658 } 1659 Node_Array() : Node_Array(Thread::current()->resource_area()) {} 1660 1661 NONCOPYABLE(Node_Array); 1662 Node_Array& operator=(Node_Array&&) = delete; 1663 // Allow move constructor for && (eg. capture return of function) 1664 Node_Array(Node_Array&&) = default; 1665 1666 Node *operator[] ( uint i ) const // Lookup, or null for not mapped 1667 { return (i<_max) ? _nodes[i] : (Node*)nullptr; } 1668 Node* at(uint i) const { assert(i<_max,"oob"); return _nodes[i]; } 1669 Node** adr() { return _nodes; } 1670 // Extend the mapping: index i maps to Node *n. 1671 void map( uint i, Node *n ) { maybe_grow(i); _nodes[i] = n; } 1672 void insert( uint i, Node *n ); 1673 void remove( uint i ); // Remove, preserving order 1674 // Clear all entries in _nodes to null but keep storage 1675 void clear() { 1676 Copy::zero_to_bytes(_nodes, _max * sizeof(Node*)); 1677 } 1678 1679 uint max() const { return _max; } 1680 void dump() const; 1681 }; 1682 1683 class Node_List : public Node_Array { 1684 uint _cnt; 1685 public: 1686 Node_List(uint max = OptoNodeListSize) : Node_Array(Thread::current()->resource_area(), max), _cnt(0) {} 1687 Node_List(Arena *a, uint max = OptoNodeListSize) : Node_Array(a, max), _cnt(0) {} 1688 1689 NONCOPYABLE(Node_List); 1690 Node_List& operator=(Node_List&&) = delete; 1691 // Allow move constructor for && (eg. capture return of function) 1692 Node_List(Node_List&&) = default; 1693 1694 bool contains(const Node* n) const { 1695 for (uint e = 0; e < size(); e++) { 1696 if (at(e) == n) return true; 1697 } 1698 return false; 1699 } 1700 void insert( uint i, Node *n ) { Node_Array::insert(i,n); _cnt++; } 1701 void remove( uint i ) { Node_Array::remove(i); _cnt--; } 1702 void push( Node *b ) { map(_cnt++,b); } 1703 void yank( Node *n ); // Find and remove 1704 Node *pop() { return _nodes[--_cnt]; } 1705 void clear() { _cnt = 0; Node_Array::clear(); } // retain storage 1706 void copy(const Node_List& from) { 1707 if (from._max > _max) { 1708 grow(from._max); 1709 } 1710 _cnt = from._cnt; 1711 Copy::conjoint_words_to_higher((HeapWord*)&from._nodes[0], (HeapWord*)&_nodes[0], from._max * sizeof(Node*)); 1712 } 1713 1714 uint size() const { return _cnt; } 1715 void dump() const; 1716 void dump_simple() const; 1717 }; 1718 1719 // Definition must appear after complete type definition of Node_List 1720 template <typename Callback, typename Check> 1721 void Node::visit_uses(Callback callback, Check is_boundary) const { 1722 ResourceMark rm; 1723 VectorSet visited; 1724 Node_List worklist; 1725 1726 // The initial worklist consists of the direct uses 1727 for (DUIterator_Fast kmax, k = fast_outs(kmax); k < kmax; k++) { 1728 Node* out = fast_out(k); 1729 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1730 } 1731 1732 while (worklist.size() > 0) { 1733 Node* use = worklist.pop(); 1734 // Apply callback on boundary nodes 1735 if (is_boundary(use)) { 1736 callback(use); 1737 } else { 1738 // Not a boundary node, continue search 1739 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); k < kmax; k++) { 1740 Node* out = use->fast_out(k); 1741 if (!visited.test_set(out->_idx)) { worklist.push(out); } 1742 } 1743 } 1744 } 1745 } 1746 1747 1748 //------------------------------Unique_Node_List------------------------------- 1749 class Unique_Node_List : public Node_List { 1750 VectorSet _in_worklist; 1751 uint _clock_index; // Index in list where to pop from next 1752 public: 1753 Unique_Node_List() : Node_List(), _clock_index(0) {} 1754 Unique_Node_List(Arena *a) : Node_List(a), _in_worklist(a), _clock_index(0) {} 1755 1756 NONCOPYABLE(Unique_Node_List); 1757 Unique_Node_List& operator=(Unique_Node_List&&) = delete; 1758 // Allow move constructor for && (eg. capture return of function) 1759 Unique_Node_List(Unique_Node_List&&) = default; 1760 1761 void remove( Node *n ); 1762 bool member(const Node* n) const { return _in_worklist.test(n->_idx) != 0; } 1763 VectorSet& member_set(){ return _in_worklist; } 1764 1765 void push(Node* b) { 1766 if( !_in_worklist.test_set(b->_idx) ) 1767 Node_List::push(b); 1768 } 1769 void push_non_cfg_inputs_of(const Node* node) { 1770 for (uint i = 1; i < node->req(); i++) { 1771 Node* input = node->in(i); 1772 if (input != nullptr && !input->is_CFG()) { 1773 push(input); 1774 } 1775 } 1776 } 1777 1778 void push_outputs_of(const Node* node) { 1779 for (DUIterator_Fast imax, i = node->fast_outs(imax); i < imax; i++) { 1780 Node* output = node->fast_out(i); 1781 push(output); 1782 } 1783 } 1784 1785 Node *pop() { 1786 if( _clock_index >= size() ) _clock_index = 0; 1787 Node *b = at(_clock_index); 1788 map( _clock_index, Node_List::pop()); 1789 if (size() != 0) _clock_index++; // Always start from 0 1790 _in_worklist.remove(b->_idx); 1791 return b; 1792 } 1793 Node *remove(uint i) { 1794 Node *b = Node_List::at(i); 1795 _in_worklist.remove(b->_idx); 1796 map(i,Node_List::pop()); 1797 return b; 1798 } 1799 void yank(Node *n) { 1800 _in_worklist.remove(n->_idx); 1801 Node_List::yank(n); 1802 } 1803 void clear() { 1804 _in_worklist.clear(); // Discards storage but grows automatically 1805 Node_List::clear(); 1806 _clock_index = 0; 1807 } 1808 void ensure_empty() { 1809 assert(size() == 0, "must be empty"); 1810 clear(); // just in case 1811 } 1812 1813 // Used after parsing to remove useless nodes before Iterative GVN 1814 void remove_useless_nodes(VectorSet& useful); 1815 1816 // If the idx of the Nodes change, we must recompute the VectorSet 1817 void recompute_idx_set() { 1818 _in_worklist.clear(); 1819 for (uint i = 0; i < size(); i++) { 1820 Node* n = at(i); 1821 _in_worklist.set(n->_idx); 1822 } 1823 } 1824 1825 #ifdef ASSERT 1826 bool is_subset_of(Unique_Node_List& other) { 1827 for (uint i = 0; i < size(); i++) { 1828 Node* n = at(i); 1829 if (!other.member(n)) { 1830 return false; 1831 } 1832 } 1833 return true; 1834 } 1835 #endif 1836 1837 bool contains(const Node* n) const { 1838 fatal("use faster member() instead"); 1839 return false; 1840 } 1841 1842 #ifndef PRODUCT 1843 void print_set() const { _in_worklist.print(); } 1844 #endif 1845 }; 1846 1847 // Unique_Mixed_Node_List 1848 // unique: nodes are added only once 1849 // mixed: allow new and old nodes 1850 class Unique_Mixed_Node_List : public ResourceObj { 1851 public: 1852 Unique_Mixed_Node_List() : _visited_set(cmpkey, hashkey) {} 1853 1854 void add(Node* node) { 1855 if (not_a_node(node)) { 1856 return; // Gracefully handle null, -1, 0xabababab, etc. 1857 } 1858 if (_visited_set[node] == nullptr) { 1859 _visited_set.Insert(node, node); 1860 _worklist.push(node); 1861 } 1862 } 1863 1864 Node* operator[] (uint i) const { 1865 return _worklist[i]; 1866 } 1867 1868 size_t size() { 1869 return _worklist.size(); 1870 } 1871 1872 private: 1873 Dict _visited_set; 1874 Node_List _worklist; 1875 }; 1876 1877 // Inline definition of Compile::record_for_igvn must be deferred to this point. 1878 inline void Compile::record_for_igvn(Node* n) { 1879 _igvn_worklist->push(n); 1880 } 1881 1882 // Inline definition of Compile::remove_for_igvn must be deferred to this point. 1883 inline void Compile::remove_for_igvn(Node* n) { 1884 _igvn_worklist->remove(n); 1885 } 1886 1887 //------------------------------Node_Stack------------------------------------- 1888 class Node_Stack { 1889 protected: 1890 struct INode { 1891 Node *node; // Processed node 1892 uint indx; // Index of next node's child 1893 }; 1894 INode *_inode_top; // tos, stack grows up 1895 INode *_inode_max; // End of _inodes == _inodes + _max 1896 INode *_inodes; // Array storage for the stack 1897 Arena *_a; // Arena to allocate in 1898 ReallocMark _nesting; // Safety checks for arena reallocation 1899 void grow(); 1900 public: 1901 Node_Stack(int size) { 1902 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1903 _a = Thread::current()->resource_area(); 1904 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1905 _inode_max = _inodes + max; 1906 _inode_top = _inodes - 1; // stack is empty 1907 } 1908 1909 Node_Stack(Arena *a, int size) : _a(a) { 1910 size_t max = (size > OptoNodeListSize) ? size : OptoNodeListSize; 1911 _inodes = NEW_ARENA_ARRAY( _a, INode, max ); 1912 _inode_max = _inodes + max; 1913 _inode_top = _inodes - 1; // stack is empty 1914 } 1915 1916 void pop() { 1917 assert(_inode_top >= _inodes, "node stack underflow"); 1918 --_inode_top; 1919 } 1920 void push(Node *n, uint i) { 1921 ++_inode_top; 1922 grow(); 1923 INode *top = _inode_top; // optimization 1924 top->node = n; 1925 top->indx = i; 1926 } 1927 Node *node() const { 1928 return _inode_top->node; 1929 } 1930 Node* node_at(uint i) const { 1931 assert(_inodes + i <= _inode_top, "in range"); 1932 return _inodes[i].node; 1933 } 1934 uint index() const { 1935 return _inode_top->indx; 1936 } 1937 uint index_at(uint i) const { 1938 assert(_inodes + i <= _inode_top, "in range"); 1939 return _inodes[i].indx; 1940 } 1941 void set_node(Node *n) { 1942 _inode_top->node = n; 1943 } 1944 void set_index(uint i) { 1945 _inode_top->indx = i; 1946 } 1947 uint size_max() const { return (uint)pointer_delta(_inode_max, _inodes, sizeof(INode)); } // Max size 1948 uint size() const { return (uint)pointer_delta((_inode_top+1), _inodes, sizeof(INode)); } // Current size 1949 bool is_nonempty() const { return (_inode_top >= _inodes); } 1950 bool is_empty() const { return (_inode_top < _inodes); } 1951 void clear() { _inode_top = _inodes - 1; } // retain storage 1952 1953 // Node_Stack is used to map nodes. 1954 Node* find(uint idx) const; 1955 1956 NONCOPYABLE(Node_Stack); 1957 }; 1958 1959 1960 //-----------------------------Node_Notes-------------------------------------- 1961 // Debugging or profiling annotations loosely and sparsely associated 1962 // with some nodes. See Compile::node_notes_at for the accessor. 1963 class Node_Notes { 1964 JVMState* _jvms; 1965 1966 public: 1967 Node_Notes(JVMState* jvms = nullptr) { 1968 _jvms = jvms; 1969 } 1970 1971 JVMState* jvms() { return _jvms; } 1972 void set_jvms(JVMState* x) { _jvms = x; } 1973 1974 // True if there is nothing here. 1975 bool is_clear() { 1976 return (_jvms == nullptr); 1977 } 1978 1979 // Make there be nothing here. 1980 void clear() { 1981 _jvms = nullptr; 1982 } 1983 1984 // Make a new, clean node notes. 1985 static Node_Notes* make(Compile* C) { 1986 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1987 nn->clear(); 1988 return nn; 1989 } 1990 1991 Node_Notes* clone(Compile* C) { 1992 Node_Notes* nn = NEW_ARENA_ARRAY(C->comp_arena(), Node_Notes, 1); 1993 (*nn) = (*this); 1994 return nn; 1995 } 1996 1997 // Absorb any information from source. 1998 bool update_from(Node_Notes* source) { 1999 bool changed = false; 2000 if (source != nullptr) { 2001 if (source->jvms() != nullptr) { 2002 set_jvms(source->jvms()); 2003 changed = true; 2004 } 2005 } 2006 return changed; 2007 } 2008 }; 2009 2010 // Inlined accessors for Compile::node_nodes that require the preceding class: 2011 inline Node_Notes* 2012 Compile::locate_node_notes(GrowableArray<Node_Notes*>* arr, 2013 int idx, bool can_grow) { 2014 assert(idx >= 0, "oob"); 2015 int block_idx = (idx >> _log2_node_notes_block_size); 2016 int grow_by = (block_idx - (arr == nullptr? 0: arr->length())); 2017 if (grow_by >= 0) { 2018 if (!can_grow) return nullptr; 2019 grow_node_notes(arr, grow_by + 1); 2020 } 2021 if (arr == nullptr) return nullptr; 2022 // (Every element of arr is a sub-array of length _node_notes_block_size.) 2023 return arr->at(block_idx) + (idx & (_node_notes_block_size-1)); 2024 } 2025 2026 inline Node_Notes* Compile::node_notes_at(int idx) { 2027 return locate_node_notes(_node_note_array, idx, false); 2028 } 2029 2030 inline bool 2031 Compile::set_node_notes_at(int idx, Node_Notes* value) { 2032 if (value == nullptr || value->is_clear()) 2033 return false; // nothing to write => write nothing 2034 Node_Notes* loc = locate_node_notes(_node_note_array, idx, true); 2035 assert(loc != nullptr, ""); 2036 return loc->update_from(value); 2037 } 2038 2039 2040 //------------------------------TypeNode--------------------------------------- 2041 // Node with a Type constant. 2042 class TypeNode : public Node { 2043 protected: 2044 virtual uint hash() const; // Check the type 2045 virtual bool cmp( const Node &n ) const; 2046 virtual uint size_of() const; // Size is bigger 2047 const Type* const _type; 2048 public: 2049 void set_type(const Type* t) { 2050 assert(t != nullptr, "sanity"); 2051 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH); 2052 *(const Type**)&_type = t; // cast away const-ness 2053 // If this node is in the hash table, make sure it doesn't need a rehash. 2054 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code"); 2055 } 2056 const Type* type() const { assert(_type != nullptr, "sanity"); return _type; }; 2057 TypeNode( const Type *t, uint required ) : Node(required), _type(t) { 2058 init_class_id(Class_Type); 2059 } 2060 virtual const Type* Value(PhaseGVN* phase) const; 2061 virtual const Type *bottom_type() const; 2062 virtual uint ideal_reg() const; 2063 #ifndef PRODUCT 2064 virtual void dump_spec(outputStream *st) const; 2065 virtual void dump_compact_spec(outputStream *st) const; 2066 #endif 2067 }; 2068 2069 #include "opto/opcodes.hpp" 2070 2071 #define Op_IL(op) \ 2072 inline int Op_ ## op(BasicType bt) { \ 2073 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); \ 2074 if (bt == T_INT) { \ 2075 return Op_## op ## I; \ 2076 } \ 2077 return Op_## op ## L; \ 2078 } 2079 2080 Op_IL(Add) 2081 Op_IL(And) 2082 Op_IL(Sub) 2083 Op_IL(Mul) 2084 Op_IL(URShift) 2085 Op_IL(LShift) 2086 Op_IL(Xor) 2087 Op_IL(Cmp) 2088 Op_IL(Div) 2089 Op_IL(Mod) 2090 Op_IL(UDiv) 2091 Op_IL(UMod) 2092 2093 inline int Op_ConIL(BasicType bt) { 2094 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2095 if (bt == T_INT) { 2096 return Op_ConI; 2097 } 2098 return Op_ConL; 2099 } 2100 2101 inline int Op_Cmp_unsigned(BasicType bt) { 2102 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2103 if (bt == T_INT) { 2104 return Op_CmpU; 2105 } 2106 return Op_CmpUL; 2107 } 2108 2109 inline int Op_Cast(BasicType bt) { 2110 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2111 if (bt == T_INT) { 2112 return Op_CastII; 2113 } 2114 return Op_CastLL; 2115 } 2116 2117 inline int Op_DivIL(BasicType bt, bool is_unsigned) { 2118 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2119 if (bt == T_INT) { 2120 if (is_unsigned) { 2121 return Op_UDivI; 2122 } else { 2123 return Op_DivI; 2124 } 2125 } 2126 if (is_unsigned) { 2127 return Op_UDivL; 2128 } else { 2129 return Op_DivL; 2130 } 2131 } 2132 2133 inline int Op_DivModIL(BasicType bt, bool is_unsigned) { 2134 assert(bt == T_INT || bt == T_LONG, "only for int or longs"); 2135 if (bt == T_INT) { 2136 if (is_unsigned) { 2137 return Op_UDivModI; 2138 } else { 2139 return Op_DivModI; 2140 } 2141 } 2142 if (is_unsigned) { 2143 return Op_UDivModL; 2144 } else { 2145 return Op_DivModL; 2146 } 2147 } 2148 2149 // Interface to define actions that should be taken when running DataNodeBFS. Each use can extend this class to specify 2150 // a customized BFS. 2151 class BFSActions : public StackObj { 2152 public: 2153 // Should a node's inputs further be visited in the BFS traversal? By default, we visit all data inputs. Override this 2154 // method to provide a custom filter. 2155 virtual bool should_visit(Node* node) const { 2156 // By default, visit all inputs. 2157 return true; 2158 }; 2159 2160 // Is the visited node a target node that we are looking for in the BFS traversal? We do not visit its inputs further 2161 // but the BFS will continue to visit all unvisited nodes in the queue. 2162 virtual bool is_target_node(Node* node) const = 0; 2163 2164 // Defines an action that should be taken when we visit a target node in the BFS traversal. 2165 virtual void target_node_action(Node* target_node) = 0; 2166 }; 2167 2168 // Class to perform a BFS traversal on the data nodes from a given start node. The provided BFSActions guide which 2169 // data node's inputs should be further visited, which data nodes are target nodes and what to do with the target nodes. 2170 class DataNodeBFS : public StackObj { 2171 BFSActions& _bfs_actions; 2172 2173 public: 2174 explicit DataNodeBFS(BFSActions& bfs_action) : _bfs_actions(bfs_action) {} 2175 2176 // Run the BFS starting from 'start_node' and apply the actions provided to this class. 2177 void run(Node* start_node) { 2178 ResourceMark rm; 2179 Unique_Node_List _nodes_to_visit; 2180 _nodes_to_visit.push(start_node); 2181 for (uint i = 0; i < _nodes_to_visit.size(); i++) { 2182 Node* next = _nodes_to_visit[i]; 2183 for (uint j = 1; j < next->req(); j++) { 2184 Node* input = next->in(j); 2185 if (_bfs_actions.is_target_node(input)) { 2186 assert(_bfs_actions.should_visit(input), "must also pass node filter"); 2187 _bfs_actions.target_node_action(input); 2188 } else if (_bfs_actions.should_visit(input)) { 2189 _nodes_to_visit.push(input); 2190 } 2191 } 2192 } 2193 } 2194 }; 2195 2196 #endif // SHARE_OPTO_NODE_HPP