< prev index next >

src/hotspot/share/opto/parse2.cpp

Print this page
*** 22,10 ***
--- 22,11 ---
   *
   */
  
  #include "precompiled.hpp"
  #include "ci/ciMethodData.hpp"
+ #include "ci/ciSymbols.hpp"
  #include "classfile/vmSymbols.hpp"
  #include "compiler/compileLog.hpp"
  #include "interpreter/linkResolver.hpp"
  #include "jvm_io.h"
  #include "memory/resourceArea.hpp"

*** 34,10 ***
--- 35,12 ---
  #include "opto/addnode.hpp"
  #include "opto/castnode.hpp"
  #include "opto/convertnode.hpp"
  #include "opto/divnode.hpp"
  #include "opto/idealGraphPrinter.hpp"
+ #include "opto/idealKit.hpp"
+ #include "opto/inlinetypenode.hpp"
  #include "opto/matcher.hpp"
  #include "opto/memnode.hpp"
  #include "opto/mulnode.hpp"
  #include "opto/opaquenode.hpp"
  #include "opto/parse.hpp"

*** 48,64 ***
  #ifndef PRODUCT
  extern uint explicit_null_checks_inserted,
              explicit_null_checks_elided;
  #endif
  
  //---------------------------------array_load----------------------------------
  void Parse::array_load(BasicType bt) {
    const Type* elemtype = Type::TOP;
-   bool big_val = bt == T_DOUBLE || bt == T_LONG;
    Node* adr = array_addressing(bt, 0, elemtype);
    if (stopped())  return;     // guaranteed null or range check
  
!   pop();                      // index (already used)
!   Node* array = pop();        // the array itself
  
    if (elemtype == TypeInt::BOOL) {
      bt = T_BOOLEAN;
    }
    const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
- 
    Node* ld = access_load_at(array, adr, adr_type, elemtype, bt,
                              IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
!   if (big_val) {
!     push_pair(ld);
!   } else {
!     push(ld);
    }
  }
  
  
  //--------------------------------array_store----------------------------------
  void Parse::array_store(BasicType bt) {
    const Type* elemtype = Type::TOP;
!   bool big_val = bt == T_DOUBLE || bt == T_LONG;
-   Node* adr = array_addressing(bt, big_val ? 2 : 1, elemtype);
    if (stopped())  return;     // guaranteed null or range check
    if (bt == T_OBJECT) {
!     array_store_check();
      if (stopped()) {
        return;
      }
    }
!   Node* val;                  // Oop to store
!   if (big_val) {
!     val = pop_pair();
!   } else {
!     val = pop();
!   }
-   pop();                      // index (already used)
-   Node* array = pop();        // the array itself
  
    if (elemtype == TypeInt::BOOL) {
      bt = T_BOOLEAN;
    }
!   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
! 
!   access_store_at(array, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
  }
  
  
  //------------------------------array_addressing-------------------------------
  // Pull array and index from the stack.  Compute pointer-to-element.
  Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) {
    Node *idx   = peek(0+vals);   // Get from stack without popping
--- 51,319 ---
  #ifndef PRODUCT
  extern uint explicit_null_checks_inserted,
              explicit_null_checks_elided;
  #endif
  
+ Node* Parse::record_profile_for_speculation_at_array_load(Node* ld) {
+   // Feed unused profile data to type speculation
+   if (UseTypeSpeculation && UseArrayLoadStoreProfile) {
+     ciKlass* array_type = nullptr;
+     ciKlass* element_type = nullptr;
+     ProfilePtrKind element_ptr = ProfileMaybeNull;
+     bool flat_array = true;
+     bool null_free_array = true;
+     method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
+     if (element_type != nullptr || element_ptr != ProfileMaybeNull) {
+       ld = record_profile_for_speculation(ld, element_type, element_ptr);
+     }
+   }
+   return ld;
+ }
+ 
+ 
  //---------------------------------array_load----------------------------------
  void Parse::array_load(BasicType bt) {
    const Type* elemtype = Type::TOP;
    Node* adr = array_addressing(bt, 0, elemtype);
    if (stopped())  return;     // guaranteed null or range check
  
!   Node* array_index = pop();
!   Node* array = pop();
+ 
+   // Handle inline type arrays
+   const TypeOopPtr* element_ptr = elemtype->make_oopptr();
+   const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr();
+   if (array_type->is_flat()) {
+     // Load from flat inline type array
+     Node* inline_type;
+     if (element_ptr->klass_is_exact()) {
+       inline_type = InlineTypeNode::make_from_flat(this, elemtype->inline_klass(), array, adr);
+     } else {
+       // Element type of flat array is not exact. Therefore, we cannot determine the flat array layout statically.
+       // Emit a runtime call to load the element from the flat array.
+       inline_type = load_from_unknown_flat_array(array, array_index, element_ptr);
+       inline_type = record_profile_for_speculation_at_array_load(inline_type);
+     }
+     push(inline_type);
+     return;
+   }
+ 
+   if (!array_type->is_not_flat()) {
+     // Cannot statically determine if array is a flat array, emit runtime check
+     assert(UseFlatArray && is_reference_type(bt) && element_ptr->can_be_inline_type() && !array_type->is_not_null_free() &&
+            (!element_ptr->is_inlinetypeptr() || element_ptr->inline_klass()->flat_in_array()), "array can't be flat");
+     IdealKit ideal(this);
+     IdealVariable res(ideal);
+     ideal.declarations_done();
+     ideal.if_then(flat_array_test(array, /* flat = */ false)); {
+       // Non-flat array
+       assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found");
+       sync_kit(ideal);
+       const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
+       DecoratorSet decorator_set = IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD;
+       if (needs_range_check(array_type->size(), array_index)) {
+         // We've emitted a RangeCheck but now insert an additional check between the range check and the actual load.
+         // We cannot pin the load to two separate nodes. Instead, we pin it conservatively here such that it cannot
+         // possibly float above the range check at any point.
+         decorator_set |= C2_UNKNOWN_CONTROL_LOAD;
+       }
+       Node* ld = access_load_at(array, adr, adr_type, element_ptr, bt, decorator_set);
+       if (element_ptr->is_inlinetypeptr()) {
+         assert(element_ptr->maybe_null(), "null free array should be handled above");
+         ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass(), false);
+       }
+       ideal.sync_kit(this);
+       ideal.set(res, ld);
+     } ideal.else_(); {
+       // Flat array
+       sync_kit(ideal);
+       if (element_ptr->is_inlinetypeptr()) {
+         // Element type is known, cast and load from flat array layout.
+         ciInlineKlass* vk = element_ptr->inline_klass();
+         assert(vk->flat_in_array() && element_ptr->maybe_null(), "never/always flat - should be optimized");
+         ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* null_free */ true);
+         const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
+         Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, arytype));
+         Node* casted_adr = array_element_address(cast, array_index, T_OBJECT, array_type->size(), control());
+         // Re-execute flat array load if buffering triggers deoptimization
+         PreserveReexecuteState preexecs(this);
+         jvms()->set_should_reexecute(true);
+         inc_sp(2);
+         Node* vt = InlineTypeNode::make_from_flat(this, vk, cast, casted_adr)->buffer(this, false);
+         ideal.set(res, vt);
+         ideal.sync_kit(this);
+       } else {
+         // Element type is unknown, and thus we cannot statically determine the exact flat array layout. Emit a
+         // runtime call to correctly load the inline type element from the flat array.
+         Node* inline_type = load_from_unknown_flat_array(array, array_index, element_ptr);
+         ideal.sync_kit(this);
+         ideal.set(res, inline_type);
+       }
+     } ideal.end_if();
+     sync_kit(ideal);
+     Node* ld = _gvn.transform(ideal.value(res));
+     ld = record_profile_for_speculation_at_array_load(ld);
+     push_node(bt, ld);
+     return;
+   }
+ 
+   if (array_type->is_null_free()) {
+     // Load from non-flat inline type array (elements can never be null)
+     bt = T_OBJECT;
+   }
  
    if (elemtype == TypeInt::BOOL) {
      bt = T_BOOLEAN;
    }
    const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
    Node* ld = access_load_at(array, adr, adr_type, elemtype, bt,
                              IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
!   ld = record_profile_for_speculation_at_array_load(ld);
!   // Loading an inline type from a non-flat array
!   if (element_ptr != nullptr && element_ptr->is_inlinetypeptr()) {
!     assert(!array_type->is_null_free() || !element_ptr->maybe_null(), "inline type array elements should never be null");
+     ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass(), !element_ptr->maybe_null());
    }
+   push_node(bt, ld);
  }
  
+ Node* Parse::load_from_unknown_flat_array(Node* array, Node* array_index, const TypeOopPtr* element_ptr) {
+   // Below membars keep this access to an unknown flat array correctly
+   // ordered with other unknown and known flat array accesses.
+   insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
+ 
+   Node* call = nullptr;
+   {
+     // Re-execute flat array load if runtime call triggers deoptimization
+     PreserveReexecuteState preexecs(this);
+     jvms()->set_bci(_bci);
+     jvms()->set_should_reexecute(true);
+     inc_sp(2);
+     kill_dead_locals();
+     call = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
+                              OptoRuntime::load_unknown_inline_Type(),
+                              OptoRuntime::load_unknown_inline_Java(),
+                              nullptr, TypeRawPtr::BOTTOM,
+                              array, array_index);
+   }
+   make_slow_call_ex(call, env()->Throwable_klass(), false);
+   Node* buffer = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
+ 
+   insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
+ 
+   // Keep track of the information that the inline type is in flat arrays
+   const Type* unknown_value = element_ptr->is_instptr()->cast_to_flat_in_array();
+   return _gvn.transform(new CheckCastPPNode(control(), buffer, unknown_value));
+ }
  
  //--------------------------------array_store----------------------------------
  void Parse::array_store(BasicType bt) {
    const Type* elemtype = Type::TOP;
!   Node* adr = array_addressing(bt, type2size[bt], elemtype);
    if (stopped())  return;     // guaranteed null or range check
+   Node* stored_value_casted = nullptr;
    if (bt == T_OBJECT) {
!     stored_value_casted = array_store_check(adr, elemtype);
      if (stopped()) {
        return;
      }
    }
!   Node* const stored_value = pop_node(bt); // Value to store
!   Node* const array_index = pop();         // Index in the array
!   Node* array = pop();                     // The array itself
! 
!   const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr();
!   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
  
    if (elemtype == TypeInt::BOOL) {
      bt = T_BOOLEAN;
+   } else if (bt == T_OBJECT) {
+     elemtype = elemtype->make_oopptr();
+     const Type* stored_value_casted_type = _gvn.type(stored_value_casted);
+     // Based on the value to be stored, try to determine if the array is not null-free and/or not flat.
+     // This is only legal for non-null stores because the array_store_check always passes for null, even
+     // if the array is null-free. Null stores are handled in GraphKit::inline_array_null_guard().
+     bool not_null_free = !stored_value_casted_type->maybe_null() &&
+                          !stored_value_casted_type->is_oopptr()->can_be_inline_type();
+     bool not_flat = not_null_free || (stored_value_casted_type->is_inlinetypeptr() &&
+                                       !stored_value_casted_type->inline_klass()->flat_in_array());
+     if (!array_type->is_not_null_free() && not_null_free) {
+       // Storing a non-inline type, mark array as not null-free (-> not flat).
+       array_type = array_type->cast_to_not_null_free();
+       Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type));
+       replace_in_map(array, cast);
+       array = cast;
+     } else if (!array_type->is_not_flat() && not_flat) {
+       // Storing to a non-flat array, mark array as not flat.
+       array_type = array_type->cast_to_not_flat();
+       Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type));
+       replace_in_map(array, cast);
+       array = cast;
+     }
+ 
+     if (array_type->is_flat()) {
+       // Store to flat inline type array
+       assert(!stored_value_casted_type->maybe_null(), "should be guaranteed by array store check");
+       if (array_type->klass_is_exact()) {
+         // Store to exact flat inline type array where we know the flat array layout statically.
+         // Re-execute flat array store if buffering triggers deoptimization
+         PreserveReexecuteState preexecs(this);
+         inc_sp(3);
+         jvms()->set_should_reexecute(true);
+         stored_value_casted->as_InlineType()->store_flat(this, array, adr, nullptr, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY);
+       } else {
+         // Element type of flat array is not exact. Therefore, we cannot determine the flat array layout statically.
+         // Emit a runtime call to store the element to the flat array.
+         store_to_unknown_flat_array(array, array_index, stored_value_casted);
+       }
+       return;
+     }
+     if (array_type->is_null_free()) {
+       // Store to non-flat null-free inline type array (elements can never be null)
+       assert(!stored_value_casted_type->maybe_null(), "should be guaranteed by array store check");
+       if (elemtype->inline_klass()->is_empty()) {
+         // Ignore empty inline stores, array is already initialized.
+         return;
+       }
+     } else if (!array_type->is_not_flat() && (stored_value_casted_type != TypePtr::NULL_PTR || StressReflectiveCode)) {
+       // Array might be a flat array, emit runtime checks (for nullptr, a simple inline_array_null_guard is sufficient).
+       assert(UseFlatArray && !not_flat && elemtype->is_oopptr()->can_be_inline_type() &&
+              !array_type->klass_is_exact() && !array_type->is_not_null_free(), "array can't be a flat array");
+       IdealKit ideal(this);
+       ideal.if_then(flat_array_test(array, /* flat = */ false)); {
+         // Non-flat array
+         assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found");
+         sync_kit(ideal);
+         Node* cast_array = inline_array_null_guard(array, stored_value_casted, 3);
+         inc_sp(3);
+         access_store_at(cast_array, adr, adr_type, stored_value_casted, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY, false);
+         dec_sp(3);
+         ideal.sync_kit(this);
+       } ideal.else_(); {
+         sync_kit(ideal);
+         // flat array
+         Node* null_ctl = top();
+         Node* null_checked_stored_value_casted = null_check_oop(stored_value_casted, &null_ctl);
+         if (null_ctl != top()) {
+           PreserveJVMState pjvms(this);
+           inc_sp(3);
+           set_control(null_ctl);
+           uncommon_trap(Deoptimization::Reason_null_check, Deoptimization::Action_none);
+           dec_sp(3);
+         }
+         // Try to determine the inline klass
+         ciInlineKlass* inline_Klass = nullptr;
+         if (stored_value_casted_type->is_inlinetypeptr()) {
+           inline_Klass = stored_value_casted_type->inline_klass();
+         } else if (elemtype->is_inlinetypeptr()) {
+           inline_Klass = elemtype->inline_klass();
+         }
+         if (!stopped()) {
+           if (inline_Klass != nullptr) {
+             // Element type is known, cast and store to flat array layout.
+             assert(inline_Klass->flat_in_array() && elemtype->maybe_null(), "never/always flat - should be optimized");
+             ciArrayKlass* array_klass = ciArrayKlass::make(inline_Klass, /* null_free */ true);
+             const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
+             Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, arytype));
+             Node* casted_adr = array_element_address(casted_array, array_index, T_OBJECT, arytype->size(), control());
+             if (!null_checked_stored_value_casted->is_InlineType()) {
+               assert(!gvn().type(null_checked_stored_value_casted)->maybe_null(),
+                      "inline type array elements should never be null");
+               null_checked_stored_value_casted = InlineTypeNode::make_from_oop(this, null_checked_stored_value_casted,
+                                                                                inline_Klass);
+             }
+             // Re-execute flat array store if buffering triggers deoptimization
+             PreserveReexecuteState preexecs(this);
+             inc_sp(3);
+             jvms()->set_should_reexecute(true);
+             null_checked_stored_value_casted->as_InlineType()->store_flat(this, casted_array, casted_adr, nullptr, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY);
+           } else {
+             // Element type is unknown, emit a runtime call since the flat array layout is not statically known.
+             store_to_unknown_flat_array(array, array_index, null_checked_stored_value_casted);
+           }
+         }
+         ideal.sync_kit(this);
+       }
+       ideal.end_if();
+       sync_kit(ideal);
+       return;
+     } else if (!array_type->is_not_null_free()) {
+       // Array is not flat but may be null free
+       assert(elemtype->is_oopptr()->can_be_inline_type(), "array can't be null-free");
+       array = inline_array_null_guard(array, stored_value_casted, 3, true);
+     }
    }
!   inc_sp(3);
!   access_store_at(array, adr, adr_type, stored_value, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
!   dec_sp(3);
  }
  
+ // Emit a runtime call to store to a flat array whose element type is either unknown (i.e. we do not know the flat
+ // array layout) or not exact (could have different flat array layouts at runtime).
+ void Parse::store_to_unknown_flat_array(Node* array, Node* const idx, Node* non_null_stored_value) {
+   // Below membars keep this access to an unknown flat array correctly
+   // ordered with other unknown and known flat array accesses.
+   insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
+ 
+   make_runtime_call(RC_LEAF,
+                     OptoRuntime::store_unknown_inline_Type(),
+                     CAST_FROM_FN_PTR(address, OptoRuntime::store_unknown_inline_C),
+                     "store_unknown_inline", TypeRawPtr::BOTTOM,
+                     non_null_stored_value, array, idx);
+ 
+   insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
+ }
  
  //------------------------------array_addressing-------------------------------
  // Pull array and index from the stack.  Compute pointer-to-element.
  Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) {
    Node *idx   = peek(0+vals);   // Get from stack without popping

*** 130,21 ***
          elemtype = subklass->join_speculative(el);
        }
      }
    }
  
-   // Check for big class initializers with all constant offsets
-   // feeding into a known-size array.
-   const TypeInt* idxtype = _gvn.type(idx)->is_int();
-   // See if the highest idx value is less than the lowest array bound,
-   // and if the idx value cannot be negative:
-   bool need_range_check = true;
-   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
-     need_range_check = false;
-     if (C->log() != nullptr)   C->log()->elem("observe that='!need_range_check'");
-   }
- 
    if (!arytype->is_loaded()) {
      // Only fails for some -Xcomp runs
      // The class is unloaded.  We have to run this bytecode in the interpreter.
      ciKlass* klass = arytype->unloaded_klass();
  
--- 388,10 ---

*** 152,55 ***
                    Deoptimization::Action_reinterpret,
                    klass, "!loaded array");
      return top();
    }
  
!   // Do the range check
-   if (need_range_check) {
-     Node* tst;
-     if (sizetype->_hi <= 0) {
-       // The greatest array bound is negative, so we can conclude that we're
-       // compiling unreachable code, but the unsigned compare trick used below
-       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
-       // the uncommon_trap path will always be taken.
-       tst = _gvn.intcon(0);
-     } else {
-       // Range is constant in array-oop, so we can use the original state of mem
-       Node* len = load_array_length(ary);
  
!       // Test length vs index (standard trick using unsigned compare)
!       Node* chk = _gvn.transform( new CmpUNode(idx, len) );
!       BoolTest::mask btest = BoolTest::lt;
!       tst = _gvn.transform( new BoolNode(chk, btest) );
-     }
-     RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
-     _gvn.set_type(rc, rc->Value(&_gvn));
-     if (!tst->is_Con()) {
-       record_for_igvn(rc);
-     }
-     set_control(_gvn.transform(new IfTrueNode(rc)));
-     // Branch to failure if out of bounds
-     {
-       PreserveJVMState pjvms(this);
-       set_control(_gvn.transform(new IfFalseNode(rc)));
-       if (C->allow_range_check_smearing()) {
-         // Do not use builtin_throw, since range checks are sometimes
-         // made more stringent by an optimistic transformation.
-         // This creates "tentative" range checks at this point,
-         // which are not guaranteed to throw exceptions.
-         // See IfNode::Ideal, is_range_check, adjust_check.
-         uncommon_trap(Deoptimization::Reason_range_check,
-                       Deoptimization::Action_make_not_entrant,
-                       nullptr, "range_check");
-       } else {
-         // If we have already recompiled with the range-check-widening
-         // heroic optimization turned off, then we must really be throwing
-         // range check exceptions.
-         builtin_throw(Deoptimization::Reason_range_check);
-       }
-     }
    }
    // Check for always knowing you are throwing a range-check exception
    if (stopped())  return top();
  
    // Make array address computation control dependent to prevent it
    // from floating above the range check during loop optimizations.
--- 399,18 ---
                    Deoptimization::Action_reinterpret,
                    klass, "!loaded array");
      return top();
    }
  
!   ary = create_speculative_inline_type_array_checks(ary, arytype, elemtype);
  
!   if (needs_range_check(sizetype, idx)) {
!     create_range_check(idx, ary, sizetype);
!   } else if (C->log() != nullptr) {
!     C->log()->elem("observe that='!need_range_check'");
    }
+ 
    // Check for always knowing you are throwing a range-check exception
    if (stopped())  return top();
  
    // Make array address computation control dependent to prevent it
    // from floating above the range check during loop optimizations.

*** 208,10 ***
--- 418,210 ---
    assert(ptr != top(), "top should go hand-in-hand with stopped");
  
    return ptr;
  }
  
+ // Check if we need a range check for an array access. This is the case if the index is either negative or if it could
+ // be greater or equal the smallest possible array size (i.e. out-of-bounds).
+ bool Parse::needs_range_check(const TypeInt* size_type, const Node* index) const {
+   const TypeInt* index_type = _gvn.type(index)->is_int();
+   return index_type->_hi >= size_type->_lo || index_type->_lo < 0;
+ }
+ 
+ void Parse::create_range_check(Node* idx, Node* ary, const TypeInt* sizetype) {
+   Node* tst;
+   if (sizetype->_hi <= 0) {
+     // The greatest array bound is negative, so we can conclude that we're
+     // compiling unreachable code, but the unsigned compare trick used below
+     // only works with non-negative lengths.  Instead, hack "tst" to be zero so
+     // the uncommon_trap path will always be taken.
+     tst = _gvn.intcon(0);
+   } else {
+     // Range is constant in array-oop, so we can use the original state of mem
+     Node* len = load_array_length(ary);
+ 
+     // Test length vs index (standard trick using unsigned compare)
+     Node* chk = _gvn.transform(new CmpUNode(idx, len) );
+     BoolTest::mask btest = BoolTest::lt;
+     tst = _gvn.transform(new BoolNode(chk, btest) );
+   }
+   RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
+   _gvn.set_type(rc, rc->Value(&_gvn));
+   if (!tst->is_Con()) {
+     record_for_igvn(rc);
+   }
+   set_control(_gvn.transform(new IfTrueNode(rc)));
+   // Branch to failure if out of bounds
+   {
+     PreserveJVMState pjvms(this);
+     set_control(_gvn.transform(new IfFalseNode(rc)));
+     if (C->allow_range_check_smearing()) {
+       // Do not use builtin_throw, since range checks are sometimes
+       // made more stringent by an optimistic transformation.
+       // This creates "tentative" range checks at this point,
+       // which are not guaranteed to throw exceptions.
+       // See IfNode::Ideal, is_range_check, adjust_check.
+       uncommon_trap(Deoptimization::Reason_range_check,
+                     Deoptimization::Action_make_not_entrant,
+                     nullptr, "range_check");
+     } else {
+       // If we have already recompiled with the range-check-widening
+       // heroic optimization turned off, then we must really be throwing
+       // range check exceptions.
+       builtin_throw(Deoptimization::Reason_range_check);
+     }
+   }
+ }
+ 
+ // For inline type arrays, we can use the profiling information for array accesses to speculate on the type, flatness,
+ // and null-freeness. We can either prepare the speculative type for later uses or emit explicit speculative checks with
+ // traps now. In the latter case, the speculative type guarantees can avoid additional runtime checks later (e.g.
+ // non-null-free implies non-flat which allows us to remove flatness checks). This makes the graph simpler.
+ Node* Parse::create_speculative_inline_type_array_checks(Node* array, const TypeAryPtr* array_type,
+                                                          const Type*& element_type) {
+   if (!array_type->is_flat() && !array_type->is_not_flat()) {
+     // For arrays that might be flat, speculate that the array has the exact type reported in the profile data such that
+     // we can rely on a fixed memory layout (i.e. either a flat layout or not).
+     array = cast_to_speculative_array_type(array, array_type, element_type);
+   } else if (UseTypeSpeculation && UseArrayLoadStoreProfile) {
+     // Array is known to be either flat or not flat. If possible, update the speculative type by using the profile data
+     // at this bci.
+     array = cast_to_profiled_array_type(array);
+   }
+ 
+   // Even though the type does not tell us whether we have an inline type array or not, we can still check the profile data
+   // whether we have a non-null-free or non-flat array. Since non-null-free implies non-flat, we check this first.
+   // Speculating on a non-null-free array doesn't help aaload but could be profitable for a subsequent aastore.
+   if (!array_type->is_null_free() && !array_type->is_not_null_free()) {
+     array = speculate_non_null_free_array(array, array_type);
+   }
+ 
+   if (!array_type->is_flat() && !array_type->is_not_flat()) {
+     array = speculate_non_flat_array(array, array_type);
+   }
+   return array;
+ }
+ 
+ // Speculate that the array has the exact type reported in the profile data. We emit a trap when this turns out to be
+ // wrong. On the fast path, we add a CheckCastPP to use the exact type.
+ Node* Parse::cast_to_speculative_array_type(Node* const array, const TypeAryPtr*& array_type, const Type*& element_type) {
+   Deoptimization::DeoptReason reason = Deoptimization::Reason_speculate_class_check;
+   ciKlass* speculative_array_type = array_type->speculative_type();
+   if (too_many_traps_or_recompiles(reason) || speculative_array_type == nullptr) {
+     // No speculative type, check profile data at this bci
+     speculative_array_type = nullptr;
+     reason = Deoptimization::Reason_class_check;
+     if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) {
+       ciKlass* profiled_element_type = nullptr;
+       ProfilePtrKind element_ptr = ProfileMaybeNull;
+       bool flat_array = true;
+       bool null_free_array = true;
+       method()->array_access_profiled_type(bci(), speculative_array_type, profiled_element_type, element_ptr, flat_array,
+                                            null_free_array);
+     }
+   }
+   if (speculative_array_type != nullptr) {
+     // Speculate that this array has the exact type reported by profile data
+     Node* casted_array = nullptr;
+     DEBUG_ONLY(Node* old_control = control();)
+     Node* slow_ctl = type_check_receiver(array, speculative_array_type, 1.0, &casted_array);
+     if (stopped()) {
+       // The check always fails and therefore profile information is incorrect. Don't use it.
+       assert(old_control == slow_ctl, "type check should have been removed");
+       set_control(slow_ctl);
+     } else if (!slow_ctl->is_top()) {
+       { PreserveJVMState pjvms(this);
+         set_control(slow_ctl);
+         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
+       }
+       replace_in_map(array, casted_array);
+       array_type = _gvn.type(casted_array)->is_aryptr();
+       element_type = array_type->elem();
+       return casted_array;
+     }
+   }
+   return array;
+ }
+ 
+ // Create a CheckCastPP when the speculative type can improve the current type.
+ Node* Parse::cast_to_profiled_array_type(Node* const array) {
+   ciKlass* array_type = nullptr;
+   ciKlass* element_type = nullptr;
+   ProfilePtrKind element_ptr = ProfileMaybeNull;
+   bool flat_array = true;
+   bool null_free_array = true;
+   method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
+   if (array_type != nullptr) {
+     return record_profile_for_speculation(array, array_type, ProfileMaybeNull);
+   }
+   return array;
+ }
+ 
+ // Speculate that the array is non-null-free. This will imply non-flatness. We emit a trap when this turns out to be
+ // wrong. On the fast path, we add a CheckCastPP to use the non-null-free type.
+ Node* Parse::speculate_non_null_free_array(Node* const array, const TypeAryPtr*& array_type) {
+   bool null_free_array = true;
+   Deoptimization::DeoptReason reason = Deoptimization::Reason_none;
+   if (array_type->speculative() != nullptr &&
+       array_type->speculative()->is_aryptr()->is_not_null_free() &&
+       !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
+     null_free_array = false;
+     reason = Deoptimization::Reason_speculate_class_check;
+   } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) {
+     ciKlass* profiled_array_type = nullptr;
+     ciKlass* profiled_element_type = nullptr;
+     ProfilePtrKind element_ptr = ProfileMaybeNull;
+     bool flat_array = true;
+     method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array,
+                                          null_free_array);
+     reason = Deoptimization::Reason_class_check;
+   }
+   if (!null_free_array) {
+     { // Deoptimize if null-free array
+       BuildCutout unless(this, null_free_array_test(array, /* null_free = */ false), PROB_MAX);
+       uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
+     }
+     assert(!stopped(), "null-free array should have been caught earlier");
+     Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_null_free()));
+     replace_in_map(array, casted_array);
+     array_type = _gvn.type(casted_array)->is_aryptr();
+     return casted_array;
+   }
+   return array;
+ }
+ 
+ // Speculate that the array is non-flat. We emit a trap when this turns out to be wrong. On the fast path, we add a
+ // CheckCastPP to use the non-flat type.
+ Node* Parse::speculate_non_flat_array(Node* const array, const TypeAryPtr* const array_type) {
+   bool flat_array = true;
+   Deoptimization::DeoptReason reason = Deoptimization::Reason_none;
+   if (array_type->speculative() != nullptr &&
+       array_type->speculative()->is_aryptr()->is_not_flat() &&
+       !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
+     flat_array = false;
+     reason = Deoptimization::Reason_speculate_class_check;
+   } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) {
+     ciKlass* profiled_array_type = nullptr;
+     ciKlass* profiled_element_type = nullptr;
+     ProfilePtrKind element_ptr = ProfileMaybeNull;
+     bool null_free_array = true;
+     method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array,
+                                          null_free_array);
+     reason = Deoptimization::Reason_class_check;
+   }
+   if (!flat_array) {
+     { // Deoptimize if flat array
+       BuildCutout unless(this, flat_array_test(array, /* flat = */ false), PROB_MAX);
+       uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
+     }
+     assert(!stopped(), "flat array should have been caught earlier");
+     Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_flat()));
+     replace_in_map(array, casted_array);
+     return casted_array;
+   }
+   return array;
+ }
  
  // returns IfNode
  IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) {
    Node   *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
    Node   *tst = _gvn.transform(new BoolNode(cmp, mask));

*** 1461,11 ***
      stress_trap(iff, counter, incr_store);
    }
  }
  
  //------------------------------------do_if------------------------------------
! void Parse::do_if(BoolTest::mask btest, Node* c) {
    int target_bci = iter().get_dest();
  
    Block* branch_block = successor_for_bci(target_bci);
    Block* next_block   = successor_for_bci(iter().next_bci());
  
--- 1871,11 ---
      stress_trap(iff, counter, incr_store);
    }
  }
  
  //------------------------------------do_if------------------------------------
! void Parse::do_if(BoolTest::mask btest, Node* c, bool can_trap, bool new_path, Node** ctrl_taken) {
    int target_bci = iter().get_dest();
  
    Block* branch_block = successor_for_bci(target_bci);
    Block* next_block   = successor_for_bci(iter().next_bci());
  

*** 1552,40 ***
    { PreserveJVMState pjvms(this);
      taken_branch = _gvn.transform(taken_branch);
      set_control(taken_branch);
  
      if (stopped()) {
!       if (C->eliminate_boxing()) {
!         // Mark the successor block as parsed
          branch_block->next_path_num();
        }
      } else {
!       adjust_map_after_if(taken_btest, c, prob, branch_block);
        if (!stopped()) {
!         merge(target_bci);
        }
      }
    }
  
    untaken_branch = _gvn.transform(untaken_branch);
    set_control(untaken_branch);
  
    // Branch not taken.
!   if (stopped()) {
      if (C->eliminate_boxing()) {
!       // Mark the successor block as parsed
        next_block->next_path_num();
      }
    } else {
!     adjust_map_after_if(untaken_btest, c, untaken_prob, next_block);
    }
  
    if (do_stress_trap) {
      stress_trap(iff, counter, incr_store);
    }
  }
  
  // Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information.
  // Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and
  // then either takes the trap or executes the original, unstable if.
  void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) {
    // Search for an unstable if trap
--- 1962,452 ---
    { PreserveJVMState pjvms(this);
      taken_branch = _gvn.transform(taken_branch);
      set_control(taken_branch);
  
      if (stopped()) {
!       if (C->eliminate_boxing() && !new_path) {
!         // Mark the successor block as parsed (if we haven't created a new path)
          branch_block->next_path_num();
        }
      } else {
!       adjust_map_after_if(taken_btest, c, prob, branch_block, can_trap);
        if (!stopped()) {
!         if (new_path) {
+           // Merge by using a new path
+           merge_new_path(target_bci);
+         } else if (ctrl_taken != nullptr) {
+           // Don't merge but save taken branch to be wired by caller
+           *ctrl_taken = control();
+         } else {
+           merge(target_bci);
+         }
        }
      }
    }
  
    untaken_branch = _gvn.transform(untaken_branch);
    set_control(untaken_branch);
  
    // Branch not taken.
!   if (stopped() && ctrl_taken == nullptr) {
      if (C->eliminate_boxing()) {
!       // Mark the successor block as parsed (if caller does not re-wire control flow)
        next_block->next_path_num();
      }
    } else {
!     adjust_map_after_if(untaken_btest, c, untaken_prob, next_block, can_trap);
    }
  
    if (do_stress_trap) {
      stress_trap(iff, counter, incr_store);
    }
  }
  
+ 
+ static ProfilePtrKind speculative_ptr_kind(const TypeOopPtr* t) {
+   if (t->speculative() == nullptr) {
+     return ProfileUnknownNull;
+   }
+   if (t->speculative_always_null()) {
+     return ProfileAlwaysNull;
+   }
+   if (t->speculative_maybe_null()) {
+     return ProfileMaybeNull;
+   }
+   return ProfileNeverNull;
+ }
+ 
+ void Parse::acmp_always_null_input(Node* input, const TypeOopPtr* tinput, BoolTest::mask btest, Node* eq_region) {
+   inc_sp(2);
+   Node* cast = null_check_common(input, T_OBJECT, true, nullptr,
+                                  !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check) &&
+                                  speculative_ptr_kind(tinput) == ProfileAlwaysNull);
+   dec_sp(2);
+   if (btest == BoolTest::ne) {
+     {
+       PreserveJVMState pjvms(this);
+       replace_in_map(input, cast);
+       int target_bci = iter().get_dest();
+       merge(target_bci);
+     }
+     record_for_igvn(eq_region);
+     set_control(_gvn.transform(eq_region));
+   } else {
+     replace_in_map(input, cast);
+   }
+ }
+ 
+ Node* Parse::acmp_null_check(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, Node*& null_ctl) {
+   inc_sp(2);
+   null_ctl = top();
+   Node* cast = null_check_oop(input, &null_ctl,
+                               input_ptr == ProfileNeverNull || (input_ptr == ProfileUnknownNull && !too_many_traps_or_recompiles(Deoptimization::Reason_null_check)),
+                               false,
+                               speculative_ptr_kind(tinput) == ProfileNeverNull &&
+                               !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check));
+   dec_sp(2);
+   assert(!stopped(), "null input should have been caught earlier");
+   return cast;
+ }
+ 
+ void Parse::acmp_known_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, ciKlass* input_type, BoolTest::mask btest, Node* eq_region) {
+   Node* ne_region = new RegionNode(1);
+   Node* null_ctl;
+   Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl);
+   ne_region->add_req(null_ctl);
+ 
+   Node* slow_ctl = type_check_receiver(cast, input_type, 1.0, &cast);
+   {
+     PreserveJVMState pjvms(this);
+     inc_sp(2);
+     set_control(slow_ctl);
+     Deoptimization::DeoptReason reason;
+     if (tinput->speculative_type() != nullptr && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
+       reason = Deoptimization::Reason_speculate_class_check;
+     } else {
+       reason = Deoptimization::Reason_class_check;
+     }
+     uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
+   }
+   ne_region->add_req(control());
+ 
+   record_for_igvn(ne_region);
+   set_control(_gvn.transform(ne_region));
+   if (btest == BoolTest::ne) {
+     {
+       PreserveJVMState pjvms(this);
+       if (null_ctl == top()) {
+         replace_in_map(input, cast);
+       }
+       int target_bci = iter().get_dest();
+       merge(target_bci);
+     }
+     record_for_igvn(eq_region);
+     set_control(_gvn.transform(eq_region));
+   } else {
+     if (null_ctl == top()) {
+       replace_in_map(input, cast);
+     }
+     set_control(_gvn.transform(ne_region));
+   }
+ }
+ 
+ void Parse::acmp_unknown_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, BoolTest::mask btest, Node* eq_region) {
+   Node* ne_region = new RegionNode(1);
+   Node* null_ctl;
+   Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl);
+   ne_region->add_req(null_ctl);
+ 
+   {
+     BuildCutout unless(this, inline_type_test(cast, /* is_inline = */ false), PROB_MAX);
+     inc_sp(2);
+     uncommon_trap_exact(Deoptimization::Reason_class_check, Deoptimization::Action_maybe_recompile);
+   }
+ 
+   ne_region->add_req(control());
+ 
+   record_for_igvn(ne_region);
+   set_control(_gvn.transform(ne_region));
+   if (btest == BoolTest::ne) {
+     {
+       PreserveJVMState pjvms(this);
+       if (null_ctl == top()) {
+         replace_in_map(input, cast);
+       }
+       int target_bci = iter().get_dest();
+       merge(target_bci);
+     }
+     record_for_igvn(eq_region);
+     set_control(_gvn.transform(eq_region));
+   } else {
+     if (null_ctl == top()) {
+       replace_in_map(input, cast);
+     }
+     set_control(_gvn.transform(ne_region));
+   }
+ }
+ 
+ void Parse::do_acmp(BoolTest::mask btest, Node* left, Node* right) {
+   ciKlass* left_type = nullptr;
+   ciKlass* right_type = nullptr;
+   ProfilePtrKind left_ptr = ProfileUnknownNull;
+   ProfilePtrKind right_ptr = ProfileUnknownNull;
+   bool left_inline_type = true;
+   bool right_inline_type = true;
+ 
+   // Leverage profiling at acmp
+   if (UseACmpProfile) {
+     method()->acmp_profiled_type(bci(), left_type, right_type, left_ptr, right_ptr, left_inline_type, right_inline_type);
+     if (too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) {
+       left_type = nullptr;
+       right_type = nullptr;
+       left_inline_type = true;
+       right_inline_type = true;
+     }
+     if (too_many_traps_or_recompiles(Deoptimization::Reason_null_check)) {
+       left_ptr = ProfileUnknownNull;
+       right_ptr = ProfileUnknownNull;
+     }
+   }
+ 
+   if (UseTypeSpeculation) {
+     record_profile_for_speculation(left, left_type, left_ptr);
+     record_profile_for_speculation(right, right_type, right_ptr);
+   }
+ 
+   if (!EnableValhalla) {
+     Node* cmp = CmpP(left, right);
+     cmp = optimize_cmp_with_klass(cmp);
+     do_if(btest, cmp);
+     return;
+   }
+ 
+   // Check for equality before potentially allocating
+   if (left == right) {
+     do_if(btest, makecon(TypeInt::CC_EQ));
+     return;
+   }
+ 
+   // Allocate inline type operands and re-execute on deoptimization
+   if (left->is_InlineType()) {
+     if (_gvn.type(right)->is_zero_type() ||
+         (right->is_InlineType() && _gvn.type(right->as_InlineType()->get_is_init())->is_zero_type())) {
+       // Null checking a scalarized but nullable inline type. Check the IsInit
+       // input instead of the oop input to avoid keeping buffer allocations alive.
+       Node* cmp = CmpI(left->as_InlineType()->get_is_init(), intcon(0));
+       do_if(btest, cmp);
+       return;
+     } else {
+       PreserveReexecuteState preexecs(this);
+       inc_sp(2);
+       jvms()->set_should_reexecute(true);
+       left = left->as_InlineType()->buffer(this)->get_oop();
+     }
+   }
+   if (right->is_InlineType()) {
+     PreserveReexecuteState preexecs(this);
+     inc_sp(2);
+     jvms()->set_should_reexecute(true);
+     right = right->as_InlineType()->buffer(this)->get_oop();
+   }
+ 
+   // First, do a normal pointer comparison
+   const TypeOopPtr* tleft = _gvn.type(left)->isa_oopptr();
+   const TypeOopPtr* tright = _gvn.type(right)->isa_oopptr();
+   Node* cmp = CmpP(left, right);
+   cmp = optimize_cmp_with_klass(cmp);
+   if (tleft == nullptr || !tleft->can_be_inline_type() ||
+       tright == nullptr || !tright->can_be_inline_type()) {
+     // This is sufficient, if one of the operands can't be an inline type
+     do_if(btest, cmp);
+     return;
+   }
+ 
+   // Don't add traps to unstable if branches because additional checks are required to
+   // decide if the operands are equal/substitutable and we therefore shouldn't prune
+   // branches for one if based on the profiling of the acmp branches.
+   // Also, OptimizeUnstableIf would set an incorrect re-rexecution state because it
+   // assumes that there is a 1-1 mapping between the if and the acmp branches and that
+   // hitting a trap means that we will take the corresponding acmp branch on re-execution.
+   const bool can_trap = true;
+ 
+   Node* eq_region = nullptr;
+   if (btest == BoolTest::eq) {
+     do_if(btest, cmp, !can_trap, true);
+     if (stopped()) {
+       // Pointers are equal, operands must be equal
+       return;
+     }
+   } else {
+     assert(btest == BoolTest::ne, "only eq or ne");
+     Node* is_not_equal = nullptr;
+     eq_region = new RegionNode(3);
+     {
+       PreserveJVMState pjvms(this);
+       // Pointers are not equal, but more checks are needed to determine if the operands are (not) substitutable
+       do_if(btest, cmp, !can_trap, false, &is_not_equal);
+       if (!stopped()) {
+         eq_region->init_req(1, control());
+       }
+     }
+     if (is_not_equal == nullptr || is_not_equal->is_top()) {
+       record_for_igvn(eq_region);
+       set_control(_gvn.transform(eq_region));
+       return;
+     }
+     set_control(is_not_equal);
+   }
+ 
+   // Prefer speculative types if available
+   if (!too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
+     if (tleft->speculative_type() != nullptr) {
+       left_type = tleft->speculative_type();
+     }
+     if (tright->speculative_type() != nullptr) {
+       right_type = tright->speculative_type();
+     }
+   }
+ 
+   if (speculative_ptr_kind(tleft) != ProfileMaybeNull && speculative_ptr_kind(tleft) != ProfileUnknownNull) {
+     ProfilePtrKind speculative_left_ptr = speculative_ptr_kind(tleft);
+     if (speculative_left_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) {
+       left_ptr = speculative_left_ptr;
+     } else if (speculative_left_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) {
+       left_ptr = speculative_left_ptr;
+     }
+   }
+   if (speculative_ptr_kind(tright) != ProfileMaybeNull && speculative_ptr_kind(tright) != ProfileUnknownNull) {
+     ProfilePtrKind speculative_right_ptr = speculative_ptr_kind(tright);
+     if (speculative_right_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) {
+       right_ptr = speculative_right_ptr;
+     } else if (speculative_right_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) {
+       right_ptr = speculative_right_ptr;
+     }
+   }
+ 
+   if (left_ptr == ProfileAlwaysNull) {
+     // Comparison with null. Assert the input is indeed null and we're done.
+     acmp_always_null_input(left, tleft, btest, eq_region);
+     return;
+   }
+   if (right_ptr == ProfileAlwaysNull) {
+     // Comparison with null. Assert the input is indeed null and we're done.
+     acmp_always_null_input(right, tright, btest, eq_region);
+     return;
+   }
+   if (left_type != nullptr && !left_type->is_inlinetype()) {
+     // Comparison with an object of known type
+     acmp_known_non_inline_type_input(left, tleft, left_ptr, left_type, btest, eq_region);
+     return;
+   }
+   if (right_type != nullptr && !right_type->is_inlinetype()) {
+     // Comparison with an object of known type
+     acmp_known_non_inline_type_input(right, tright, right_ptr, right_type, btest, eq_region);
+     return;
+   }
+   if (!left_inline_type) {
+     // Comparison with an object known not to be an inline type
+     acmp_unknown_non_inline_type_input(left, tleft, left_ptr, btest, eq_region);
+     return;
+   }
+   if (!right_inline_type) {
+     // Comparison with an object known not to be an inline type
+     acmp_unknown_non_inline_type_input(right, tright, right_ptr, btest, eq_region);
+     return;
+   }
+ 
+   // Pointers are not equal, check if first operand is non-null
+   Node* ne_region = new RegionNode(6);
+   Node* null_ctl;
+   Node* not_null_right = acmp_null_check(right, tright, right_ptr, null_ctl);
+   ne_region->init_req(1, null_ctl);
+ 
+   // First operand is non-null, check if it is an inline type
+   Node* is_value = inline_type_test(not_null_right);
+   IfNode* is_value_iff = create_and_map_if(control(), is_value, PROB_FAIR, COUNT_UNKNOWN);
+   Node* not_value = _gvn.transform(new IfFalseNode(is_value_iff));
+   ne_region->init_req(2, not_value);
+   set_control(_gvn.transform(new IfTrueNode(is_value_iff)));
+ 
+   // The first operand is an inline type, check if the second operand is non-null
+   Node* not_null_left = acmp_null_check(left, tleft, left_ptr, null_ctl);
+   ne_region->init_req(3, null_ctl);
+ 
+   // Check if both operands are of the same class.
+   Node* kls_left = load_object_klass(not_null_left);
+   Node* kls_right = load_object_klass(not_null_right);
+   Node* kls_cmp = CmpP(kls_left, kls_right);
+   Node* kls_bol = _gvn.transform(new BoolNode(kls_cmp, BoolTest::ne));
+   IfNode* kls_iff = create_and_map_if(control(), kls_bol, PROB_FAIR, COUNT_UNKNOWN);
+   Node* kls_ne = _gvn.transform(new IfTrueNode(kls_iff));
+   set_control(_gvn.transform(new IfFalseNode(kls_iff)));
+   ne_region->init_req(4, kls_ne);
+ 
+   if (stopped()) {
+     record_for_igvn(ne_region);
+     set_control(_gvn.transform(ne_region));
+     if (btest == BoolTest::ne) {
+       {
+         PreserveJVMState pjvms(this);
+         int target_bci = iter().get_dest();
+         merge(target_bci);
+       }
+       record_for_igvn(eq_region);
+       set_control(_gvn.transform(eq_region));
+     }
+     return;
+   }
+ 
+   // Both operands are values types of the same class, we need to perform a
+   // substitutability test. Delegate to ValueObjectMethods::isSubstitutable().
+   Node* ne_io_phi = PhiNode::make(ne_region, i_o());
+   Node* mem = reset_memory();
+   Node* ne_mem_phi = PhiNode::make(ne_region, mem);
+ 
+   Node* eq_io_phi = nullptr;
+   Node* eq_mem_phi = nullptr;
+   if (eq_region != nullptr) {
+     eq_io_phi = PhiNode::make(eq_region, i_o());
+     eq_mem_phi = PhiNode::make(eq_region, mem);
+   }
+ 
+   set_all_memory(mem);
+ 
+   kill_dead_locals();
+   ciMethod* subst_method = ciEnv::current()->ValueObjectMethods_klass()->find_method(ciSymbols::isSubstitutable_name(), ciSymbols::object_object_boolean_signature());
+   CallStaticJavaNode *call = new CallStaticJavaNode(C, TypeFunc::make(subst_method), SharedRuntime::get_resolve_static_call_stub(), subst_method);
+   call->set_override_symbolic_info(true);
+   call->init_req(TypeFunc::Parms, not_null_left);
+   call->init_req(TypeFunc::Parms+1, not_null_right);
+   inc_sp(2);
+   set_edges_for_java_call(call, false, false);
+   Node* ret = set_results_for_java_call(call, false, true);
+   dec_sp(2);
+ 
+   // Test the return value of ValueObjectMethods::isSubstitutable()
+   // This is the last check, do_if can emit traps now.
+   Node* subst_cmp = _gvn.transform(new CmpINode(ret, intcon(1)));
+   Node* ctl = C->top();
+   if (btest == BoolTest::eq) {
+     PreserveJVMState pjvms(this);
+     do_if(btest, subst_cmp, can_trap);
+     if (!stopped()) {
+       ctl = control();
+     }
+   } else {
+     assert(btest == BoolTest::ne, "only eq or ne");
+     PreserveJVMState pjvms(this);
+     do_if(btest, subst_cmp, can_trap, false, &ctl);
+     if (!stopped()) {
+       eq_region->init_req(2, control());
+       eq_io_phi->init_req(2, i_o());
+       eq_mem_phi->init_req(2, reset_memory());
+     }
+   }
+   ne_region->init_req(5, ctl);
+   ne_io_phi->init_req(5, i_o());
+   ne_mem_phi->init_req(5, reset_memory());
+ 
+   record_for_igvn(ne_region);
+   set_control(_gvn.transform(ne_region));
+   set_i_o(_gvn.transform(ne_io_phi));
+   set_all_memory(_gvn.transform(ne_mem_phi));
+ 
+   if (btest == BoolTest::ne) {
+     {
+       PreserveJVMState pjvms(this);
+       int target_bci = iter().get_dest();
+       merge(target_bci);
+     }
+ 
+     record_for_igvn(eq_region);
+     set_control(_gvn.transform(eq_region));
+     set_i_o(_gvn.transform(eq_io_phi));
+     set_all_memory(_gvn.transform(eq_mem_phi));
+   }
+ }
+ 
  // Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information.
  // Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and
  // then either takes the trap or executes the original, unstable if.
  void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) {
    // Search for an unstable if trap

*** 1654,11 ***
  // Adjust the JVM state to reflect the result of taking this path.
  // Basically, it means inspecting the CmpNode controlling this
  // branch, seeing how it constrains a tested value, and then
  // deciding if it's worth our while to encode this constraint
  // as graph nodes in the current abstract interpretation map.
! void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path) {
    if (!c->is_Cmp()) {
      maybe_add_predicate_after_if(path);
      return;
    }
  
--- 2476,11 ---
  // Adjust the JVM state to reflect the result of taking this path.
  // Basically, it means inspecting the CmpNode controlling this
  // branch, seeing how it constrains a tested value, and then
  // deciding if it's worth our while to encode this constraint
  // as graph nodes in the current abstract interpretation map.
! void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path, bool can_trap) {
    if (!c->is_Cmp()) {
      maybe_add_predicate_after_if(path);
      return;
    }
  

*** 1666,11 ***
      return;                             // nothing to do
    }
  
    bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
  
!   if (path_is_suitable_for_uncommon_trap(prob)) {
      repush_if_args();
      Node* call = uncommon_trap(Deoptimization::Reason_unstable_if,
                    Deoptimization::Action_reinterpret,
                    nullptr,
                    (is_fallthrough ? "taken always" : "taken never"));
--- 2488,11 ---
      return;                             // nothing to do
    }
  
    bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
  
!   if (can_trap && path_is_suitable_for_uncommon_trap(prob)) {
      repush_if_args();
      Node* call = uncommon_trap(Deoptimization::Reason_unstable_if,
                    Deoptimization::Action_reinterpret,
                    nullptr,
                    (is_fallthrough ? "taken always" : "taken never"));

*** 1763,10 ***
--- 2585,13 ---
              assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
              // Delay transform() call to allow recovery of pre-cast value
              // at the control merge.
              _gvn.set_type_bottom(ccast);
              record_for_igvn(ccast);
+             if (tboth->is_inlinetypeptr()) {
+               ccast = InlineTypeNode::make_from_oop(this, ccast, tboth->exact_klass(true)->as_inline_klass());
+             }
              // Here's the payoff.
              replace_in_map(obj, ccast);
            }
         }
      }

*** 1867,10 ***
--- 2692,14 ---
        if (obj_type->speculative_type_not_null() != nullptr) {
          ciKlass* k = obj_type->speculative_type();
          inc_sp(2);
          obj = maybe_cast_profiled_obj(obj, k);
          dec_sp(2);
+         if (obj->is_InlineType()) {
+           assert(obj->as_InlineType()->is_allocated(&_gvn), "must be allocated");
+           obj = obj->as_InlineType()->get_oop();
+         }
          // Make the CmpP use the casted obj
          addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
          load_klass = load_klass->clone();
          load_klass->set_req(2, addp);
          load_klass = _gvn.transform(load_klass);

*** 2700,37 ***
    handle_if_null:
      // If this is a backwards branch in the bytecodes, add Safepoint
      maybe_add_safepoint(iter().get_dest());
      a = null();
      b = pop();
!     if (!_gvn.type(b)->speculative_maybe_null() &&
!         !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
!       inc_sp(1);
!       Node* null_ctl = top();
!       b = null_check_oop(b, &null_ctl, true, true, true);
!       assert(null_ctl->is_top(), "no null control here");
!       dec_sp(1);
!     } else if (_gvn.type(b)->speculative_always_null() &&
!                !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
!       inc_sp(1);
!       b = null_assert(b);
!       dec_sp(1);
!     }
!     c = _gvn.transform( new CmpPNode(b, a) );
      do_ifnull(btest, c);
      break;
  
    case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
    case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
    handle_if_acmp:
      // If this is a backwards branch in the bytecodes, add Safepoint
      maybe_add_safepoint(iter().get_dest());
      a = pop();
      b = pop();
!     c = _gvn.transform( new CmpPNode(b, a) );
-     c = optimize_cmp_with_klass(c);
-     do_if(btest, c);
      break;
  
    case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
    case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
    case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
--- 3529,41 ---
    handle_if_null:
      // If this is a backwards branch in the bytecodes, add Safepoint
      maybe_add_safepoint(iter().get_dest());
      a = null();
      b = pop();
!     if (b->is_InlineType()) {
!       // Null checking a scalarized but nullable inline type. Check the IsInit
!       // input instead of the oop input to avoid keeping buffer allocations alive
!       c = _gvn.transform(new CmpINode(b->as_InlineType()->get_is_init(), zerocon(T_INT)));
!     } else {
!       if (!_gvn.type(b)->speculative_maybe_null() &&
!           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
!         inc_sp(1);
!         Node* null_ctl = top();
!         b = null_check_oop(b, &null_ctl, true, true, true);
!         assert(null_ctl->is_top(), "no null control here");
!         dec_sp(1);
!       } else if (_gvn.type(b)->speculative_always_null() &&
!                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
+         inc_sp(1);
+         b = null_assert(b);
+         dec_sp(1);
+       }
+       c = _gvn.transform( new CmpPNode(b, a) );
+     }
      do_ifnull(btest, c);
      break;
  
    case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
    case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
    handle_if_acmp:
      // If this is a backwards branch in the bytecodes, add Safepoint
      maybe_add_safepoint(iter().get_dest());
      a = pop();
      b = pop();
!     do_acmp(btest, b, a);
      break;
  
    case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
    case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
    case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;

*** 2781,11 ***
      break;
    case Bytecodes::_instanceof:
      do_instanceof();
      break;
    case Bytecodes::_anewarray:
!     do_anewarray();
      break;
    case Bytecodes::_newarray:
      do_newarray((BasicType)iter().get_index());
      break;
    case Bytecodes::_multianewarray:
--- 3614,11 ---
      break;
    case Bytecodes::_instanceof:
      do_instanceof();
      break;
    case Bytecodes::_anewarray:
!     do_newarray();
      break;
    case Bytecodes::_newarray:
      do_newarray((BasicType)iter().get_index());
      break;
    case Bytecodes::_multianewarray:
< prev index next >