< prev index next > src/hotspot/share/opto/parse2.cpp
Print this page
*
*/
#include "precompiled.hpp"
#include "ci/ciMethodData.hpp"
+ #include "ci/ciSymbols.hpp"
#include "classfile/vmSymbols.hpp"
#include "compiler/compileLog.hpp"
#include "interpreter/linkResolver.hpp"
#include "jvm_io.h"
#include "memory/resourceArea.hpp"
#include "opto/addnode.hpp"
#include "opto/castnode.hpp"
#include "opto/convertnode.hpp"
#include "opto/divnode.hpp"
#include "opto/idealGraphPrinter.hpp"
+ #include "opto/idealKit.hpp"
+ #include "opto/inlinetypenode.hpp"
#include "opto/matcher.hpp"
#include "opto/memnode.hpp"
#include "opto/mulnode.hpp"
#include "opto/opaquenode.hpp"
#include "opto/parse.hpp"
#ifndef PRODUCT
extern uint explicit_null_checks_inserted,
explicit_null_checks_elided;
#endif
//---------------------------------array_load----------------------------------
void Parse::array_load(BasicType bt) {
const Type* elemtype = Type::TOP;
- bool big_val = bt == T_DOUBLE || bt == T_LONG;
Node* adr = array_addressing(bt, 0, elemtype);
if (stopped()) return; // guaranteed null or range check
! pop(); // index (already used)
! Node* array = pop(); // the array itself
if (elemtype == TypeInt::BOOL) {
bt = T_BOOLEAN;
}
const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
-
Node* ld = access_load_at(array, adr, adr_type, elemtype, bt,
IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
! if (big_val) {
! push_pair(ld);
! } else {
! push(ld);
}
}
//--------------------------------array_store----------------------------------
void Parse::array_store(BasicType bt) {
const Type* elemtype = Type::TOP;
! bool big_val = bt == T_DOUBLE || bt == T_LONG;
- Node* adr = array_addressing(bt, big_val ? 2 : 1, elemtype);
if (stopped()) return; // guaranteed null or range check
if (bt == T_OBJECT) {
! array_store_check();
if (stopped()) {
return;
}
}
! Node* val; // Oop to store
! if (big_val) {
! val = pop_pair();
! } else {
! val = pop();
! }
- pop(); // index (already used)
- Node* array = pop(); // the array itself
if (elemtype == TypeInt::BOOL) {
bt = T_BOOLEAN;
}
! const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
!
! access_store_at(array, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
}
//------------------------------array_addressing-------------------------------
// Pull array and index from the stack. Compute pointer-to-element.
Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) {
Node *idx = peek(0+vals); // Get from stack without popping
#ifndef PRODUCT
extern uint explicit_null_checks_inserted,
explicit_null_checks_elided;
#endif
+ Node* Parse::record_profile_for_speculation_at_array_load(Node* ld) {
+ // Feed unused profile data to type speculation
+ if (UseTypeSpeculation && UseArrayLoadStoreProfile) {
+ ciKlass* array_type = nullptr;
+ ciKlass* element_type = nullptr;
+ ProfilePtrKind element_ptr = ProfileMaybeNull;
+ bool flat_array = true;
+ bool null_free_array = true;
+ method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
+ if (element_type != nullptr || element_ptr != ProfileMaybeNull) {
+ ld = record_profile_for_speculation(ld, element_type, element_ptr);
+ }
+ }
+ return ld;
+ }
+
+
//---------------------------------array_load----------------------------------
void Parse::array_load(BasicType bt) {
const Type* elemtype = Type::TOP;
Node* adr = array_addressing(bt, 0, elemtype);
if (stopped()) return; // guaranteed null or range check
! Node* array_index = pop();
! Node* array = pop();
+
+ // Handle inline type arrays
+ const TypeOopPtr* element_ptr = elemtype->make_oopptr();
+ const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr();
+ if (array_type->is_flat()) {
+ // Load from flat inline type array
+ Node* inline_type;
+ if (element_ptr->klass_is_exact()) {
+ inline_type = InlineTypeNode::make_from_flat(this, elemtype->inline_klass(), array, adr);
+ } else {
+ // Element type of flat array is not exact. Therefore, we cannot determine the flat array layout statically.
+ // Emit a runtime call to load the element from the flat array.
+ inline_type = load_from_unknown_flat_array(array, array_index, element_ptr);
+ inline_type = record_profile_for_speculation_at_array_load(inline_type);
+ }
+ push(inline_type);
+ return;
+ }
+
+ if (!array_type->is_not_flat()) {
+ // Cannot statically determine if array is a flat array, emit runtime check
+ assert(UseFlatArray && is_reference_type(bt) && element_ptr->can_be_inline_type() && !array_type->is_not_null_free() &&
+ (!element_ptr->is_inlinetypeptr() || element_ptr->inline_klass()->flat_in_array()), "array can't be flat");
+ IdealKit ideal(this);
+ IdealVariable res(ideal);
+ ideal.declarations_done();
+ ideal.if_then(flat_array_test(array, /* flat = */ false)); {
+ // Non-flat array
+ assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found");
+ sync_kit(ideal);
+ const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
+ DecoratorSet decorator_set = IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD;
+ if (needs_range_check(array_type->size(), array_index)) {
+ // We've emitted a RangeCheck but now insert an additional check between the range check and the actual load.
+ // We cannot pin the load to two separate nodes. Instead, we pin it conservatively here such that it cannot
+ // possibly float above the range check at any point.
+ decorator_set |= C2_UNKNOWN_CONTROL_LOAD;
+ }
+ Node* ld = access_load_at(array, adr, adr_type, element_ptr, bt, decorator_set);
+ if (element_ptr->is_inlinetypeptr()) {
+ assert(element_ptr->maybe_null(), "null free array should be handled above");
+ ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass(), false);
+ }
+ ideal.sync_kit(this);
+ ideal.set(res, ld);
+ } ideal.else_(); {
+ // Flat array
+ sync_kit(ideal);
+ if (element_ptr->is_inlinetypeptr()) {
+ // Element type is known, cast and load from flat array layout.
+ ciInlineKlass* vk = element_ptr->inline_klass();
+ assert(vk->flat_in_array() && element_ptr->maybe_null(), "never/always flat - should be optimized");
+ ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* null_free */ true);
+ const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
+ Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, arytype));
+ Node* casted_adr = array_element_address(cast, array_index, T_OBJECT, array_type->size(), control());
+ // Re-execute flat array load if buffering triggers deoptimization
+ PreserveReexecuteState preexecs(this);
+ jvms()->set_should_reexecute(true);
+ inc_sp(2);
+ Node* vt = InlineTypeNode::make_from_flat(this, vk, cast, casted_adr)->buffer(this, false);
+ ideal.set(res, vt);
+ ideal.sync_kit(this);
+ } else {
+ // Element type is unknown, and thus we cannot statically determine the exact flat array layout. Emit a
+ // runtime call to correctly load the inline type element from the flat array.
+ Node* inline_type = load_from_unknown_flat_array(array, array_index, element_ptr);
+ ideal.sync_kit(this);
+ ideal.set(res, inline_type);
+ }
+ } ideal.end_if();
+ sync_kit(ideal);
+ Node* ld = _gvn.transform(ideal.value(res));
+ ld = record_profile_for_speculation_at_array_load(ld);
+ push_node(bt, ld);
+ return;
+ }
+
+ if (array_type->is_null_free()) {
+ // Load from non-flat inline type array (elements can never be null)
+ bt = T_OBJECT;
+ }
if (elemtype == TypeInt::BOOL) {
bt = T_BOOLEAN;
}
const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
Node* ld = access_load_at(array, adr, adr_type, elemtype, bt,
IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
! ld = record_profile_for_speculation_at_array_load(ld);
! // Loading an inline type from a non-flat array
! if (element_ptr != nullptr && element_ptr->is_inlinetypeptr()) {
! assert(!array_type->is_null_free() || !element_ptr->maybe_null(), "inline type array elements should never be null");
+ ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass(), !element_ptr->maybe_null());
}
+ push_node(bt, ld);
}
+ Node* Parse::load_from_unknown_flat_array(Node* array, Node* array_index, const TypeOopPtr* element_ptr) {
+ // Below membars keep this access to an unknown flat array correctly
+ // ordered with other unknown and known flat array accesses.
+ insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
+
+ Node* call = nullptr;
+ {
+ // Re-execute flat array load if runtime call triggers deoptimization
+ PreserveReexecuteState preexecs(this);
+ jvms()->set_bci(_bci);
+ jvms()->set_should_reexecute(true);
+ inc_sp(2);
+ kill_dead_locals();
+ call = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
+ OptoRuntime::load_unknown_inline_Type(),
+ OptoRuntime::load_unknown_inline_Java(),
+ nullptr, TypeRawPtr::BOTTOM,
+ array, array_index);
+ }
+ make_slow_call_ex(call, env()->Throwable_klass(), false);
+ Node* buffer = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
+
+ insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
+
+ // Keep track of the information that the inline type is in flat arrays
+ const Type* unknown_value = element_ptr->is_instptr()->cast_to_flat_in_array();
+ return _gvn.transform(new CheckCastPPNode(control(), buffer, unknown_value));
+ }
//--------------------------------array_store----------------------------------
void Parse::array_store(BasicType bt) {
const Type* elemtype = Type::TOP;
! Node* adr = array_addressing(bt, type2size[bt], elemtype);
if (stopped()) return; // guaranteed null or range check
+ Node* stored_value_casted = nullptr;
if (bt == T_OBJECT) {
! stored_value_casted = array_store_check(adr, elemtype);
if (stopped()) {
return;
}
}
! Node* const stored_value = pop_node(bt); // Value to store
! Node* const array_index = pop(); // Index in the array
! Node* array = pop(); // The array itself
!
! const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr();
! const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
if (elemtype == TypeInt::BOOL) {
bt = T_BOOLEAN;
+ } else if (bt == T_OBJECT) {
+ elemtype = elemtype->make_oopptr();
+ const Type* stored_value_casted_type = _gvn.type(stored_value_casted);
+ // Based on the value to be stored, try to determine if the array is not null-free and/or not flat.
+ // This is only legal for non-null stores because the array_store_check always passes for null, even
+ // if the array is null-free. Null stores are handled in GraphKit::inline_array_null_guard().
+ bool not_null_free = !stored_value_casted_type->maybe_null() &&
+ !stored_value_casted_type->is_oopptr()->can_be_inline_type();
+ bool not_flat = not_null_free || (stored_value_casted_type->is_inlinetypeptr() &&
+ !stored_value_casted_type->inline_klass()->flat_in_array());
+ if (!array_type->is_not_null_free() && not_null_free) {
+ // Storing a non-inline type, mark array as not null-free (-> not flat).
+ array_type = array_type->cast_to_not_null_free();
+ Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type));
+ replace_in_map(array, cast);
+ array = cast;
+ } else if (!array_type->is_not_flat() && not_flat) {
+ // Storing to a non-flat array, mark array as not flat.
+ array_type = array_type->cast_to_not_flat();
+ Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type));
+ replace_in_map(array, cast);
+ array = cast;
+ }
+
+ if (array_type->is_flat()) {
+ // Store to flat inline type array
+ assert(!stored_value_casted_type->maybe_null(), "should be guaranteed by array store check");
+ if (array_type->klass_is_exact()) {
+ // Store to exact flat inline type array where we know the flat array layout statically.
+ // Re-execute flat array store if buffering triggers deoptimization
+ PreserveReexecuteState preexecs(this);
+ inc_sp(3);
+ jvms()->set_should_reexecute(true);
+ stored_value_casted->as_InlineType()->store_flat(this, array, adr, nullptr, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY);
+ } else {
+ // Element type of flat array is not exact. Therefore, we cannot determine the flat array layout statically.
+ // Emit a runtime call to store the element to the flat array.
+ store_to_unknown_flat_array(array, array_index, stored_value_casted);
+ }
+ return;
+ }
+ if (array_type->is_null_free()) {
+ // Store to non-flat null-free inline type array (elements can never be null)
+ assert(!stored_value_casted_type->maybe_null(), "should be guaranteed by array store check");
+ if (elemtype->inline_klass()->is_empty()) {
+ // Ignore empty inline stores, array is already initialized.
+ return;
+ }
+ } else if (!array_type->is_not_flat() && (stored_value_casted_type != TypePtr::NULL_PTR || StressReflectiveCode)) {
+ // Array might be a flat array, emit runtime checks (for nullptr, a simple inline_array_null_guard is sufficient).
+ assert(UseFlatArray && !not_flat && elemtype->is_oopptr()->can_be_inline_type() &&
+ !array_type->klass_is_exact() && !array_type->is_not_null_free(), "array can't be a flat array");
+ IdealKit ideal(this);
+ ideal.if_then(flat_array_test(array, /* flat = */ false)); {
+ // Non-flat array
+ assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found");
+ sync_kit(ideal);
+ Node* cast_array = inline_array_null_guard(array, stored_value_casted, 3);
+ inc_sp(3);
+ access_store_at(cast_array, adr, adr_type, stored_value_casted, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY, false);
+ dec_sp(3);
+ ideal.sync_kit(this);
+ } ideal.else_(); {
+ sync_kit(ideal);
+ // flat array
+ Node* null_ctl = top();
+ Node* null_checked_stored_value_casted = null_check_oop(stored_value_casted, &null_ctl);
+ if (null_ctl != top()) {
+ PreserveJVMState pjvms(this);
+ inc_sp(3);
+ set_control(null_ctl);
+ uncommon_trap(Deoptimization::Reason_null_check, Deoptimization::Action_none);
+ dec_sp(3);
+ }
+ // Try to determine the inline klass
+ ciInlineKlass* inline_Klass = nullptr;
+ if (stored_value_casted_type->is_inlinetypeptr()) {
+ inline_Klass = stored_value_casted_type->inline_klass();
+ } else if (elemtype->is_inlinetypeptr()) {
+ inline_Klass = elemtype->inline_klass();
+ }
+ if (!stopped()) {
+ if (inline_Klass != nullptr) {
+ // Element type is known, cast and store to flat array layout.
+ assert(inline_Klass->flat_in_array() && elemtype->maybe_null(), "never/always flat - should be optimized");
+ ciArrayKlass* array_klass = ciArrayKlass::make(inline_Klass, /* null_free */ true);
+ const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
+ Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, arytype));
+ Node* casted_adr = array_element_address(casted_array, array_index, T_OBJECT, arytype->size(), control());
+ if (!null_checked_stored_value_casted->is_InlineType()) {
+ assert(!gvn().type(null_checked_stored_value_casted)->maybe_null(),
+ "inline type array elements should never be null");
+ null_checked_stored_value_casted = InlineTypeNode::make_from_oop(this, null_checked_stored_value_casted,
+ inline_Klass);
+ }
+ // Re-execute flat array store if buffering triggers deoptimization
+ PreserveReexecuteState preexecs(this);
+ inc_sp(3);
+ jvms()->set_should_reexecute(true);
+ null_checked_stored_value_casted->as_InlineType()->store_flat(this, casted_array, casted_adr, nullptr, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY);
+ } else {
+ // Element type is unknown, emit a runtime call since the flat array layout is not statically known.
+ store_to_unknown_flat_array(array, array_index, null_checked_stored_value_casted);
+ }
+ }
+ ideal.sync_kit(this);
+ }
+ ideal.end_if();
+ sync_kit(ideal);
+ return;
+ } else if (!array_type->is_not_null_free()) {
+ // Array is not flat but may be null free
+ assert(elemtype->is_oopptr()->can_be_inline_type(), "array can't be null-free");
+ array = inline_array_null_guard(array, stored_value_casted, 3, true);
+ }
}
! inc_sp(3);
! access_store_at(array, adr, adr_type, stored_value, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
! dec_sp(3);
}
+ // Emit a runtime call to store to a flat array whose element type is either unknown (i.e. we do not know the flat
+ // array layout) or not exact (could have different flat array layouts at runtime).
+ void Parse::store_to_unknown_flat_array(Node* array, Node* const idx, Node* non_null_stored_value) {
+ // Below membars keep this access to an unknown flat array correctly
+ // ordered with other unknown and known flat array accesses.
+ insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
+
+ make_runtime_call(RC_LEAF,
+ OptoRuntime::store_unknown_inline_Type(),
+ CAST_FROM_FN_PTR(address, OptoRuntime::store_unknown_inline_C),
+ "store_unknown_inline", TypeRawPtr::BOTTOM,
+ non_null_stored_value, array, idx);
+
+ insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
+ }
//------------------------------array_addressing-------------------------------
// Pull array and index from the stack. Compute pointer-to-element.
Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) {
Node *idx = peek(0+vals); // Get from stack without popping
elemtype = subklass->join_speculative(el);
}
}
}
- // Check for big class initializers with all constant offsets
- // feeding into a known-size array.
- const TypeInt* idxtype = _gvn.type(idx)->is_int();
- // See if the highest idx value is less than the lowest array bound,
- // and if the idx value cannot be negative:
- bool need_range_check = true;
- if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
- need_range_check = false;
- if (C->log() != nullptr) C->log()->elem("observe that='!need_range_check'");
- }
-
if (!arytype->is_loaded()) {
// Only fails for some -Xcomp runs
// The class is unloaded. We have to run this bytecode in the interpreter.
ciKlass* klass = arytype->unloaded_klass();
Deoptimization::Action_reinterpret,
klass, "!loaded array");
return top();
}
! // Do the range check
- if (need_range_check) {
- Node* tst;
- if (sizetype->_hi <= 0) {
- // The greatest array bound is negative, so we can conclude that we're
- // compiling unreachable code, but the unsigned compare trick used below
- // only works with non-negative lengths. Instead, hack "tst" to be zero so
- // the uncommon_trap path will always be taken.
- tst = _gvn.intcon(0);
- } else {
- // Range is constant in array-oop, so we can use the original state of mem
- Node* len = load_array_length(ary);
! // Test length vs index (standard trick using unsigned compare)
! Node* chk = _gvn.transform( new CmpUNode(idx, len) );
! BoolTest::mask btest = BoolTest::lt;
! tst = _gvn.transform( new BoolNode(chk, btest) );
- }
- RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
- _gvn.set_type(rc, rc->Value(&_gvn));
- if (!tst->is_Con()) {
- record_for_igvn(rc);
- }
- set_control(_gvn.transform(new IfTrueNode(rc)));
- // Branch to failure if out of bounds
- {
- PreserveJVMState pjvms(this);
- set_control(_gvn.transform(new IfFalseNode(rc)));
- if (C->allow_range_check_smearing()) {
- // Do not use builtin_throw, since range checks are sometimes
- // made more stringent by an optimistic transformation.
- // This creates "tentative" range checks at this point,
- // which are not guaranteed to throw exceptions.
- // See IfNode::Ideal, is_range_check, adjust_check.
- uncommon_trap(Deoptimization::Reason_range_check,
- Deoptimization::Action_make_not_entrant,
- nullptr, "range_check");
- } else {
- // If we have already recompiled with the range-check-widening
- // heroic optimization turned off, then we must really be throwing
- // range check exceptions.
- builtin_throw(Deoptimization::Reason_range_check);
- }
- }
}
// Check for always knowing you are throwing a range-check exception
if (stopped()) return top();
// Make array address computation control dependent to prevent it
// from floating above the range check during loop optimizations.
Deoptimization::Action_reinterpret,
klass, "!loaded array");
return top();
}
! ary = create_speculative_inline_type_array_checks(ary, arytype, elemtype);
! if (needs_range_check(sizetype, idx)) {
! create_range_check(idx, ary, sizetype);
! } else if (C->log() != nullptr) {
! C->log()->elem("observe that='!need_range_check'");
}
+
// Check for always knowing you are throwing a range-check exception
if (stopped()) return top();
// Make array address computation control dependent to prevent it
// from floating above the range check during loop optimizations.
assert(ptr != top(), "top should go hand-in-hand with stopped");
return ptr;
}
+ // Check if we need a range check for an array access. This is the case if the index is either negative or if it could
+ // be greater or equal the smallest possible array size (i.e. out-of-bounds).
+ bool Parse::needs_range_check(const TypeInt* size_type, const Node* index) const {
+ const TypeInt* index_type = _gvn.type(index)->is_int();
+ return index_type->_hi >= size_type->_lo || index_type->_lo < 0;
+ }
+
+ void Parse::create_range_check(Node* idx, Node* ary, const TypeInt* sizetype) {
+ Node* tst;
+ if (sizetype->_hi <= 0) {
+ // The greatest array bound is negative, so we can conclude that we're
+ // compiling unreachable code, but the unsigned compare trick used below
+ // only works with non-negative lengths. Instead, hack "tst" to be zero so
+ // the uncommon_trap path will always be taken.
+ tst = _gvn.intcon(0);
+ } else {
+ // Range is constant in array-oop, so we can use the original state of mem
+ Node* len = load_array_length(ary);
+
+ // Test length vs index (standard trick using unsigned compare)
+ Node* chk = _gvn.transform(new CmpUNode(idx, len) );
+ BoolTest::mask btest = BoolTest::lt;
+ tst = _gvn.transform(new BoolNode(chk, btest) );
+ }
+ RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
+ _gvn.set_type(rc, rc->Value(&_gvn));
+ if (!tst->is_Con()) {
+ record_for_igvn(rc);
+ }
+ set_control(_gvn.transform(new IfTrueNode(rc)));
+ // Branch to failure if out of bounds
+ {
+ PreserveJVMState pjvms(this);
+ set_control(_gvn.transform(new IfFalseNode(rc)));
+ if (C->allow_range_check_smearing()) {
+ // Do not use builtin_throw, since range checks are sometimes
+ // made more stringent by an optimistic transformation.
+ // This creates "tentative" range checks at this point,
+ // which are not guaranteed to throw exceptions.
+ // See IfNode::Ideal, is_range_check, adjust_check.
+ uncommon_trap(Deoptimization::Reason_range_check,
+ Deoptimization::Action_make_not_entrant,
+ nullptr, "range_check");
+ } else {
+ // If we have already recompiled with the range-check-widening
+ // heroic optimization turned off, then we must really be throwing
+ // range check exceptions.
+ builtin_throw(Deoptimization::Reason_range_check);
+ }
+ }
+ }
+
+ // For inline type arrays, we can use the profiling information for array accesses to speculate on the type, flatness,
+ // and null-freeness. We can either prepare the speculative type for later uses or emit explicit speculative checks with
+ // traps now. In the latter case, the speculative type guarantees can avoid additional runtime checks later (e.g.
+ // non-null-free implies non-flat which allows us to remove flatness checks). This makes the graph simpler.
+ Node* Parse::create_speculative_inline_type_array_checks(Node* array, const TypeAryPtr* array_type,
+ const Type*& element_type) {
+ if (!array_type->is_flat() && !array_type->is_not_flat()) {
+ // For arrays that might be flat, speculate that the array has the exact type reported in the profile data such that
+ // we can rely on a fixed memory layout (i.e. either a flat layout or not).
+ array = cast_to_speculative_array_type(array, array_type, element_type);
+ } else if (UseTypeSpeculation && UseArrayLoadStoreProfile) {
+ // Array is known to be either flat or not flat. If possible, update the speculative type by using the profile data
+ // at this bci.
+ array = cast_to_profiled_array_type(array);
+ }
+
+ // Even though the type does not tell us whether we have an inline type array or not, we can still check the profile data
+ // whether we have a non-null-free or non-flat array. Since non-null-free implies non-flat, we check this first.
+ // Speculating on a non-null-free array doesn't help aaload but could be profitable for a subsequent aastore.
+ if (!array_type->is_null_free() && !array_type->is_not_null_free()) {
+ array = speculate_non_null_free_array(array, array_type);
+ }
+
+ if (!array_type->is_flat() && !array_type->is_not_flat()) {
+ array = speculate_non_flat_array(array, array_type);
+ }
+ return array;
+ }
+
+ // Speculate that the array has the exact type reported in the profile data. We emit a trap when this turns out to be
+ // wrong. On the fast path, we add a CheckCastPP to use the exact type.
+ Node* Parse::cast_to_speculative_array_type(Node* const array, const TypeAryPtr*& array_type, const Type*& element_type) {
+ Deoptimization::DeoptReason reason = Deoptimization::Reason_speculate_class_check;
+ ciKlass* speculative_array_type = array_type->speculative_type();
+ if (too_many_traps_or_recompiles(reason) || speculative_array_type == nullptr) {
+ // No speculative type, check profile data at this bci
+ speculative_array_type = nullptr;
+ reason = Deoptimization::Reason_class_check;
+ if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) {
+ ciKlass* profiled_element_type = nullptr;
+ ProfilePtrKind element_ptr = ProfileMaybeNull;
+ bool flat_array = true;
+ bool null_free_array = true;
+ method()->array_access_profiled_type(bci(), speculative_array_type, profiled_element_type, element_ptr, flat_array,
+ null_free_array);
+ }
+ }
+ if (speculative_array_type != nullptr) {
+ // Speculate that this array has the exact type reported by profile data
+ Node* casted_array = nullptr;
+ DEBUG_ONLY(Node* old_control = control();)
+ Node* slow_ctl = type_check_receiver(array, speculative_array_type, 1.0, &casted_array);
+ if (stopped()) {
+ // The check always fails and therefore profile information is incorrect. Don't use it.
+ assert(old_control == slow_ctl, "type check should have been removed");
+ set_control(slow_ctl);
+ } else if (!slow_ctl->is_top()) {
+ { PreserveJVMState pjvms(this);
+ set_control(slow_ctl);
+ uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
+ }
+ replace_in_map(array, casted_array);
+ array_type = _gvn.type(casted_array)->is_aryptr();
+ element_type = array_type->elem();
+ return casted_array;
+ }
+ }
+ return array;
+ }
+
+ // Create a CheckCastPP when the speculative type can improve the current type.
+ Node* Parse::cast_to_profiled_array_type(Node* const array) {
+ ciKlass* array_type = nullptr;
+ ciKlass* element_type = nullptr;
+ ProfilePtrKind element_ptr = ProfileMaybeNull;
+ bool flat_array = true;
+ bool null_free_array = true;
+ method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
+ if (array_type != nullptr) {
+ return record_profile_for_speculation(array, array_type, ProfileMaybeNull);
+ }
+ return array;
+ }
+
+ // Speculate that the array is non-null-free. This will imply non-flatness. We emit a trap when this turns out to be
+ // wrong. On the fast path, we add a CheckCastPP to use the non-null-free type.
+ Node* Parse::speculate_non_null_free_array(Node* const array, const TypeAryPtr*& array_type) {
+ bool null_free_array = true;
+ Deoptimization::DeoptReason reason = Deoptimization::Reason_none;
+ if (array_type->speculative() != nullptr &&
+ array_type->speculative()->is_aryptr()->is_not_null_free() &&
+ !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
+ null_free_array = false;
+ reason = Deoptimization::Reason_speculate_class_check;
+ } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) {
+ ciKlass* profiled_array_type = nullptr;
+ ciKlass* profiled_element_type = nullptr;
+ ProfilePtrKind element_ptr = ProfileMaybeNull;
+ bool flat_array = true;
+ method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array,
+ null_free_array);
+ reason = Deoptimization::Reason_class_check;
+ }
+ if (!null_free_array) {
+ { // Deoptimize if null-free array
+ BuildCutout unless(this, null_free_array_test(array, /* null_free = */ false), PROB_MAX);
+ uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
+ }
+ assert(!stopped(), "null-free array should have been caught earlier");
+ Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_null_free()));
+ replace_in_map(array, casted_array);
+ array_type = _gvn.type(casted_array)->is_aryptr();
+ return casted_array;
+ }
+ return array;
+ }
+
+ // Speculate that the array is non-flat. We emit a trap when this turns out to be wrong. On the fast path, we add a
+ // CheckCastPP to use the non-flat type.
+ Node* Parse::speculate_non_flat_array(Node* const array, const TypeAryPtr* const array_type) {
+ bool flat_array = true;
+ Deoptimization::DeoptReason reason = Deoptimization::Reason_none;
+ if (array_type->speculative() != nullptr &&
+ array_type->speculative()->is_aryptr()->is_not_flat() &&
+ !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
+ flat_array = false;
+ reason = Deoptimization::Reason_speculate_class_check;
+ } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) {
+ ciKlass* profiled_array_type = nullptr;
+ ciKlass* profiled_element_type = nullptr;
+ ProfilePtrKind element_ptr = ProfileMaybeNull;
+ bool null_free_array = true;
+ method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array,
+ null_free_array);
+ reason = Deoptimization::Reason_class_check;
+ }
+ if (!flat_array) {
+ { // Deoptimize if flat array
+ BuildCutout unless(this, flat_array_test(array, /* flat = */ false), PROB_MAX);
+ uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
+ }
+ assert(!stopped(), "flat array should have been caught earlier");
+ Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_flat()));
+ replace_in_map(array, casted_array);
+ return casted_array;
+ }
+ return array;
+ }
// returns IfNode
IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) {
Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
Node *tst = _gvn.transform(new BoolNode(cmp, mask));
stress_trap(iff, counter, incr_store);
}
}
//------------------------------------do_if------------------------------------
! void Parse::do_if(BoolTest::mask btest, Node* c) {
int target_bci = iter().get_dest();
Block* branch_block = successor_for_bci(target_bci);
Block* next_block = successor_for_bci(iter().next_bci());
stress_trap(iff, counter, incr_store);
}
}
//------------------------------------do_if------------------------------------
! void Parse::do_if(BoolTest::mask btest, Node* c, bool can_trap, bool new_path, Node** ctrl_taken) {
int target_bci = iter().get_dest();
Block* branch_block = successor_for_bci(target_bci);
Block* next_block = successor_for_bci(iter().next_bci());
{ PreserveJVMState pjvms(this);
taken_branch = _gvn.transform(taken_branch);
set_control(taken_branch);
if (stopped()) {
! if (C->eliminate_boxing()) {
! // Mark the successor block as parsed
branch_block->next_path_num();
}
} else {
! adjust_map_after_if(taken_btest, c, prob, branch_block);
if (!stopped()) {
! merge(target_bci);
}
}
}
untaken_branch = _gvn.transform(untaken_branch);
set_control(untaken_branch);
// Branch not taken.
! if (stopped()) {
if (C->eliminate_boxing()) {
! // Mark the successor block as parsed
next_block->next_path_num();
}
} else {
! adjust_map_after_if(untaken_btest, c, untaken_prob, next_block);
}
if (do_stress_trap) {
stress_trap(iff, counter, incr_store);
}
}
// Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information.
// Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and
// then either takes the trap or executes the original, unstable if.
void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) {
// Search for an unstable if trap
{ PreserveJVMState pjvms(this);
taken_branch = _gvn.transform(taken_branch);
set_control(taken_branch);
if (stopped()) {
! if (C->eliminate_boxing() && !new_path) {
! // Mark the successor block as parsed (if we haven't created a new path)
branch_block->next_path_num();
}
} else {
! adjust_map_after_if(taken_btest, c, prob, branch_block, can_trap);
if (!stopped()) {
! if (new_path) {
+ // Merge by using a new path
+ merge_new_path(target_bci);
+ } else if (ctrl_taken != nullptr) {
+ // Don't merge but save taken branch to be wired by caller
+ *ctrl_taken = control();
+ } else {
+ merge(target_bci);
+ }
}
}
}
untaken_branch = _gvn.transform(untaken_branch);
set_control(untaken_branch);
// Branch not taken.
! if (stopped() && ctrl_taken == nullptr) {
if (C->eliminate_boxing()) {
! // Mark the successor block as parsed (if caller does not re-wire control flow)
next_block->next_path_num();
}
} else {
! adjust_map_after_if(untaken_btest, c, untaken_prob, next_block, can_trap);
}
if (do_stress_trap) {
stress_trap(iff, counter, incr_store);
}
}
+
+ static ProfilePtrKind speculative_ptr_kind(const TypeOopPtr* t) {
+ if (t->speculative() == nullptr) {
+ return ProfileUnknownNull;
+ }
+ if (t->speculative_always_null()) {
+ return ProfileAlwaysNull;
+ }
+ if (t->speculative_maybe_null()) {
+ return ProfileMaybeNull;
+ }
+ return ProfileNeverNull;
+ }
+
+ void Parse::acmp_always_null_input(Node* input, const TypeOopPtr* tinput, BoolTest::mask btest, Node* eq_region) {
+ inc_sp(2);
+ Node* cast = null_check_common(input, T_OBJECT, true, nullptr,
+ !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check) &&
+ speculative_ptr_kind(tinput) == ProfileAlwaysNull);
+ dec_sp(2);
+ if (btest == BoolTest::ne) {
+ {
+ PreserveJVMState pjvms(this);
+ replace_in_map(input, cast);
+ int target_bci = iter().get_dest();
+ merge(target_bci);
+ }
+ record_for_igvn(eq_region);
+ set_control(_gvn.transform(eq_region));
+ } else {
+ replace_in_map(input, cast);
+ }
+ }
+
+ Node* Parse::acmp_null_check(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, Node*& null_ctl) {
+ inc_sp(2);
+ null_ctl = top();
+ Node* cast = null_check_oop(input, &null_ctl,
+ input_ptr == ProfileNeverNull || (input_ptr == ProfileUnknownNull && !too_many_traps_or_recompiles(Deoptimization::Reason_null_check)),
+ false,
+ speculative_ptr_kind(tinput) == ProfileNeverNull &&
+ !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check));
+ dec_sp(2);
+ assert(!stopped(), "null input should have been caught earlier");
+ return cast;
+ }
+
+ void Parse::acmp_known_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, ciKlass* input_type, BoolTest::mask btest, Node* eq_region) {
+ Node* ne_region = new RegionNode(1);
+ Node* null_ctl;
+ Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl);
+ ne_region->add_req(null_ctl);
+
+ Node* slow_ctl = type_check_receiver(cast, input_type, 1.0, &cast);
+ {
+ PreserveJVMState pjvms(this);
+ inc_sp(2);
+ set_control(slow_ctl);
+ Deoptimization::DeoptReason reason;
+ if (tinput->speculative_type() != nullptr && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
+ reason = Deoptimization::Reason_speculate_class_check;
+ } else {
+ reason = Deoptimization::Reason_class_check;
+ }
+ uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
+ }
+ ne_region->add_req(control());
+
+ record_for_igvn(ne_region);
+ set_control(_gvn.transform(ne_region));
+ if (btest == BoolTest::ne) {
+ {
+ PreserveJVMState pjvms(this);
+ if (null_ctl == top()) {
+ replace_in_map(input, cast);
+ }
+ int target_bci = iter().get_dest();
+ merge(target_bci);
+ }
+ record_for_igvn(eq_region);
+ set_control(_gvn.transform(eq_region));
+ } else {
+ if (null_ctl == top()) {
+ replace_in_map(input, cast);
+ }
+ set_control(_gvn.transform(ne_region));
+ }
+ }
+
+ void Parse::acmp_unknown_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, BoolTest::mask btest, Node* eq_region) {
+ Node* ne_region = new RegionNode(1);
+ Node* null_ctl;
+ Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl);
+ ne_region->add_req(null_ctl);
+
+ {
+ BuildCutout unless(this, inline_type_test(cast, /* is_inline = */ false), PROB_MAX);
+ inc_sp(2);
+ uncommon_trap_exact(Deoptimization::Reason_class_check, Deoptimization::Action_maybe_recompile);
+ }
+
+ ne_region->add_req(control());
+
+ record_for_igvn(ne_region);
+ set_control(_gvn.transform(ne_region));
+ if (btest == BoolTest::ne) {
+ {
+ PreserveJVMState pjvms(this);
+ if (null_ctl == top()) {
+ replace_in_map(input, cast);
+ }
+ int target_bci = iter().get_dest();
+ merge(target_bci);
+ }
+ record_for_igvn(eq_region);
+ set_control(_gvn.transform(eq_region));
+ } else {
+ if (null_ctl == top()) {
+ replace_in_map(input, cast);
+ }
+ set_control(_gvn.transform(ne_region));
+ }
+ }
+
+ void Parse::do_acmp(BoolTest::mask btest, Node* left, Node* right) {
+ ciKlass* left_type = nullptr;
+ ciKlass* right_type = nullptr;
+ ProfilePtrKind left_ptr = ProfileUnknownNull;
+ ProfilePtrKind right_ptr = ProfileUnknownNull;
+ bool left_inline_type = true;
+ bool right_inline_type = true;
+
+ // Leverage profiling at acmp
+ if (UseACmpProfile) {
+ method()->acmp_profiled_type(bci(), left_type, right_type, left_ptr, right_ptr, left_inline_type, right_inline_type);
+ if (too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) {
+ left_type = nullptr;
+ right_type = nullptr;
+ left_inline_type = true;
+ right_inline_type = true;
+ }
+ if (too_many_traps_or_recompiles(Deoptimization::Reason_null_check)) {
+ left_ptr = ProfileUnknownNull;
+ right_ptr = ProfileUnknownNull;
+ }
+ }
+
+ if (UseTypeSpeculation) {
+ record_profile_for_speculation(left, left_type, left_ptr);
+ record_profile_for_speculation(right, right_type, right_ptr);
+ }
+
+ if (!EnableValhalla) {
+ Node* cmp = CmpP(left, right);
+ cmp = optimize_cmp_with_klass(cmp);
+ do_if(btest, cmp);
+ return;
+ }
+
+ // Check for equality before potentially allocating
+ if (left == right) {
+ do_if(btest, makecon(TypeInt::CC_EQ));
+ return;
+ }
+
+ // Allocate inline type operands and re-execute on deoptimization
+ if (left->is_InlineType()) {
+ if (_gvn.type(right)->is_zero_type() ||
+ (right->is_InlineType() && _gvn.type(right->as_InlineType()->get_is_init())->is_zero_type())) {
+ // Null checking a scalarized but nullable inline type. Check the IsInit
+ // input instead of the oop input to avoid keeping buffer allocations alive.
+ Node* cmp = CmpI(left->as_InlineType()->get_is_init(), intcon(0));
+ do_if(btest, cmp);
+ return;
+ } else {
+ PreserveReexecuteState preexecs(this);
+ inc_sp(2);
+ jvms()->set_should_reexecute(true);
+ left = left->as_InlineType()->buffer(this)->get_oop();
+ }
+ }
+ if (right->is_InlineType()) {
+ PreserveReexecuteState preexecs(this);
+ inc_sp(2);
+ jvms()->set_should_reexecute(true);
+ right = right->as_InlineType()->buffer(this)->get_oop();
+ }
+
+ // First, do a normal pointer comparison
+ const TypeOopPtr* tleft = _gvn.type(left)->isa_oopptr();
+ const TypeOopPtr* tright = _gvn.type(right)->isa_oopptr();
+ Node* cmp = CmpP(left, right);
+ cmp = optimize_cmp_with_klass(cmp);
+ if (tleft == nullptr || !tleft->can_be_inline_type() ||
+ tright == nullptr || !tright->can_be_inline_type()) {
+ // This is sufficient, if one of the operands can't be an inline type
+ do_if(btest, cmp);
+ return;
+ }
+
+ // Don't add traps to unstable if branches because additional checks are required to
+ // decide if the operands are equal/substitutable and we therefore shouldn't prune
+ // branches for one if based on the profiling of the acmp branches.
+ // Also, OptimizeUnstableIf would set an incorrect re-rexecution state because it
+ // assumes that there is a 1-1 mapping between the if and the acmp branches and that
+ // hitting a trap means that we will take the corresponding acmp branch on re-execution.
+ const bool can_trap = true;
+
+ Node* eq_region = nullptr;
+ if (btest == BoolTest::eq) {
+ do_if(btest, cmp, !can_trap, true);
+ if (stopped()) {
+ // Pointers are equal, operands must be equal
+ return;
+ }
+ } else {
+ assert(btest == BoolTest::ne, "only eq or ne");
+ Node* is_not_equal = nullptr;
+ eq_region = new RegionNode(3);
+ {
+ PreserveJVMState pjvms(this);
+ // Pointers are not equal, but more checks are needed to determine if the operands are (not) substitutable
+ do_if(btest, cmp, !can_trap, false, &is_not_equal);
+ if (!stopped()) {
+ eq_region->init_req(1, control());
+ }
+ }
+ if (is_not_equal == nullptr || is_not_equal->is_top()) {
+ record_for_igvn(eq_region);
+ set_control(_gvn.transform(eq_region));
+ return;
+ }
+ set_control(is_not_equal);
+ }
+
+ // Prefer speculative types if available
+ if (!too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
+ if (tleft->speculative_type() != nullptr) {
+ left_type = tleft->speculative_type();
+ }
+ if (tright->speculative_type() != nullptr) {
+ right_type = tright->speculative_type();
+ }
+ }
+
+ if (speculative_ptr_kind(tleft) != ProfileMaybeNull && speculative_ptr_kind(tleft) != ProfileUnknownNull) {
+ ProfilePtrKind speculative_left_ptr = speculative_ptr_kind(tleft);
+ if (speculative_left_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) {
+ left_ptr = speculative_left_ptr;
+ } else if (speculative_left_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) {
+ left_ptr = speculative_left_ptr;
+ }
+ }
+ if (speculative_ptr_kind(tright) != ProfileMaybeNull && speculative_ptr_kind(tright) != ProfileUnknownNull) {
+ ProfilePtrKind speculative_right_ptr = speculative_ptr_kind(tright);
+ if (speculative_right_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) {
+ right_ptr = speculative_right_ptr;
+ } else if (speculative_right_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) {
+ right_ptr = speculative_right_ptr;
+ }
+ }
+
+ if (left_ptr == ProfileAlwaysNull) {
+ // Comparison with null. Assert the input is indeed null and we're done.
+ acmp_always_null_input(left, tleft, btest, eq_region);
+ return;
+ }
+ if (right_ptr == ProfileAlwaysNull) {
+ // Comparison with null. Assert the input is indeed null and we're done.
+ acmp_always_null_input(right, tright, btest, eq_region);
+ return;
+ }
+ if (left_type != nullptr && !left_type->is_inlinetype()) {
+ // Comparison with an object of known type
+ acmp_known_non_inline_type_input(left, tleft, left_ptr, left_type, btest, eq_region);
+ return;
+ }
+ if (right_type != nullptr && !right_type->is_inlinetype()) {
+ // Comparison with an object of known type
+ acmp_known_non_inline_type_input(right, tright, right_ptr, right_type, btest, eq_region);
+ return;
+ }
+ if (!left_inline_type) {
+ // Comparison with an object known not to be an inline type
+ acmp_unknown_non_inline_type_input(left, tleft, left_ptr, btest, eq_region);
+ return;
+ }
+ if (!right_inline_type) {
+ // Comparison with an object known not to be an inline type
+ acmp_unknown_non_inline_type_input(right, tright, right_ptr, btest, eq_region);
+ return;
+ }
+
+ // Pointers are not equal, check if first operand is non-null
+ Node* ne_region = new RegionNode(6);
+ Node* null_ctl;
+ Node* not_null_right = acmp_null_check(right, tright, right_ptr, null_ctl);
+ ne_region->init_req(1, null_ctl);
+
+ // First operand is non-null, check if it is an inline type
+ Node* is_value = inline_type_test(not_null_right);
+ IfNode* is_value_iff = create_and_map_if(control(), is_value, PROB_FAIR, COUNT_UNKNOWN);
+ Node* not_value = _gvn.transform(new IfFalseNode(is_value_iff));
+ ne_region->init_req(2, not_value);
+ set_control(_gvn.transform(new IfTrueNode(is_value_iff)));
+
+ // The first operand is an inline type, check if the second operand is non-null
+ Node* not_null_left = acmp_null_check(left, tleft, left_ptr, null_ctl);
+ ne_region->init_req(3, null_ctl);
+
+ // Check if both operands are of the same class.
+ Node* kls_left = load_object_klass(not_null_left);
+ Node* kls_right = load_object_klass(not_null_right);
+ Node* kls_cmp = CmpP(kls_left, kls_right);
+ Node* kls_bol = _gvn.transform(new BoolNode(kls_cmp, BoolTest::ne));
+ IfNode* kls_iff = create_and_map_if(control(), kls_bol, PROB_FAIR, COUNT_UNKNOWN);
+ Node* kls_ne = _gvn.transform(new IfTrueNode(kls_iff));
+ set_control(_gvn.transform(new IfFalseNode(kls_iff)));
+ ne_region->init_req(4, kls_ne);
+
+ if (stopped()) {
+ record_for_igvn(ne_region);
+ set_control(_gvn.transform(ne_region));
+ if (btest == BoolTest::ne) {
+ {
+ PreserveJVMState pjvms(this);
+ int target_bci = iter().get_dest();
+ merge(target_bci);
+ }
+ record_for_igvn(eq_region);
+ set_control(_gvn.transform(eq_region));
+ }
+ return;
+ }
+
+ // Both operands are values types of the same class, we need to perform a
+ // substitutability test. Delegate to ValueObjectMethods::isSubstitutable().
+ Node* ne_io_phi = PhiNode::make(ne_region, i_o());
+ Node* mem = reset_memory();
+ Node* ne_mem_phi = PhiNode::make(ne_region, mem);
+
+ Node* eq_io_phi = nullptr;
+ Node* eq_mem_phi = nullptr;
+ if (eq_region != nullptr) {
+ eq_io_phi = PhiNode::make(eq_region, i_o());
+ eq_mem_phi = PhiNode::make(eq_region, mem);
+ }
+
+ set_all_memory(mem);
+
+ kill_dead_locals();
+ ciMethod* subst_method = ciEnv::current()->ValueObjectMethods_klass()->find_method(ciSymbols::isSubstitutable_name(), ciSymbols::object_object_boolean_signature());
+ CallStaticJavaNode *call = new CallStaticJavaNode(C, TypeFunc::make(subst_method), SharedRuntime::get_resolve_static_call_stub(), subst_method);
+ call->set_override_symbolic_info(true);
+ call->init_req(TypeFunc::Parms, not_null_left);
+ call->init_req(TypeFunc::Parms+1, not_null_right);
+ inc_sp(2);
+ set_edges_for_java_call(call, false, false);
+ Node* ret = set_results_for_java_call(call, false, true);
+ dec_sp(2);
+
+ // Test the return value of ValueObjectMethods::isSubstitutable()
+ // This is the last check, do_if can emit traps now.
+ Node* subst_cmp = _gvn.transform(new CmpINode(ret, intcon(1)));
+ Node* ctl = C->top();
+ if (btest == BoolTest::eq) {
+ PreserveJVMState pjvms(this);
+ do_if(btest, subst_cmp, can_trap);
+ if (!stopped()) {
+ ctl = control();
+ }
+ } else {
+ assert(btest == BoolTest::ne, "only eq or ne");
+ PreserveJVMState pjvms(this);
+ do_if(btest, subst_cmp, can_trap, false, &ctl);
+ if (!stopped()) {
+ eq_region->init_req(2, control());
+ eq_io_phi->init_req(2, i_o());
+ eq_mem_phi->init_req(2, reset_memory());
+ }
+ }
+ ne_region->init_req(5, ctl);
+ ne_io_phi->init_req(5, i_o());
+ ne_mem_phi->init_req(5, reset_memory());
+
+ record_for_igvn(ne_region);
+ set_control(_gvn.transform(ne_region));
+ set_i_o(_gvn.transform(ne_io_phi));
+ set_all_memory(_gvn.transform(ne_mem_phi));
+
+ if (btest == BoolTest::ne) {
+ {
+ PreserveJVMState pjvms(this);
+ int target_bci = iter().get_dest();
+ merge(target_bci);
+ }
+
+ record_for_igvn(eq_region);
+ set_control(_gvn.transform(eq_region));
+ set_i_o(_gvn.transform(eq_io_phi));
+ set_all_memory(_gvn.transform(eq_mem_phi));
+ }
+ }
+
// Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information.
// Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and
// then either takes the trap or executes the original, unstable if.
void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) {
// Search for an unstable if trap
// Adjust the JVM state to reflect the result of taking this path.
// Basically, it means inspecting the CmpNode controlling this
// branch, seeing how it constrains a tested value, and then
// deciding if it's worth our while to encode this constraint
// as graph nodes in the current abstract interpretation map.
! void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path) {
if (!c->is_Cmp()) {
maybe_add_predicate_after_if(path);
return;
}
// Adjust the JVM state to reflect the result of taking this path.
// Basically, it means inspecting the CmpNode controlling this
// branch, seeing how it constrains a tested value, and then
// deciding if it's worth our while to encode this constraint
// as graph nodes in the current abstract interpretation map.
! void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path, bool can_trap) {
if (!c->is_Cmp()) {
maybe_add_predicate_after_if(path);
return;
}
return; // nothing to do
}
bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
! if (path_is_suitable_for_uncommon_trap(prob)) {
repush_if_args();
Node* call = uncommon_trap(Deoptimization::Reason_unstable_if,
Deoptimization::Action_reinterpret,
nullptr,
(is_fallthrough ? "taken always" : "taken never"));
return; // nothing to do
}
bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
! if (can_trap && path_is_suitable_for_uncommon_trap(prob)) {
repush_if_args();
Node* call = uncommon_trap(Deoptimization::Reason_unstable_if,
Deoptimization::Action_reinterpret,
nullptr,
(is_fallthrough ? "taken always" : "taken never"));
assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
// Delay transform() call to allow recovery of pre-cast value
// at the control merge.
_gvn.set_type_bottom(ccast);
record_for_igvn(ccast);
+ if (tboth->is_inlinetypeptr()) {
+ ccast = InlineTypeNode::make_from_oop(this, ccast, tboth->exact_klass(true)->as_inline_klass());
+ }
// Here's the payoff.
replace_in_map(obj, ccast);
}
}
}
if (obj_type->speculative_type_not_null() != nullptr) {
ciKlass* k = obj_type->speculative_type();
inc_sp(2);
obj = maybe_cast_profiled_obj(obj, k);
dec_sp(2);
+ if (obj->is_InlineType()) {
+ assert(obj->as_InlineType()->is_allocated(&_gvn), "must be allocated");
+ obj = obj->as_InlineType()->get_oop();
+ }
// Make the CmpP use the casted obj
addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
load_klass = load_klass->clone();
load_klass->set_req(2, addp);
load_klass = _gvn.transform(load_klass);
handle_if_null:
// If this is a backwards branch in the bytecodes, add Safepoint
maybe_add_safepoint(iter().get_dest());
a = null();
b = pop();
! if (!_gvn.type(b)->speculative_maybe_null() &&
! !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
! inc_sp(1);
! Node* null_ctl = top();
! b = null_check_oop(b, &null_ctl, true, true, true);
! assert(null_ctl->is_top(), "no null control here");
! dec_sp(1);
! } else if (_gvn.type(b)->speculative_always_null() &&
! !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
! inc_sp(1);
! b = null_assert(b);
! dec_sp(1);
! }
! c = _gvn.transform( new CmpPNode(b, a) );
do_ifnull(btest, c);
break;
case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
handle_if_acmp:
// If this is a backwards branch in the bytecodes, add Safepoint
maybe_add_safepoint(iter().get_dest());
a = pop();
b = pop();
! c = _gvn.transform( new CmpPNode(b, a) );
- c = optimize_cmp_with_klass(c);
- do_if(btest, c);
break;
case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
handle_if_null:
// If this is a backwards branch in the bytecodes, add Safepoint
maybe_add_safepoint(iter().get_dest());
a = null();
b = pop();
! if (b->is_InlineType()) {
! // Null checking a scalarized but nullable inline type. Check the IsInit
! // input instead of the oop input to avoid keeping buffer allocations alive
! c = _gvn.transform(new CmpINode(b->as_InlineType()->get_is_init(), zerocon(T_INT)));
! } else {
! if (!_gvn.type(b)->speculative_maybe_null() &&
! !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
! inc_sp(1);
! Node* null_ctl = top();
! b = null_check_oop(b, &null_ctl, true, true, true);
! assert(null_ctl->is_top(), "no null control here");
! dec_sp(1);
! } else if (_gvn.type(b)->speculative_always_null() &&
! !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
+ inc_sp(1);
+ b = null_assert(b);
+ dec_sp(1);
+ }
+ c = _gvn.transform( new CmpPNode(b, a) );
+ }
do_ifnull(btest, c);
break;
case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
handle_if_acmp:
// If this is a backwards branch in the bytecodes, add Safepoint
maybe_add_safepoint(iter().get_dest());
a = pop();
b = pop();
! do_acmp(btest, b, a);
break;
case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
break;
case Bytecodes::_instanceof:
do_instanceof();
break;
case Bytecodes::_anewarray:
! do_anewarray();
break;
case Bytecodes::_newarray:
do_newarray((BasicType)iter().get_index());
break;
case Bytecodes::_multianewarray:
break;
case Bytecodes::_instanceof:
do_instanceof();
break;
case Bytecodes::_anewarray:
! do_newarray();
break;
case Bytecodes::_newarray:
do_newarray((BasicType)iter().get_index());
break;
case Bytecodes::_multianewarray:
< prev index next >