1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "ci/ciMethodData.hpp" 26 #include "ci/ciSymbols.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "compiler/compileLog.hpp" 29 #include "interpreter/linkResolver.hpp" 30 #include "jvm_io.h" 31 #include "memory/resourceArea.hpp" 32 #include "memory/universe.hpp" 33 #include "oops/oop.inline.hpp" 34 #include "opto/addnode.hpp" 35 #include "opto/castnode.hpp" 36 #include "opto/convertnode.hpp" 37 #include "opto/divnode.hpp" 38 #include "opto/idealGraphPrinter.hpp" 39 #include "opto/idealKit.hpp" 40 #include "opto/inlinetypenode.hpp" 41 #include "opto/matcher.hpp" 42 #include "opto/memnode.hpp" 43 #include "opto/mulnode.hpp" 44 #include "opto/opaquenode.hpp" 45 #include "opto/parse.hpp" 46 #include "opto/runtime.hpp" 47 #include "runtime/deoptimization.hpp" 48 #include "runtime/sharedRuntime.hpp" 49 50 #ifndef PRODUCT 51 extern uint explicit_null_checks_inserted, 52 explicit_null_checks_elided; 53 #endif 54 55 Node* Parse::record_profile_for_speculation_at_array_load(Node* ld) { 56 // Feed unused profile data to type speculation 57 if (UseTypeSpeculation && UseArrayLoadStoreProfile) { 58 ciKlass* array_type = nullptr; 59 ciKlass* element_type = nullptr; 60 ProfilePtrKind element_ptr = ProfileMaybeNull; 61 bool flat_array = true; 62 bool null_free_array = true; 63 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 64 if (element_type != nullptr || element_ptr != ProfileMaybeNull) { 65 ld = record_profile_for_speculation(ld, element_type, element_ptr); 66 } 67 } 68 return ld; 69 } 70 71 72 //---------------------------------array_load---------------------------------- 73 void Parse::array_load(BasicType bt) { 74 const Type* elemtype = Type::TOP; 75 Node* adr = array_addressing(bt, 0, elemtype); 76 if (stopped()) return; // guaranteed null or range check 77 78 Node* array_index = pop(); 79 Node* array = pop(); 80 81 // Handle inline type arrays 82 const TypeOopPtr* element_ptr = elemtype->make_oopptr(); 83 const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr(); 84 85 if (!array_type->is_not_flat()) { 86 // Cannot statically determine if array is a flat array, emit runtime check 87 assert(UseArrayFlattening && is_reference_type(bt) && element_ptr->can_be_inline_type() && 88 (!element_ptr->is_inlinetypeptr() || element_ptr->inline_klass()->flat_in_array()), "array can't be flat"); 89 IdealKit ideal(this); 90 IdealVariable res(ideal); 91 ideal.declarations_done(); 92 ideal.if_then(flat_array_test(array, /* flat = */ false)); { 93 // Non-flat array 94 sync_kit(ideal); 95 if (!array_type->is_flat()) { 96 assert(array_type->is_flat() || control()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found"); 97 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 98 DecoratorSet decorator_set = IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD; 99 if (needs_range_check(array_type->size(), array_index)) { 100 // We've emitted a RangeCheck but now insert an additional check between the range check and the actual load. 101 // We cannot pin the load to two separate nodes. Instead, we pin it conservatively here such that it cannot 102 // possibly float above the range check at any point. 103 decorator_set |= C2_UNKNOWN_CONTROL_LOAD; 104 } 105 Node* ld = access_load_at(array, adr, adr_type, element_ptr, bt, decorator_set); 106 if (element_ptr->is_inlinetypeptr()) { 107 ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass()); 108 } 109 ideal.set(res, ld); 110 } 111 ideal.sync_kit(this); 112 } ideal.else_(); { 113 // Flat array 114 sync_kit(ideal); 115 if (!array_type->is_not_flat()) { 116 if (element_ptr->is_inlinetypeptr()) { 117 // Element type is known, cast and load from flat array layout. 118 ciInlineKlass* vk = element_ptr->inline_klass(); 119 bool is_null_free = array_type->is_null_free() || !vk->has_nullable_atomic_layout(); 120 bool is_not_null_free = array_type->is_not_null_free() || (!vk->has_atomic_layout() && !vk->has_non_atomic_layout()); 121 if (is_null_free) { 122 // TODO 8350865 Impossible type 123 is_not_null_free = false; 124 } 125 bool is_naturally_atomic = (is_null_free && vk->nof_declared_nonstatic_fields() <= 1); 126 bool may_need_atomicity = !is_naturally_atomic && ((!is_not_null_free && vk->has_atomic_layout()) || (!is_null_free && vk->has_nullable_atomic_layout())); 127 128 // Re-execute flat array load if buffering triggers deoptimization 129 PreserveReexecuteState preexecs(this); 130 jvms()->set_should_reexecute(true); 131 inc_sp(3); 132 133 adr = flat_array_element_address(array, array_index, vk, is_null_free, is_not_null_free, may_need_atomicity); 134 int nm_offset = is_null_free ? -1 : vk->null_marker_offset_in_payload(); 135 Node* vt = InlineTypeNode::make_from_flat(this, vk, array, adr, array_index, nullptr, 0, may_need_atomicity, nm_offset); 136 ideal.set(res, vt); 137 } else { 138 // Element type is unknown, and thus we cannot statically determine the exact flat array layout. Emit a 139 // runtime call to correctly load the inline type element from the flat array. 140 Node* inline_type = load_from_unknown_flat_array(array, array_index, element_ptr); 141 bool is_null_free = array_type->is_null_free() || !UseNullableValueFlattening; 142 if (is_null_free) { 143 inline_type = cast_not_null(inline_type); 144 } 145 ideal.set(res, inline_type); 146 } 147 } 148 ideal.sync_kit(this); 149 } ideal.end_if(); 150 sync_kit(ideal); 151 Node* ld = _gvn.transform(ideal.value(res)); 152 ld = record_profile_for_speculation_at_array_load(ld); 153 push_node(bt, ld); 154 return; 155 } 156 157 if (elemtype == TypeInt::BOOL) { 158 bt = T_BOOLEAN; 159 } 160 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 161 Node* ld = access_load_at(array, adr, adr_type, elemtype, bt, 162 IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD); 163 ld = record_profile_for_speculation_at_array_load(ld); 164 // Loading an inline type from a non-flat array 165 if (element_ptr != nullptr && element_ptr->is_inlinetypeptr()) { 166 assert(!array_type->is_null_free() || !element_ptr->maybe_null(), "inline type array elements should never be null"); 167 ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass()); 168 } 169 push_node(bt, ld); 170 } 171 172 Node* Parse::load_from_unknown_flat_array(Node* array, Node* array_index, const TypeOopPtr* element_ptr) { 173 // Below membars keep this access to an unknown flat array correctly 174 // ordered with other unknown and known flat array accesses. 175 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 176 177 Node* call = nullptr; 178 { 179 // Re-execute flat array load if runtime call triggers deoptimization 180 PreserveReexecuteState preexecs(this); 181 jvms()->set_bci(_bci); 182 jvms()->set_should_reexecute(true); 183 inc_sp(2); 184 kill_dead_locals(); 185 call = make_runtime_call(RC_NO_LEAF | RC_NO_IO, 186 OptoRuntime::load_unknown_inline_Type(), 187 OptoRuntime::load_unknown_inline_Java(), 188 nullptr, TypeRawPtr::BOTTOM, 189 array, array_index); 190 } 191 make_slow_call_ex(call, env()->Throwable_klass(), false); 192 Node* buffer = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 193 194 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 195 196 // Keep track of the information that the inline type is in flat arrays 197 const Type* unknown_value = element_ptr->is_instptr()->cast_to_flat_in_array(); 198 return _gvn.transform(new CheckCastPPNode(control(), buffer, unknown_value)); 199 } 200 201 //--------------------------------array_store---------------------------------- 202 void Parse::array_store(BasicType bt) { 203 const Type* elemtype = Type::TOP; 204 Node* adr = array_addressing(bt, type2size[bt], elemtype); 205 if (stopped()) return; // guaranteed null or range check 206 Node* stored_value_casted = nullptr; 207 if (bt == T_OBJECT) { 208 stored_value_casted = array_store_check(adr, elemtype); 209 if (stopped()) { 210 return; 211 } 212 } 213 Node* const stored_value = pop_node(bt); // Value to store 214 Node* const array_index = pop(); // Index in the array 215 Node* array = pop(); // The array itself 216 217 const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr(); 218 const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt); 219 220 if (elemtype == TypeInt::BOOL) { 221 bt = T_BOOLEAN; 222 } else if (bt == T_OBJECT) { 223 elemtype = elemtype->make_oopptr(); 224 const Type* stored_value_casted_type = _gvn.type(stored_value_casted); 225 // Based on the value to be stored, try to determine if the array is not null-free and/or not flat. 226 // This is only legal for non-null stores because the array_store_check always passes for null, even 227 // if the array is null-free. Null stores are handled in GraphKit::inline_array_null_guard(). 228 bool not_inline = !stored_value_casted_type->maybe_null() && !stored_value_casted_type->is_oopptr()->can_be_inline_type(); 229 bool not_null_free = not_inline; 230 bool not_flat = not_inline || ( stored_value_casted_type->is_inlinetypeptr() && 231 !stored_value_casted_type->inline_klass()->flat_in_array()); 232 if (!array_type->is_not_null_free() && not_null_free) { 233 // Storing a non-inline type, mark array as not null-free. 234 array_type = array_type->cast_to_not_null_free(); 235 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type)); 236 replace_in_map(array, cast); 237 array = cast; 238 } 239 if (!array_type->is_not_flat() && not_flat) { 240 // Storing to a non-flat array, mark array as not flat. 241 array_type = array_type->cast_to_not_flat(); 242 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type)); 243 replace_in_map(array, cast); 244 array = cast; 245 } 246 247 if (!array_type->is_flat() && array_type->is_null_free()) { 248 // Store to non-flat null-free inline type array (elements can never be null) 249 assert(!stored_value_casted_type->maybe_null(), "should be guaranteed by array store check"); 250 if (elemtype->is_inlinetypeptr() && elemtype->inline_klass()->is_empty()) { 251 // Ignore empty inline stores, array is already initialized. 252 return; 253 } 254 } else if (!array_type->is_not_flat()) { 255 // Array might be a flat array, emit runtime checks (for nullptr, a simple inline_array_null_guard is sufficient). 256 assert(UseArrayFlattening && !not_flat && elemtype->is_oopptr()->can_be_inline_type() && 257 (!array_type->klass_is_exact() || array_type->is_flat()), "array can't be a flat array"); 258 // TODO 8350865 Depending on the available layouts, we can avoid this check in below flat/not-flat branches. Also the safe_for_replace arg is now always true. 259 array = inline_array_null_guard(array, stored_value_casted, 3, true); 260 IdealKit ideal(this); 261 ideal.if_then(flat_array_test(array, /* flat = */ false)); { 262 // Non-flat array 263 if (!array_type->is_flat()) { 264 sync_kit(ideal); 265 assert(array_type->is_flat() || ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found"); 266 inc_sp(3); 267 access_store_at(array, adr, adr_type, stored_value_casted, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY, false); 268 dec_sp(3); 269 ideal.sync_kit(this); 270 } 271 } ideal.else_(); { 272 // Flat array 273 sync_kit(ideal); 274 if (!array_type->is_not_flat()) { 275 // Try to determine the inline klass type of the stored value 276 ciInlineKlass* vk = nullptr; 277 if (stored_value_casted_type->is_inlinetypeptr()) { 278 vk = stored_value_casted_type->inline_klass(); 279 } else if (elemtype->is_inlinetypeptr()) { 280 vk = elemtype->inline_klass(); 281 } 282 283 if (vk != nullptr) { 284 // Element type is known, cast and store to flat array layout. 285 bool is_null_free = array_type->is_null_free() || !vk->has_nullable_atomic_layout(); 286 bool is_not_null_free = array_type->is_not_null_free() || (!vk->has_atomic_layout() && !vk->has_non_atomic_layout()); 287 if (is_null_free) { 288 // TODO 8350865 Impossible type 289 is_not_null_free = false; 290 } 291 bool is_naturally_atomic = (is_null_free && vk->nof_declared_nonstatic_fields() <= 1); 292 bool may_need_atomicity = !is_naturally_atomic && ((!is_not_null_free && vk->has_atomic_layout()) || (!is_null_free && vk->has_nullable_atomic_layout())); 293 294 // Re-execute flat array store if buffering triggers deoptimization 295 PreserveReexecuteState preexecs(this); 296 jvms()->set_should_reexecute(true); 297 inc_sp(3); 298 299 if (!stored_value_casted->is_InlineType()) { 300 assert(_gvn.type(stored_value_casted) == TypePtr::NULL_PTR, "Unexpected value"); 301 stored_value_casted = InlineTypeNode::make_null(_gvn, vk); 302 } 303 adr = flat_array_element_address(array, array_index, vk, is_null_free, is_not_null_free, may_need_atomicity); 304 int nm_offset = is_null_free ? -1 : vk->null_marker_offset_in_payload(); 305 stored_value_casted->as_InlineType()->store_flat(this, array, adr, array_index, vk, 0, may_need_atomicity, nm_offset, MO_UNORDERED | IN_HEAP | IS_ARRAY); 306 } else { 307 // Element type is unknown, emit a runtime call since the flat array layout is not statically known. 308 store_to_unknown_flat_array(array, array_index, stored_value_casted); 309 } 310 } 311 ideal.sync_kit(this); 312 } 313 ideal.end_if(); 314 sync_kit(ideal); 315 return; 316 } else if (!array_type->is_not_null_free()) { 317 // Array is not flat but may be null free 318 assert(elemtype->is_oopptr()->can_be_inline_type(), "array can't be null-free"); 319 array = inline_array_null_guard(array, stored_value_casted, 3, true); 320 } 321 } 322 inc_sp(3); 323 access_store_at(array, adr, adr_type, stored_value, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY); 324 dec_sp(3); 325 } 326 327 // Emit a runtime call to store to a flat array whose element type is either unknown (i.e. we do not know the flat 328 // array layout) or not exact (could have different flat array layouts at runtime). 329 void Parse::store_to_unknown_flat_array(Node* array, Node* const idx, Node* non_null_stored_value) { 330 // Below membars keep this access to an unknown flat array correctly 331 // ordered with other unknown and known flat array accesses. 332 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 333 334 Node* call = nullptr; 335 { 336 // Re-execute flat array store if runtime call triggers deoptimization 337 PreserveReexecuteState preexecs(this); 338 jvms()->set_bci(_bci); 339 jvms()->set_should_reexecute(true); 340 inc_sp(3); 341 kill_dead_locals(); 342 call = make_runtime_call(RC_NO_LEAF | RC_NO_IO, 343 OptoRuntime::store_unknown_inline_Type(), 344 OptoRuntime::store_unknown_inline_Java(), 345 nullptr, TypeRawPtr::BOTTOM, 346 non_null_stored_value, array, idx); 347 } 348 make_slow_call_ex(call, env()->Throwable_klass(), false); 349 350 insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES)); 351 } 352 353 //------------------------------array_addressing------------------------------- 354 // Pull array and index from the stack. Compute pointer-to-element. 355 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) { 356 Node *idx = peek(0+vals); // Get from stack without popping 357 Node *ary = peek(1+vals); // in case of exception 358 359 // Null check the array base, with correct stack contents 360 ary = null_check(ary, T_ARRAY); 361 // Compile-time detect of null-exception? 362 if (stopped()) return top(); 363 364 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr(); 365 const TypeInt* sizetype = arytype->size(); 366 elemtype = arytype->elem(); 367 368 if (UseUniqueSubclasses) { 369 const Type* el = elemtype->make_ptr(); 370 if (el && el->isa_instptr()) { 371 const TypeInstPtr* toop = el->is_instptr(); 372 if (toop->instance_klass()->unique_concrete_subklass()) { 373 // If we load from "AbstractClass[]" we must see "ConcreteSubClass". 374 const Type* subklass = Type::get_const_type(toop->instance_klass()); 375 elemtype = subklass->join_speculative(el); 376 } 377 } 378 } 379 380 if (!arytype->is_loaded()) { 381 // Only fails for some -Xcomp runs 382 // The class is unloaded. We have to run this bytecode in the interpreter. 383 ciKlass* klass = arytype->unloaded_klass(); 384 385 uncommon_trap(Deoptimization::Reason_unloaded, 386 Deoptimization::Action_reinterpret, 387 klass, "!loaded array"); 388 return top(); 389 } 390 391 ary = create_speculative_inline_type_array_checks(ary, arytype, elemtype); 392 393 if (needs_range_check(sizetype, idx)) { 394 create_range_check(idx, ary, sizetype); 395 } else if (C->log() != nullptr) { 396 C->log()->elem("observe that='!need_range_check'"); 397 } 398 399 // Check for always knowing you are throwing a range-check exception 400 if (stopped()) return top(); 401 402 // Make array address computation control dependent to prevent it 403 // from floating above the range check during loop optimizations. 404 Node* ptr = array_element_address(ary, idx, type, sizetype, control()); 405 assert(ptr != top(), "top should go hand-in-hand with stopped"); 406 407 return ptr; 408 } 409 410 // Check if we need a range check for an array access. This is the case if the index is either negative or if it could 411 // be greater or equal the smallest possible array size (i.e. out-of-bounds). 412 bool Parse::needs_range_check(const TypeInt* size_type, const Node* index) const { 413 const TypeInt* index_type = _gvn.type(index)->is_int(); 414 return index_type->_hi >= size_type->_lo || index_type->_lo < 0; 415 } 416 417 void Parse::create_range_check(Node* idx, Node* ary, const TypeInt* sizetype) { 418 Node* tst; 419 if (sizetype->_hi <= 0) { 420 // The greatest array bound is negative, so we can conclude that we're 421 // compiling unreachable code, but the unsigned compare trick used below 422 // only works with non-negative lengths. Instead, hack "tst" to be zero so 423 // the uncommon_trap path will always be taken. 424 tst = _gvn.intcon(0); 425 } else { 426 // Range is constant in array-oop, so we can use the original state of mem 427 Node* len = load_array_length(ary); 428 429 // Test length vs index (standard trick using unsigned compare) 430 Node* chk = _gvn.transform(new CmpUNode(idx, len) ); 431 BoolTest::mask btest = BoolTest::lt; 432 tst = _gvn.transform(new BoolNode(chk, btest) ); 433 } 434 RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN); 435 _gvn.set_type(rc, rc->Value(&_gvn)); 436 if (!tst->is_Con()) { 437 record_for_igvn(rc); 438 } 439 set_control(_gvn.transform(new IfTrueNode(rc))); 440 // Branch to failure if out of bounds 441 { 442 PreserveJVMState pjvms(this); 443 set_control(_gvn.transform(new IfFalseNode(rc))); 444 if (C->allow_range_check_smearing()) { 445 // Do not use builtin_throw, since range checks are sometimes 446 // made more stringent by an optimistic transformation. 447 // This creates "tentative" range checks at this point, 448 // which are not guaranteed to throw exceptions. 449 // See IfNode::Ideal, is_range_check, adjust_check. 450 uncommon_trap(Deoptimization::Reason_range_check, 451 Deoptimization::Action_make_not_entrant, 452 nullptr, "range_check"); 453 } else { 454 // If we have already recompiled with the range-check-widening 455 // heroic optimization turned off, then we must really be throwing 456 // range check exceptions. 457 builtin_throw(Deoptimization::Reason_range_check); 458 } 459 } 460 } 461 462 // For inline type arrays, we can use the profiling information for array accesses to speculate on the type, flatness, 463 // and null-freeness. We can either prepare the speculative type for later uses or emit explicit speculative checks with 464 // traps now. In the latter case, the speculative type guarantees can avoid additional runtime checks later (e.g. 465 // non-null-free implies non-flat which allows us to remove flatness checks). This makes the graph simpler. 466 Node* Parse::create_speculative_inline_type_array_checks(Node* array, const TypeAryPtr* array_type, 467 const Type*& element_type) { 468 if (!array_type->is_flat() && !array_type->is_not_flat()) { 469 // For arrays that might be flat, speculate that the array has the exact type reported in the profile data such that 470 // we can rely on a fixed memory layout (i.e. either a flat layout or not). 471 array = cast_to_speculative_array_type(array, array_type, element_type); 472 } else if (UseTypeSpeculation && UseArrayLoadStoreProfile) { 473 // Array is known to be either flat or not flat. If possible, update the speculative type by using the profile data 474 // at this bci. 475 array = cast_to_profiled_array_type(array); 476 } 477 478 // Even though the type does not tell us whether we have an inline type array or not, we can still check the profile data 479 // whether we have a non-null-free or non-flat array. Speculating on a non-null-free array doesn't help aaload but could 480 // be profitable for a subsequent aastore. 481 if (!array_type->is_null_free() && !array_type->is_not_null_free()) { 482 array = speculate_non_null_free_array(array, array_type); 483 } 484 if (!array_type->is_flat() && !array_type->is_not_flat()) { 485 array = speculate_non_flat_array(array, array_type); 486 } 487 return array; 488 } 489 490 // Speculate that the array has the exact type reported in the profile data. We emit a trap when this turns out to be 491 // wrong. On the fast path, we add a CheckCastPP to use the exact type. 492 Node* Parse::cast_to_speculative_array_type(Node* const array, const TypeAryPtr*& array_type, const Type*& element_type) { 493 Deoptimization::DeoptReason reason = Deoptimization::Reason_speculate_class_check; 494 ciKlass* speculative_array_type = array_type->speculative_type(); 495 if (too_many_traps_or_recompiles(reason) || speculative_array_type == nullptr) { 496 // No speculative type, check profile data at this bci 497 speculative_array_type = nullptr; 498 reason = Deoptimization::Reason_class_check; 499 if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) { 500 ciKlass* profiled_element_type = nullptr; 501 ProfilePtrKind element_ptr = ProfileMaybeNull; 502 bool flat_array = true; 503 bool null_free_array = true; 504 method()->array_access_profiled_type(bci(), speculative_array_type, profiled_element_type, element_ptr, flat_array, 505 null_free_array); 506 } 507 } 508 if (speculative_array_type != nullptr) { 509 // Speculate that this array has the exact type reported by profile data 510 Node* casted_array = nullptr; 511 DEBUG_ONLY(Node* old_control = control();) 512 Node* slow_ctl = type_check_receiver(array, speculative_array_type, 1.0, &casted_array); 513 if (stopped()) { 514 // The check always fails and therefore profile information is incorrect. Don't use it. 515 assert(old_control == slow_ctl, "type check should have been removed"); 516 set_control(slow_ctl); 517 } else if (!slow_ctl->is_top()) { 518 { PreserveJVMState pjvms(this); 519 set_control(slow_ctl); 520 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 521 } 522 replace_in_map(array, casted_array); 523 array_type = _gvn.type(casted_array)->is_aryptr(); 524 element_type = array_type->elem(); 525 return casted_array; 526 } 527 } 528 return array; 529 } 530 531 // Create a CheckCastPP when the speculative type can improve the current type. 532 Node* Parse::cast_to_profiled_array_type(Node* const array) { 533 ciKlass* array_type = nullptr; 534 ciKlass* element_type = nullptr; 535 ProfilePtrKind element_ptr = ProfileMaybeNull; 536 bool flat_array = true; 537 bool null_free_array = true; 538 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array); 539 if (array_type != nullptr) { 540 return record_profile_for_speculation(array, array_type, ProfileMaybeNull); 541 } 542 return array; 543 } 544 545 // Speculate that the array is non-null-free. We emit a trap when this turns out to be 546 // wrong. On the fast path, we add a CheckCastPP to use the non-null-free type. 547 Node* Parse::speculate_non_null_free_array(Node* const array, const TypeAryPtr*& array_type) { 548 bool null_free_array = true; 549 Deoptimization::DeoptReason reason = Deoptimization::Reason_none; 550 if (array_type->speculative() != nullptr && 551 array_type->speculative()->is_aryptr()->is_not_null_free() && 552 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 553 null_free_array = false; 554 reason = Deoptimization::Reason_speculate_class_check; 555 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) { 556 ciKlass* profiled_array_type = nullptr; 557 ciKlass* profiled_element_type = nullptr; 558 ProfilePtrKind element_ptr = ProfileMaybeNull; 559 bool flat_array = true; 560 method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array, 561 null_free_array); 562 reason = Deoptimization::Reason_class_check; 563 } 564 if (!null_free_array) { 565 { // Deoptimize if null-free array 566 BuildCutout unless(this, null_free_array_test(array, /* null_free = */ false), PROB_MAX); 567 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 568 } 569 assert(!stopped(), "null-free array should have been caught earlier"); 570 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_null_free())); 571 replace_in_map(array, casted_array); 572 array_type = _gvn.type(casted_array)->is_aryptr(); 573 return casted_array; 574 } 575 return array; 576 } 577 578 // Speculate that the array is non-flat. We emit a trap when this turns out to be wrong. 579 // On the fast path, we add a CheckCastPP to use the non-flat type. 580 Node* Parse::speculate_non_flat_array(Node* const array, const TypeAryPtr* const array_type) { 581 bool flat_array = true; 582 Deoptimization::DeoptReason reason = Deoptimization::Reason_none; 583 if (array_type->speculative() != nullptr && 584 array_type->speculative()->is_aryptr()->is_not_flat() && 585 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 586 flat_array = false; 587 reason = Deoptimization::Reason_speculate_class_check; 588 } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) { 589 ciKlass* profiled_array_type = nullptr; 590 ciKlass* profiled_element_type = nullptr; 591 ProfilePtrKind element_ptr = ProfileMaybeNull; 592 bool null_free_array = true; 593 method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array, 594 null_free_array); 595 reason = Deoptimization::Reason_class_check; 596 } 597 if (!flat_array) { 598 { // Deoptimize if flat array 599 BuildCutout unless(this, flat_array_test(array, /* flat = */ false), PROB_MAX); 600 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 601 } 602 assert(!stopped(), "flat array should have been caught earlier"); 603 Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_flat())); 604 replace_in_map(array, casted_array); 605 return casted_array; 606 } 607 return array; 608 } 609 610 // returns IfNode 611 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) { 612 Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32 613 Node *tst = _gvn.transform(new BoolNode(cmp, mask)); 614 IfNode *iff = create_and_map_if(control(), tst, prob, cnt); 615 return iff; 616 } 617 618 619 // sentinel value for the target bci to mark never taken branches 620 // (according to profiling) 621 static const int never_reached = INT_MAX; 622 623 //------------------------------helper for tableswitch------------------------- 624 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 625 // True branch, use existing map info 626 { PreserveJVMState pjvms(this); 627 Node *iftrue = _gvn.transform( new IfTrueNode (iff) ); 628 set_control( iftrue ); 629 if (unc) { 630 repush_if_args(); 631 uncommon_trap(Deoptimization::Reason_unstable_if, 632 Deoptimization::Action_reinterpret, 633 nullptr, 634 "taken always"); 635 } else { 636 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 637 merge_new_path(dest_bci_if_true); 638 } 639 } 640 641 // False branch 642 Node *iffalse = _gvn.transform( new IfFalseNode(iff) ); 643 set_control( iffalse ); 644 } 645 646 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, bool unc) { 647 // True branch, use existing map info 648 { PreserveJVMState pjvms(this); 649 Node *iffalse = _gvn.transform( new IfFalseNode (iff) ); 650 set_control( iffalse ); 651 if (unc) { 652 repush_if_args(); 653 uncommon_trap(Deoptimization::Reason_unstable_if, 654 Deoptimization::Action_reinterpret, 655 nullptr, 656 "taken never"); 657 } else { 658 assert(dest_bci_if_true != never_reached, "inconsistent dest"); 659 merge_new_path(dest_bci_if_true); 660 } 661 } 662 663 // False branch 664 Node *iftrue = _gvn.transform( new IfTrueNode(iff) ); 665 set_control( iftrue ); 666 } 667 668 void Parse::jump_if_always_fork(int dest_bci, bool unc) { 669 // False branch, use existing map and control() 670 if (unc) { 671 repush_if_args(); 672 uncommon_trap(Deoptimization::Reason_unstable_if, 673 Deoptimization::Action_reinterpret, 674 nullptr, 675 "taken never"); 676 } else { 677 assert(dest_bci != never_reached, "inconsistent dest"); 678 merge_new_path(dest_bci); 679 } 680 } 681 682 683 extern "C" { 684 static int jint_cmp(const void *i, const void *j) { 685 int a = *(jint *)i; 686 int b = *(jint *)j; 687 return a > b ? 1 : a < b ? -1 : 0; 688 } 689 } 690 691 692 class SwitchRange : public StackObj { 693 // a range of integers coupled with a bci destination 694 jint _lo; // inclusive lower limit 695 jint _hi; // inclusive upper limit 696 int _dest; 697 float _cnt; // how many times this range was hit according to profiling 698 699 public: 700 jint lo() const { return _lo; } 701 jint hi() const { return _hi; } 702 int dest() const { return _dest; } 703 bool is_singleton() const { return _lo == _hi; } 704 float cnt() const { return _cnt; } 705 706 void setRange(jint lo, jint hi, int dest, float cnt) { 707 assert(lo <= hi, "must be a non-empty range"); 708 _lo = lo, _hi = hi; _dest = dest; _cnt = cnt; 709 assert(_cnt >= 0, ""); 710 } 711 bool adjoinRange(jint lo, jint hi, int dest, float cnt, bool trim_ranges) { 712 assert(lo <= hi, "must be a non-empty range"); 713 if (lo == _hi+1) { 714 // see merge_ranges() comment below 715 if (trim_ranges) { 716 if (cnt == 0) { 717 if (_cnt != 0) { 718 return false; 719 } 720 if (dest != _dest) { 721 _dest = never_reached; 722 } 723 } else { 724 if (_cnt == 0) { 725 return false; 726 } 727 if (dest != _dest) { 728 return false; 729 } 730 } 731 } else { 732 if (dest != _dest) { 733 return false; 734 } 735 } 736 _hi = hi; 737 _cnt += cnt; 738 return true; 739 } 740 return false; 741 } 742 743 void set (jint value, int dest, float cnt) { 744 setRange(value, value, dest, cnt); 745 } 746 bool adjoin(jint value, int dest, float cnt, bool trim_ranges) { 747 return adjoinRange(value, value, dest, cnt, trim_ranges); 748 } 749 bool adjoin(SwitchRange& other) { 750 return adjoinRange(other._lo, other._hi, other._dest, other._cnt, false); 751 } 752 753 void print() { 754 if (is_singleton()) 755 tty->print(" {%d}=>%d (cnt=%f)", lo(), dest(), cnt()); 756 else if (lo() == min_jint) 757 tty->print(" {..%d}=>%d (cnt=%f)", hi(), dest(), cnt()); 758 else if (hi() == max_jint) 759 tty->print(" {%d..}=>%d (cnt=%f)", lo(), dest(), cnt()); 760 else 761 tty->print(" {%d..%d}=>%d (cnt=%f)", lo(), hi(), dest(), cnt()); 762 } 763 }; 764 765 // We try to minimize the number of ranges and the size of the taken 766 // ones using profiling data. When ranges are created, 767 // SwitchRange::adjoinRange() only allows 2 adjoining ranges to merge 768 // if both were never hit or both were hit to build longer unreached 769 // ranges. Here, we now merge adjoining ranges with the same 770 // destination and finally set destination of unreached ranges to the 771 // special value never_reached because it can help minimize the number 772 // of tests that are necessary. 773 // 774 // For instance: 775 // [0, 1] to target1 sometimes taken 776 // [1, 2] to target1 never taken 777 // [2, 3] to target2 never taken 778 // would lead to: 779 // [0, 1] to target1 sometimes taken 780 // [1, 3] never taken 781 // 782 // (first 2 ranges to target1 are not merged) 783 static void merge_ranges(SwitchRange* ranges, int& rp) { 784 if (rp == 0) { 785 return; 786 } 787 int shift = 0; 788 for (int j = 0; j < rp; j++) { 789 SwitchRange& r1 = ranges[j-shift]; 790 SwitchRange& r2 = ranges[j+1]; 791 if (r1.adjoin(r2)) { 792 shift++; 793 } else if (shift > 0) { 794 ranges[j+1-shift] = r2; 795 } 796 } 797 rp -= shift; 798 for (int j = 0; j <= rp; j++) { 799 SwitchRange& r = ranges[j]; 800 if (r.cnt() == 0 && r.dest() != never_reached) { 801 r.setRange(r.lo(), r.hi(), never_reached, r.cnt()); 802 } 803 } 804 } 805 806 //-------------------------------do_tableswitch-------------------------------- 807 void Parse::do_tableswitch() { 808 // Get information about tableswitch 809 int default_dest = iter().get_dest_table(0); 810 jint lo_index = iter().get_int_table(1); 811 jint hi_index = iter().get_int_table(2); 812 int len = hi_index - lo_index + 1; 813 814 if (len < 1) { 815 // If this is a backward branch, add safepoint 816 maybe_add_safepoint(default_dest); 817 pop(); // the effect of the instruction execution on the operand stack 818 merge(default_dest); 819 return; 820 } 821 822 ciMethodData* methodData = method()->method_data(); 823 ciMultiBranchData* profile = nullptr; 824 if (methodData->is_mature() && UseSwitchProfiling) { 825 ciProfileData* data = methodData->bci_to_data(bci()); 826 if (data != nullptr && data->is_MultiBranchData()) { 827 profile = (ciMultiBranchData*)data; 828 } 829 } 830 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 831 832 // generate decision tree, using trichotomy when possible 833 int rnum = len+2; 834 bool makes_backward_branch = (default_dest <= bci()); 835 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 836 int rp = -1; 837 if (lo_index != min_jint) { 838 float cnt = 1.0F; 839 if (profile != nullptr) { 840 cnt = (float)profile->default_count() / (hi_index != max_jint ? 2.0F : 1.0F); 841 } 842 ranges[++rp].setRange(min_jint, lo_index-1, default_dest, cnt); 843 } 844 for (int j = 0; j < len; j++) { 845 jint match_int = lo_index+j; 846 int dest = iter().get_dest_table(j+3); 847 makes_backward_branch |= (dest <= bci()); 848 float cnt = 1.0F; 849 if (profile != nullptr) { 850 cnt = (float)profile->count_at(j); 851 } 852 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, cnt, trim_ranges)) { 853 ranges[++rp].set(match_int, dest, cnt); 854 } 855 } 856 jint highest = lo_index+(len-1); 857 assert(ranges[rp].hi() == highest, ""); 858 if (highest != max_jint) { 859 float cnt = 1.0F; 860 if (profile != nullptr) { 861 cnt = (float)profile->default_count() / (lo_index != min_jint ? 2.0F : 1.0F); 862 } 863 if (!ranges[rp].adjoinRange(highest+1, max_jint, default_dest, cnt, trim_ranges)) { 864 ranges[++rp].setRange(highest+1, max_jint, default_dest, cnt); 865 } 866 } 867 assert(rp < len+2, "not too many ranges"); 868 869 if (trim_ranges) { 870 merge_ranges(ranges, rp); 871 } 872 873 // Safepoint in case if backward branch observed 874 if (makes_backward_branch) { 875 add_safepoint(); 876 } 877 878 Node* lookup = pop(); // lookup value 879 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 880 } 881 882 883 //------------------------------do_lookupswitch-------------------------------- 884 void Parse::do_lookupswitch() { 885 // Get information about lookupswitch 886 int default_dest = iter().get_dest_table(0); 887 jint len = iter().get_int_table(1); 888 889 if (len < 1) { // If this is a backward branch, add safepoint 890 maybe_add_safepoint(default_dest); 891 pop(); // the effect of the instruction execution on the operand stack 892 merge(default_dest); 893 return; 894 } 895 896 ciMethodData* methodData = method()->method_data(); 897 ciMultiBranchData* profile = nullptr; 898 if (methodData->is_mature() && UseSwitchProfiling) { 899 ciProfileData* data = methodData->bci_to_data(bci()); 900 if (data != nullptr && data->is_MultiBranchData()) { 901 profile = (ciMultiBranchData*)data; 902 } 903 } 904 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 905 906 // generate decision tree, using trichotomy when possible 907 jint* table = NEW_RESOURCE_ARRAY(jint, len*3); 908 { 909 for (int j = 0; j < len; j++) { 910 table[3*j+0] = iter().get_int_table(2+2*j); 911 table[3*j+1] = iter().get_dest_table(2+2*j+1); 912 // Handle overflow when converting from uint to jint 913 table[3*j+2] = (profile == nullptr) ? 1 : (jint)MIN2<uint>((uint)max_jint, profile->count_at(j)); 914 } 915 qsort(table, len, 3*sizeof(table[0]), jint_cmp); 916 } 917 918 float default_cnt = 1.0F; 919 if (profile != nullptr) { 920 juint defaults = max_juint - len; 921 default_cnt = (float)profile->default_count()/(float)defaults; 922 } 923 924 int rnum = len*2+1; 925 bool makes_backward_branch = (default_dest <= bci()); 926 SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum); 927 int rp = -1; 928 for (int j = 0; j < len; j++) { 929 jint match_int = table[3*j+0]; 930 jint dest = table[3*j+1]; 931 jint cnt = table[3*j+2]; 932 jint next_lo = rp < 0 ? min_jint : ranges[rp].hi()+1; 933 makes_backward_branch |= (dest <= bci()); 934 float c = default_cnt * ((float)match_int - (float)next_lo); 935 if (match_int != next_lo && (rp < 0 || !ranges[rp].adjoinRange(next_lo, match_int-1, default_dest, c, trim_ranges))) { 936 assert(default_dest != never_reached, "sentinel value for dead destinations"); 937 ranges[++rp].setRange(next_lo, match_int-1, default_dest, c); 938 } 939 if (rp < 0 || !ranges[rp].adjoin(match_int, dest, (float)cnt, trim_ranges)) { 940 assert(dest != never_reached, "sentinel value for dead destinations"); 941 ranges[++rp].set(match_int, dest, (float)cnt); 942 } 943 } 944 jint highest = table[3*(len-1)]; 945 assert(ranges[rp].hi() == highest, ""); 946 if (highest != max_jint && 947 !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest), trim_ranges)) { 948 ranges[++rp].setRange(highest+1, max_jint, default_dest, default_cnt * ((float)max_jint - (float)highest)); 949 } 950 assert(rp < rnum, "not too many ranges"); 951 952 if (trim_ranges) { 953 merge_ranges(ranges, rp); 954 } 955 956 // Safepoint in case backward branch observed 957 if (makes_backward_branch) { 958 add_safepoint(); 959 } 960 961 Node *lookup = pop(); // lookup value 962 jump_switch_ranges(lookup, &ranges[0], &ranges[rp]); 963 } 964 965 static float if_prob(float taken_cnt, float total_cnt) { 966 assert(taken_cnt <= total_cnt, ""); 967 if (total_cnt == 0) { 968 return PROB_FAIR; 969 } 970 float p = taken_cnt / total_cnt; 971 return clamp(p, PROB_MIN, PROB_MAX); 972 } 973 974 static float if_cnt(float cnt) { 975 if (cnt == 0) { 976 return COUNT_UNKNOWN; 977 } 978 return cnt; 979 } 980 981 static float sum_of_cnts(SwitchRange *lo, SwitchRange *hi) { 982 float total_cnt = 0; 983 for (SwitchRange* sr = lo; sr <= hi; sr++) { 984 total_cnt += sr->cnt(); 985 } 986 return total_cnt; 987 } 988 989 class SwitchRanges : public ResourceObj { 990 public: 991 SwitchRange* _lo; 992 SwitchRange* _hi; 993 SwitchRange* _mid; 994 float _cost; 995 996 enum { 997 Start, 998 LeftDone, 999 RightDone, 1000 Done 1001 } _state; 1002 1003 SwitchRanges(SwitchRange *lo, SwitchRange *hi) 1004 : _lo(lo), _hi(hi), _mid(nullptr), 1005 _cost(0), _state(Start) { 1006 } 1007 1008 SwitchRanges() 1009 : _lo(nullptr), _hi(nullptr), _mid(nullptr), 1010 _cost(0), _state(Start) {} 1011 }; 1012 1013 // Estimate cost of performing a binary search on lo..hi 1014 static float compute_tree_cost(SwitchRange *lo, SwitchRange *hi, float total_cnt) { 1015 GrowableArray<SwitchRanges> tree; 1016 SwitchRanges root(lo, hi); 1017 tree.push(root); 1018 1019 float cost = 0; 1020 do { 1021 SwitchRanges& r = *tree.adr_at(tree.length()-1); 1022 if (r._hi != r._lo) { 1023 if (r._mid == nullptr) { 1024 float r_cnt = sum_of_cnts(r._lo, r._hi); 1025 1026 if (r_cnt == 0) { 1027 tree.pop(); 1028 cost = 0; 1029 continue; 1030 } 1031 1032 SwitchRange* mid = nullptr; 1033 mid = r._lo; 1034 for (float cnt = 0; ; ) { 1035 assert(mid <= r._hi, "out of bounds"); 1036 cnt += mid->cnt(); 1037 if (cnt > r_cnt / 2) { 1038 break; 1039 } 1040 mid++; 1041 } 1042 assert(mid <= r._hi, "out of bounds"); 1043 r._mid = mid; 1044 r._cost = r_cnt / total_cnt; 1045 } 1046 r._cost += cost; 1047 if (r._state < SwitchRanges::LeftDone && r._mid > r._lo) { 1048 cost = 0; 1049 r._state = SwitchRanges::LeftDone; 1050 tree.push(SwitchRanges(r._lo, r._mid-1)); 1051 } else if (r._state < SwitchRanges::RightDone) { 1052 cost = 0; 1053 r._state = SwitchRanges::RightDone; 1054 tree.push(SwitchRanges(r._mid == r._lo ? r._mid+1 : r._mid, r._hi)); 1055 } else { 1056 tree.pop(); 1057 cost = r._cost; 1058 } 1059 } else { 1060 tree.pop(); 1061 cost = r._cost; 1062 } 1063 } while (tree.length() > 0); 1064 1065 1066 return cost; 1067 } 1068 1069 // It sometimes pays off to test most common ranges before the binary search 1070 void Parse::linear_search_switch_ranges(Node* key_val, SwitchRange*& lo, SwitchRange*& hi) { 1071 uint nr = hi - lo + 1; 1072 float total_cnt = sum_of_cnts(lo, hi); 1073 1074 float min = compute_tree_cost(lo, hi, total_cnt); 1075 float extra = 1; 1076 float sub = 0; 1077 1078 SwitchRange* array1 = lo; 1079 SwitchRange* array2 = NEW_RESOURCE_ARRAY(SwitchRange, nr); 1080 1081 SwitchRange* ranges = nullptr; 1082 1083 while (nr >= 2) { 1084 assert(lo == array1 || lo == array2, "one the 2 already allocated arrays"); 1085 ranges = (lo == array1) ? array2 : array1; 1086 1087 // Find highest frequency range 1088 SwitchRange* candidate = lo; 1089 for (SwitchRange* sr = lo+1; sr <= hi; sr++) { 1090 if (sr->cnt() > candidate->cnt()) { 1091 candidate = sr; 1092 } 1093 } 1094 SwitchRange most_freq = *candidate; 1095 if (most_freq.cnt() == 0) { 1096 break; 1097 } 1098 1099 // Copy remaining ranges into another array 1100 int shift = 0; 1101 for (uint i = 0; i < nr; i++) { 1102 SwitchRange* sr = &lo[i]; 1103 if (sr != candidate) { 1104 ranges[i-shift] = *sr; 1105 } else { 1106 shift++; 1107 if (i > 0 && i < nr-1) { 1108 SwitchRange prev = lo[i-1]; 1109 prev.setRange(prev.lo(), sr->hi(), prev.dest(), prev.cnt()); 1110 if (prev.adjoin(lo[i+1])) { 1111 shift++; 1112 i++; 1113 } 1114 ranges[i-shift] = prev; 1115 } 1116 } 1117 } 1118 nr -= shift; 1119 1120 // Evaluate cost of testing the most common range and performing a 1121 // binary search on the other ranges 1122 float cost = extra + compute_tree_cost(&ranges[0], &ranges[nr-1], total_cnt); 1123 if (cost >= min) { 1124 break; 1125 } 1126 // swap arrays 1127 lo = &ranges[0]; 1128 hi = &ranges[nr-1]; 1129 1130 // It pays off: emit the test for the most common range 1131 assert(most_freq.cnt() > 0, "must be taken"); 1132 Node* val = _gvn.transform(new SubINode(key_val, _gvn.intcon(most_freq.lo()))); 1133 Node* cmp = _gvn.transform(new CmpUNode(val, _gvn.intcon(java_subtract(most_freq.hi(), most_freq.lo())))); 1134 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1135 IfNode* iff = create_and_map_if(control(), tst, if_prob(most_freq.cnt(), total_cnt), if_cnt(most_freq.cnt())); 1136 jump_if_true_fork(iff, most_freq.dest(), false); 1137 1138 sub += most_freq.cnt() / total_cnt; 1139 extra += 1 - sub; 1140 min = cost; 1141 } 1142 } 1143 1144 //----------------------------create_jump_tables------------------------------- 1145 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) { 1146 // Are jumptables enabled 1147 if (!UseJumpTables) return false; 1148 1149 // Are jumptables supported 1150 if (!Matcher::has_match_rule(Op_Jump)) return false; 1151 1152 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 1153 1154 // Decide if a guard is needed to lop off big ranges at either (or 1155 // both) end(s) of the input set. We'll call this the default target 1156 // even though we can't be sure that it is the true "default". 1157 1158 bool needs_guard = false; 1159 int default_dest; 1160 int64_t total_outlier_size = 0; 1161 int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1; 1162 int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1; 1163 1164 if (lo->dest() == hi->dest()) { 1165 total_outlier_size = hi_size + lo_size; 1166 default_dest = lo->dest(); 1167 } else if (lo_size > hi_size) { 1168 total_outlier_size = lo_size; 1169 default_dest = lo->dest(); 1170 } else { 1171 total_outlier_size = hi_size; 1172 default_dest = hi->dest(); 1173 } 1174 1175 float total = sum_of_cnts(lo, hi); 1176 float cost = compute_tree_cost(lo, hi, total); 1177 1178 // If a guard test will eliminate very sparse end ranges, then 1179 // it is worth the cost of an extra jump. 1180 float trimmed_cnt = 0; 1181 if (total_outlier_size > (MaxJumpTableSparseness * 4)) { 1182 needs_guard = true; 1183 if (default_dest == lo->dest()) { 1184 trimmed_cnt += lo->cnt(); 1185 lo++; 1186 } 1187 if (default_dest == hi->dest()) { 1188 trimmed_cnt += hi->cnt(); 1189 hi--; 1190 } 1191 } 1192 1193 // Find the total number of cases and ranges 1194 int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1; 1195 int num_range = hi - lo + 1; 1196 1197 // Don't create table if: too large, too small, or too sparse. 1198 if (num_cases > MaxJumpTableSize) 1199 return false; 1200 if (UseSwitchProfiling) { 1201 // MinJumpTableSize is set so with a well balanced binary tree, 1202 // when the number of ranges is MinJumpTableSize, it's cheaper to 1203 // go through a JumpNode that a tree of IfNodes. Average cost of a 1204 // tree of IfNodes with MinJumpTableSize is 1205 // log2f(MinJumpTableSize) comparisons. So if the cost computed 1206 // from profile data is less than log2f(MinJumpTableSize) then 1207 // going with the binary search is cheaper. 1208 if (cost < log2f(MinJumpTableSize)) { 1209 return false; 1210 } 1211 } else { 1212 if (num_cases < MinJumpTableSize) 1213 return false; 1214 } 1215 if (num_cases > (MaxJumpTableSparseness * num_range)) 1216 return false; 1217 1218 // Normalize table lookups to zero 1219 int lowval = lo->lo(); 1220 key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) ); 1221 1222 // Generate a guard to protect against input keyvals that aren't 1223 // in the switch domain. 1224 if (needs_guard) { 1225 Node* size = _gvn.intcon(num_cases); 1226 Node* cmp = _gvn.transform(new CmpUNode(key_val, size)); 1227 Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::ge)); 1228 IfNode* iff = create_and_map_if(control(), tst, if_prob(trimmed_cnt, total), if_cnt(trimmed_cnt)); 1229 jump_if_true_fork(iff, default_dest, trim_ranges && trimmed_cnt == 0); 1230 1231 total -= trimmed_cnt; 1232 } 1233 1234 // Create an ideal node JumpTable that has projections 1235 // of all possible ranges for a switch statement 1236 // The key_val input must be converted to a pointer offset and scaled. 1237 // Compare Parse::array_addressing above. 1238 1239 // Clean the 32-bit int into a real 64-bit offset. 1240 // Otherwise, the jint value 0 might turn into an offset of 0x0800000000. 1241 // Make I2L conversion control dependent to prevent it from 1242 // floating above the range check during loop optimizations. 1243 // Do not use a narrow int type here to prevent the data path from dying 1244 // while the control path is not removed. This can happen if the type of key_val 1245 // is later known to be out of bounds of [0, num_cases] and therefore a narrow cast 1246 // would be replaced by TOP while C2 is not able to fold the corresponding range checks. 1247 // Set _carry_dependency for the cast to avoid being removed by IGVN. 1248 #ifdef _LP64 1249 key_val = C->constrained_convI2L(&_gvn, key_val, TypeInt::INT, control(), true /* carry_dependency */); 1250 #endif 1251 1252 // Shift the value by wordsize so we have an index into the table, rather 1253 // than a switch value 1254 Node *shiftWord = _gvn.MakeConX(wordSize); 1255 key_val = _gvn.transform( new MulXNode( key_val, shiftWord)); 1256 1257 // Create the JumpNode 1258 Arena* arena = C->comp_arena(); 1259 float* probs = (float*)arena->Amalloc(sizeof(float)*num_cases); 1260 int i = 0; 1261 if (total == 0) { 1262 for (SwitchRange* r = lo; r <= hi; r++) { 1263 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1264 probs[i] = 1.0F / num_cases; 1265 } 1266 } 1267 } else { 1268 for (SwitchRange* r = lo; r <= hi; r++) { 1269 float prob = r->cnt()/total; 1270 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1271 probs[i] = prob / (r->hi() - r->lo() + 1); 1272 } 1273 } 1274 } 1275 1276 ciMethodData* methodData = method()->method_data(); 1277 ciMultiBranchData* profile = nullptr; 1278 if (methodData->is_mature()) { 1279 ciProfileData* data = methodData->bci_to_data(bci()); 1280 if (data != nullptr && data->is_MultiBranchData()) { 1281 profile = (ciMultiBranchData*)data; 1282 } 1283 } 1284 1285 Node* jtn = _gvn.transform(new JumpNode(control(), key_val, num_cases, probs, profile == nullptr ? COUNT_UNKNOWN : total)); 1286 1287 // These are the switch destinations hanging off the jumpnode 1288 i = 0; 1289 for (SwitchRange* r = lo; r <= hi; r++) { 1290 for (int64_t j = r->lo(); j <= r->hi(); j++, i++) { 1291 Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval))); 1292 { 1293 PreserveJVMState pjvms(this); 1294 set_control(input); 1295 jump_if_always_fork(r->dest(), trim_ranges && r->cnt() == 0); 1296 } 1297 } 1298 } 1299 assert(i == num_cases, "miscount of cases"); 1300 stop_and_kill_map(); // no more uses for this JVMS 1301 return true; 1302 } 1303 1304 //----------------------------jump_switch_ranges------------------------------- 1305 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) { 1306 Block* switch_block = block(); 1307 bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 1308 1309 if (switch_depth == 0) { 1310 // Do special processing for the top-level call. 1311 assert(lo->lo() == min_jint, "initial range must exhaust Type::INT"); 1312 assert(hi->hi() == max_jint, "initial range must exhaust Type::INT"); 1313 1314 // Decrement pred-numbers for the unique set of nodes. 1315 #ifdef ASSERT 1316 if (!trim_ranges) { 1317 // Ensure that the block's successors are a (duplicate-free) set. 1318 int successors_counted = 0; // block occurrences in [hi..lo] 1319 int unique_successors = switch_block->num_successors(); 1320 for (int i = 0; i < unique_successors; i++) { 1321 Block* target = switch_block->successor_at(i); 1322 1323 // Check that the set of successors is the same in both places. 1324 int successors_found = 0; 1325 for (SwitchRange* p = lo; p <= hi; p++) { 1326 if (p->dest() == target->start()) successors_found++; 1327 } 1328 assert(successors_found > 0, "successor must be known"); 1329 successors_counted += successors_found; 1330 } 1331 assert(successors_counted == (hi-lo)+1, "no unexpected successors"); 1332 } 1333 #endif 1334 1335 // Maybe prune the inputs, based on the type of key_val. 1336 jint min_val = min_jint; 1337 jint max_val = max_jint; 1338 const TypeInt* ti = key_val->bottom_type()->isa_int(); 1339 if (ti != nullptr) { 1340 min_val = ti->_lo; 1341 max_val = ti->_hi; 1342 assert(min_val <= max_val, "invalid int type"); 1343 } 1344 while (lo->hi() < min_val) { 1345 lo++; 1346 } 1347 if (lo->lo() < min_val) { 1348 lo->setRange(min_val, lo->hi(), lo->dest(), lo->cnt()); 1349 } 1350 while (hi->lo() > max_val) { 1351 hi--; 1352 } 1353 if (hi->hi() > max_val) { 1354 hi->setRange(hi->lo(), max_val, hi->dest(), hi->cnt()); 1355 } 1356 1357 linear_search_switch_ranges(key_val, lo, hi); 1358 } 1359 1360 #ifndef PRODUCT 1361 if (switch_depth == 0) { 1362 _max_switch_depth = 0; 1363 _est_switch_depth = log2i_graceful((hi - lo + 1) - 1) + 1; 1364 } 1365 #endif 1366 1367 assert(lo <= hi, "must be a non-empty set of ranges"); 1368 if (lo == hi) { 1369 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 1370 } else { 1371 assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges"); 1372 assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges"); 1373 1374 if (create_jump_tables(key_val, lo, hi)) return; 1375 1376 SwitchRange* mid = nullptr; 1377 float total_cnt = sum_of_cnts(lo, hi); 1378 1379 int nr = hi - lo + 1; 1380 if (UseSwitchProfiling) { 1381 // Don't keep the binary search tree balanced: pick up mid point 1382 // that split frequencies in half. 1383 float cnt = 0; 1384 for (SwitchRange* sr = lo; sr <= hi; sr++) { 1385 cnt += sr->cnt(); 1386 if (cnt >= total_cnt / 2) { 1387 mid = sr; 1388 break; 1389 } 1390 } 1391 } else { 1392 mid = lo + nr/2; 1393 1394 // if there is an easy choice, pivot at a singleton: 1395 if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton()) mid--; 1396 1397 assert(lo < mid && mid <= hi, "good pivot choice"); 1398 assert(nr != 2 || mid == hi, "should pick higher of 2"); 1399 assert(nr != 3 || mid == hi-1, "should pick middle of 3"); 1400 } 1401 1402 1403 Node *test_val = _gvn.intcon(mid == lo ? mid->hi() : mid->lo()); 1404 1405 if (mid->is_singleton()) { 1406 IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne, 1-if_prob(mid->cnt(), total_cnt), if_cnt(mid->cnt())); 1407 jump_if_false_fork(iff_ne, mid->dest(), trim_ranges && mid->cnt() == 0); 1408 1409 // Special Case: If there are exactly three ranges, and the high 1410 // and low range each go to the same place, omit the "gt" test, 1411 // since it will not discriminate anything. 1412 bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest() && mid == hi-1) || mid == lo; 1413 1414 // if there is a higher range, test for it and process it: 1415 if (mid < hi && !eq_test_only) { 1416 // two comparisons of same values--should enable 1 test for 2 branches 1417 // Use BoolTest::lt instead of BoolTest::gt 1418 float cnt = sum_of_cnts(lo, mid-1); 1419 IfNode *iff_lt = jump_if_fork_int(key_val, test_val, BoolTest::lt, if_prob(cnt, total_cnt), if_cnt(cnt)); 1420 Node *iftrue = _gvn.transform( new IfTrueNode(iff_lt) ); 1421 Node *iffalse = _gvn.transform( new IfFalseNode(iff_lt) ); 1422 { PreserveJVMState pjvms(this); 1423 set_control(iffalse); 1424 jump_switch_ranges(key_val, mid+1, hi, switch_depth+1); 1425 } 1426 set_control(iftrue); 1427 } 1428 1429 } else { 1430 // mid is a range, not a singleton, so treat mid..hi as a unit 1431 float cnt = sum_of_cnts(mid == lo ? mid+1 : mid, hi); 1432 IfNode *iff_ge = jump_if_fork_int(key_val, test_val, mid == lo ? BoolTest::gt : BoolTest::ge, if_prob(cnt, total_cnt), if_cnt(cnt)); 1433 1434 // if there is a higher range, test for it and process it: 1435 if (mid == hi) { 1436 jump_if_true_fork(iff_ge, mid->dest(), trim_ranges && cnt == 0); 1437 } else { 1438 Node *iftrue = _gvn.transform( new IfTrueNode(iff_ge) ); 1439 Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) ); 1440 { PreserveJVMState pjvms(this); 1441 set_control(iftrue); 1442 jump_switch_ranges(key_val, mid == lo ? mid+1 : mid, hi, switch_depth+1); 1443 } 1444 set_control(iffalse); 1445 } 1446 } 1447 1448 // in any case, process the lower range 1449 if (mid == lo) { 1450 if (mid->is_singleton()) { 1451 jump_switch_ranges(key_val, lo+1, hi, switch_depth+1); 1452 } else { 1453 jump_if_always_fork(lo->dest(), trim_ranges && lo->cnt() == 0); 1454 } 1455 } else { 1456 jump_switch_ranges(key_val, lo, mid-1, switch_depth+1); 1457 } 1458 } 1459 1460 // Decrease pred_count for each successor after all is done. 1461 if (switch_depth == 0) { 1462 int unique_successors = switch_block->num_successors(); 1463 for (int i = 0; i < unique_successors; i++) { 1464 Block* target = switch_block->successor_at(i); 1465 // Throw away the pre-allocated path for each unique successor. 1466 target->next_path_num(); 1467 } 1468 } 1469 1470 #ifndef PRODUCT 1471 _max_switch_depth = MAX2(switch_depth, _max_switch_depth); 1472 if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) { 1473 SwitchRange* r; 1474 int nsing = 0; 1475 for( r = lo; r <= hi; r++ ) { 1476 if( r->is_singleton() ) nsing++; 1477 } 1478 tty->print(">>> "); 1479 _method->print_short_name(); 1480 tty->print_cr(" switch decision tree"); 1481 tty->print_cr(" %d ranges (%d singletons), max_depth=%d, est_depth=%d", 1482 (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth); 1483 if (_max_switch_depth > _est_switch_depth) { 1484 tty->print_cr("******** BAD SWITCH DEPTH ********"); 1485 } 1486 tty->print(" "); 1487 for( r = lo; r <= hi; r++ ) { 1488 r->print(); 1489 } 1490 tty->cr(); 1491 } 1492 #endif 1493 } 1494 1495 Node* Parse::floating_point_mod(Node* a, Node* b, BasicType type) { 1496 assert(type == BasicType::T_FLOAT || type == BasicType::T_DOUBLE, "only float and double are floating points"); 1497 CallNode* mod = type == BasicType::T_DOUBLE ? static_cast<CallNode*>(new ModDNode(C, a, b)) : new ModFNode(C, a, b); 1498 1499 Node* prev_mem = set_predefined_input_for_runtime_call(mod); 1500 mod = _gvn.transform(mod)->as_Call(); 1501 set_predefined_output_for_runtime_call(mod, prev_mem, TypeRawPtr::BOTTOM); 1502 Node* result = _gvn.transform(new ProjNode(mod, TypeFunc::Parms + 0)); 1503 record_for_igvn(mod); 1504 return result; 1505 } 1506 1507 void Parse::l2f() { 1508 Node* f2 = pop(); 1509 Node* f1 = pop(); 1510 Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(), 1511 CAST_FROM_FN_PTR(address, SharedRuntime::l2f), 1512 "l2f", nullptr, //no memory effects 1513 f1, f2); 1514 Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0)); 1515 1516 push(res); 1517 } 1518 1519 // Handle jsr and jsr_w bytecode 1520 void Parse::do_jsr() { 1521 assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode"); 1522 1523 // Store information about current state, tagged with new _jsr_bci 1524 int return_bci = iter().next_bci(); 1525 int jsr_bci = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest(); 1526 1527 // The way we do things now, there is only one successor block 1528 // for the jsr, because the target code is cloned by ciTypeFlow. 1529 Block* target = successor_for_bci(jsr_bci); 1530 1531 // What got pushed? 1532 const Type* ret_addr = target->peek(); 1533 assert(ret_addr->singleton(), "must be a constant (cloned jsr body)"); 1534 1535 // Effect on jsr on stack 1536 push(_gvn.makecon(ret_addr)); 1537 1538 // Flow to the jsr. 1539 merge(jsr_bci); 1540 } 1541 1542 // Handle ret bytecode 1543 void Parse::do_ret() { 1544 // Find to whom we return. 1545 assert(block()->num_successors() == 1, "a ret can only go one place now"); 1546 Block* target = block()->successor_at(0); 1547 assert(!target->is_ready(), "our arrival must be expected"); 1548 int pnum = target->next_path_num(); 1549 merge_common(target, pnum); 1550 } 1551 1552 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) { 1553 if (btest != BoolTest::eq && btest != BoolTest::ne) { 1554 // Only ::eq and ::ne are supported for profile injection. 1555 return false; 1556 } 1557 if (test->is_Cmp() && 1558 test->in(1)->Opcode() == Op_ProfileBoolean) { 1559 ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1); 1560 int false_cnt = profile->false_count(); 1561 int true_cnt = profile->true_count(); 1562 1563 // Counts matching depends on the actual test operation (::eq or ::ne). 1564 // No need to scale the counts because profile injection was designed 1565 // to feed exact counts into VM. 1566 taken = (btest == BoolTest::eq) ? false_cnt : true_cnt; 1567 not_taken = (btest == BoolTest::eq) ? true_cnt : false_cnt; 1568 1569 profile->consume(); 1570 return true; 1571 } 1572 return false; 1573 } 1574 1575 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 1576 // We also check that individual counters are positive first, otherwise the sum can become positive. 1577 // (check for saturation, integer overflow, and immature counts) 1578 static bool counters_are_meaningful(int counter1, int counter2, int min) { 1579 // check for saturation, including "uint" values too big to fit in "int" 1580 if (counter1 < 0 || counter2 < 0) { 1581 return false; 1582 } 1583 // check for integer overflow of the sum 1584 int64_t sum = (int64_t)counter1 + (int64_t)counter2; 1585 STATIC_ASSERT(sizeof(counter1) < sizeof(sum)); 1586 if (sum > INT_MAX) { 1587 return false; 1588 } 1589 // check if mature 1590 return (counter1 + counter2) >= min; 1591 } 1592 1593 //--------------------------dynamic_branch_prediction-------------------------- 1594 // Try to gather dynamic branch prediction behavior. Return a probability 1595 // of the branch being taken and set the "cnt" field. Returns a -1.0 1596 // if we need to use static prediction for some reason. 1597 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) { 1598 ResourceMark rm; 1599 1600 cnt = COUNT_UNKNOWN; 1601 1602 int taken = 0; 1603 int not_taken = 0; 1604 1605 bool use_mdo = !has_injected_profile(btest, test, taken, not_taken); 1606 1607 if (use_mdo) { 1608 // Use MethodData information if it is available 1609 // FIXME: free the ProfileData structure 1610 ciMethodData* methodData = method()->method_data(); 1611 if (!methodData->is_mature()) return PROB_UNKNOWN; 1612 ciProfileData* data = methodData->bci_to_data(bci()); 1613 if (data == nullptr) { 1614 return PROB_UNKNOWN; 1615 } 1616 if (!data->is_JumpData()) return PROB_UNKNOWN; 1617 1618 // get taken and not taken values 1619 // NOTE: saturated UINT_MAX values become negative, 1620 // as do counts above INT_MAX. 1621 taken = data->as_JumpData()->taken(); 1622 not_taken = 0; 1623 if (data->is_BranchData()) { 1624 not_taken = data->as_BranchData()->not_taken(); 1625 } 1626 1627 // scale the counts to be commensurate with invocation counts: 1628 // NOTE: overflow for positive values is clamped at INT_MAX 1629 taken = method()->scale_count(taken); 1630 not_taken = method()->scale_count(not_taken); 1631 } 1632 // At this point, saturation or overflow is indicated by INT_MAX 1633 // or a negative value. 1634 1635 // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful. 1636 // We also check that individual counters are positive first, otherwise the sum can become positive. 1637 if (!counters_are_meaningful(taken, not_taken, 40)) { 1638 if (C->log() != nullptr) { 1639 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken); 1640 } 1641 return PROB_UNKNOWN; 1642 } 1643 1644 // Compute frequency that we arrive here 1645 float sum = taken + not_taken; 1646 // Adjust, if this block is a cloned private block but the 1647 // Jump counts are shared. Taken the private counts for 1648 // just this path instead of the shared counts. 1649 if( block()->count() > 0 ) 1650 sum = block()->count(); 1651 cnt = sum / FreqCountInvocations; 1652 1653 // Pin probability to sane limits 1654 float prob; 1655 if( !taken ) 1656 prob = (0+PROB_MIN) / 2; 1657 else if( !not_taken ) 1658 prob = (1+PROB_MAX) / 2; 1659 else { // Compute probability of true path 1660 prob = (float)taken / (float)(taken + not_taken); 1661 if (prob > PROB_MAX) prob = PROB_MAX; 1662 if (prob < PROB_MIN) prob = PROB_MIN; 1663 } 1664 1665 assert((cnt > 0.0f) && (prob > 0.0f), 1666 "Bad frequency assignment in if cnt=%g prob=%g taken=%d not_taken=%d", cnt, prob, taken, not_taken); 1667 1668 if (C->log() != nullptr) { 1669 const char* prob_str = nullptr; 1670 if (prob >= PROB_MAX) prob_str = (prob == PROB_MAX) ? "max" : "always"; 1671 if (prob <= PROB_MIN) prob_str = (prob == PROB_MIN) ? "min" : "never"; 1672 char prob_str_buf[30]; 1673 if (prob_str == nullptr) { 1674 jio_snprintf(prob_str_buf, sizeof(prob_str_buf), "%20.2f", prob); 1675 prob_str = prob_str_buf; 1676 } 1677 C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'", 1678 iter().get_dest(), taken, not_taken, cnt, prob_str); 1679 } 1680 return prob; 1681 } 1682 1683 //-----------------------------branch_prediction------------------------------- 1684 float Parse::branch_prediction(float& cnt, 1685 BoolTest::mask btest, 1686 int target_bci, 1687 Node* test) { 1688 float prob = dynamic_branch_prediction(cnt, btest, test); 1689 // If prob is unknown, switch to static prediction 1690 if (prob != PROB_UNKNOWN) return prob; 1691 1692 prob = PROB_FAIR; // Set default value 1693 if (btest == BoolTest::eq) // Exactly equal test? 1694 prob = PROB_STATIC_INFREQUENT; // Assume its relatively infrequent 1695 else if (btest == BoolTest::ne) 1696 prob = PROB_STATIC_FREQUENT; // Assume its relatively frequent 1697 1698 // If this is a conditional test guarding a backwards branch, 1699 // assume its a loop-back edge. Make it a likely taken branch. 1700 if (target_bci < bci()) { 1701 if (is_osr_parse()) { // Could be a hot OSR'd loop; force deopt 1702 // Since it's an OSR, we probably have profile data, but since 1703 // branch_prediction returned PROB_UNKNOWN, the counts are too small. 1704 // Let's make a special check here for completely zero counts. 1705 ciMethodData* methodData = method()->method_data(); 1706 if (!methodData->is_empty()) { 1707 ciProfileData* data = methodData->bci_to_data(bci()); 1708 // Only stop for truly zero counts, which mean an unknown part 1709 // of the OSR-ed method, and we want to deopt to gather more stats. 1710 // If you have ANY counts, then this loop is simply 'cold' relative 1711 // to the OSR loop. 1712 if (data == nullptr || 1713 (data->as_BranchData()->taken() + data->as_BranchData()->not_taken() == 0)) { 1714 // This is the only way to return PROB_UNKNOWN: 1715 return PROB_UNKNOWN; 1716 } 1717 } 1718 } 1719 prob = PROB_STATIC_FREQUENT; // Likely to take backwards branch 1720 } 1721 1722 assert(prob != PROB_UNKNOWN, "must have some guess at this point"); 1723 return prob; 1724 } 1725 1726 // The magic constants are chosen so as to match the output of 1727 // branch_prediction() when the profile reports a zero taken count. 1728 // It is important to distinguish zero counts unambiguously, because 1729 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce 1730 // very small but nonzero probabilities, which if confused with zero 1731 // counts would keep the program recompiling indefinitely. 1732 bool Parse::seems_never_taken(float prob) const { 1733 return prob < PROB_MIN; 1734 } 1735 1736 //-------------------------------repush_if_args-------------------------------- 1737 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp. 1738 inline int Parse::repush_if_args() { 1739 if (PrintOpto && WizardMode) { 1740 tty->print("defending against excessive implicit null exceptions on %s @%d in ", 1741 Bytecodes::name(iter().cur_bc()), iter().cur_bci()); 1742 method()->print_name(); tty->cr(); 1743 } 1744 int bc_depth = - Bytecodes::depth(iter().cur_bc()); 1745 assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches"); 1746 DEBUG_ONLY(sync_jvms()); // argument(n) requires a synced jvms 1747 assert(argument(0) != nullptr, "must exist"); 1748 assert(bc_depth == 1 || argument(1) != nullptr, "two must exist"); 1749 inc_sp(bc_depth); 1750 return bc_depth; 1751 } 1752 1753 // Used by StressUnstableIfTraps 1754 static volatile int _trap_stress_counter = 0; 1755 1756 void Parse::increment_trap_stress_counter(Node*& counter, Node*& incr_store) { 1757 Node* counter_addr = makecon(TypeRawPtr::make((address)&_trap_stress_counter)); 1758 counter = make_load(control(), counter_addr, TypeInt::INT, T_INT, MemNode::unordered); 1759 counter = _gvn.transform(new AddINode(counter, intcon(1))); 1760 incr_store = store_to_memory(control(), counter_addr, counter, T_INT, MemNode::unordered); 1761 } 1762 1763 //----------------------------------do_ifnull---------------------------------- 1764 void Parse::do_ifnull(BoolTest::mask btest, Node *c) { 1765 int target_bci = iter().get_dest(); 1766 1767 Node* counter = nullptr; 1768 Node* incr_store = nullptr; 1769 bool do_stress_trap = StressUnstableIfTraps && ((C->random() % 2) == 0); 1770 if (do_stress_trap) { 1771 increment_trap_stress_counter(counter, incr_store); 1772 } 1773 1774 Block* branch_block = successor_for_bci(target_bci); 1775 Block* next_block = successor_for_bci(iter().next_bci()); 1776 1777 float cnt; 1778 float prob = branch_prediction(cnt, btest, target_bci, c); 1779 if (prob == PROB_UNKNOWN) { 1780 // (An earlier version of do_ifnull omitted this trap for OSR methods.) 1781 if (PrintOpto && Verbose) { 1782 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1783 } 1784 repush_if_args(); // to gather stats on loop 1785 uncommon_trap(Deoptimization::Reason_unreached, 1786 Deoptimization::Action_reinterpret, 1787 nullptr, "cold"); 1788 if (C->eliminate_boxing()) { 1789 // Mark the successor blocks as parsed 1790 branch_block->next_path_num(); 1791 next_block->next_path_num(); 1792 } 1793 return; 1794 } 1795 1796 NOT_PRODUCT(explicit_null_checks_inserted++); 1797 1798 // Generate real control flow 1799 Node *tst = _gvn.transform( new BoolNode( c, btest ) ); 1800 1801 // Sanity check the probability value 1802 assert(prob > 0.0f,"Bad probability in Parser"); 1803 // Need xform to put node in hash table 1804 IfNode *iff = create_and_xform_if( control(), tst, prob, cnt ); 1805 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1806 // True branch 1807 { PreserveJVMState pjvms(this); 1808 Node* iftrue = _gvn.transform( new IfTrueNode (iff) ); 1809 set_control(iftrue); 1810 1811 if (stopped()) { // Path is dead? 1812 NOT_PRODUCT(explicit_null_checks_elided++); 1813 if (C->eliminate_boxing()) { 1814 // Mark the successor block as parsed 1815 branch_block->next_path_num(); 1816 } 1817 } else { // Path is live. 1818 adjust_map_after_if(btest, c, prob, branch_block); 1819 if (!stopped()) { 1820 merge(target_bci); 1821 } 1822 } 1823 } 1824 1825 // False branch 1826 Node* iffalse = _gvn.transform( new IfFalseNode(iff) ); 1827 set_control(iffalse); 1828 1829 if (stopped()) { // Path is dead? 1830 NOT_PRODUCT(explicit_null_checks_elided++); 1831 if (C->eliminate_boxing()) { 1832 // Mark the successor block as parsed 1833 next_block->next_path_num(); 1834 } 1835 } else { // Path is live. 1836 adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block); 1837 } 1838 1839 if (do_stress_trap) { 1840 stress_trap(iff, counter, incr_store); 1841 } 1842 } 1843 1844 //------------------------------------do_if------------------------------------ 1845 void Parse::do_if(BoolTest::mask btest, Node* c, bool can_trap, bool new_path, Node** ctrl_taken) { 1846 int target_bci = iter().get_dest(); 1847 1848 Block* branch_block = successor_for_bci(target_bci); 1849 Block* next_block = successor_for_bci(iter().next_bci()); 1850 1851 float cnt; 1852 float prob = branch_prediction(cnt, btest, target_bci, c); 1853 float untaken_prob = 1.0 - prob; 1854 1855 if (prob == PROB_UNKNOWN) { 1856 if (PrintOpto && Verbose) { 1857 tty->print_cr("Never-taken edge stops compilation at bci %d", bci()); 1858 } 1859 repush_if_args(); // to gather stats on loop 1860 uncommon_trap(Deoptimization::Reason_unreached, 1861 Deoptimization::Action_reinterpret, 1862 nullptr, "cold"); 1863 if (C->eliminate_boxing()) { 1864 // Mark the successor blocks as parsed 1865 branch_block->next_path_num(); 1866 next_block->next_path_num(); 1867 } 1868 return; 1869 } 1870 1871 Node* counter = nullptr; 1872 Node* incr_store = nullptr; 1873 bool do_stress_trap = StressUnstableIfTraps && ((C->random() % 2) == 0); 1874 if (do_stress_trap) { 1875 increment_trap_stress_counter(counter, incr_store); 1876 } 1877 1878 // Sanity check the probability value 1879 assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser"); 1880 1881 bool taken_if_true = true; 1882 // Convert BoolTest to canonical form: 1883 if (!BoolTest(btest).is_canonical()) { 1884 btest = BoolTest(btest).negate(); 1885 taken_if_true = false; 1886 // prob is NOT updated here; it remains the probability of the taken 1887 // path (as opposed to the prob of the path guarded by an 'IfTrueNode'). 1888 } 1889 assert(btest != BoolTest::eq, "!= is the only canonical exact test"); 1890 1891 Node* tst0 = new BoolNode(c, btest); 1892 Node* tst = _gvn.transform(tst0); 1893 BoolTest::mask taken_btest = BoolTest::illegal; 1894 BoolTest::mask untaken_btest = BoolTest::illegal; 1895 1896 if (tst->is_Bool()) { 1897 // Refresh c from the transformed bool node, since it may be 1898 // simpler than the original c. Also re-canonicalize btest. 1899 // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p null)). 1900 // That can arise from statements like: if (x instanceof C) ... 1901 if (tst != tst0) { 1902 // Canonicalize one more time since transform can change it. 1903 btest = tst->as_Bool()->_test._test; 1904 if (!BoolTest(btest).is_canonical()) { 1905 // Reverse edges one more time... 1906 tst = _gvn.transform( tst->as_Bool()->negate(&_gvn) ); 1907 btest = tst->as_Bool()->_test._test; 1908 assert(BoolTest(btest).is_canonical(), "sanity"); 1909 taken_if_true = !taken_if_true; 1910 } 1911 c = tst->in(1); 1912 } 1913 BoolTest::mask neg_btest = BoolTest(btest).negate(); 1914 taken_btest = taken_if_true ? btest : neg_btest; 1915 untaken_btest = taken_if_true ? neg_btest : btest; 1916 } 1917 1918 // Generate real control flow 1919 float true_prob = (taken_if_true ? prob : untaken_prob); 1920 IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt); 1921 assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser"); 1922 Node* taken_branch = new IfTrueNode(iff); 1923 Node* untaken_branch = new IfFalseNode(iff); 1924 if (!taken_if_true) { // Finish conversion to canonical form 1925 Node* tmp = taken_branch; 1926 taken_branch = untaken_branch; 1927 untaken_branch = tmp; 1928 } 1929 1930 // Branch is taken: 1931 { PreserveJVMState pjvms(this); 1932 taken_branch = _gvn.transform(taken_branch); 1933 set_control(taken_branch); 1934 1935 if (stopped()) { 1936 if (C->eliminate_boxing() && !new_path) { 1937 // Mark the successor block as parsed (if we haven't created a new path) 1938 branch_block->next_path_num(); 1939 } 1940 } else { 1941 adjust_map_after_if(taken_btest, c, prob, branch_block, can_trap); 1942 if (!stopped()) { 1943 if (new_path) { 1944 // Merge by using a new path 1945 merge_new_path(target_bci); 1946 } else if (ctrl_taken != nullptr) { 1947 // Don't merge but save taken branch to be wired by caller 1948 *ctrl_taken = control(); 1949 } else { 1950 merge(target_bci); 1951 } 1952 } 1953 } 1954 } 1955 1956 untaken_branch = _gvn.transform(untaken_branch); 1957 set_control(untaken_branch); 1958 1959 // Branch not taken. 1960 if (stopped() && ctrl_taken == nullptr) { 1961 if (C->eliminate_boxing()) { 1962 // Mark the successor block as parsed (if caller does not re-wire control flow) 1963 next_block->next_path_num(); 1964 } 1965 } else { 1966 adjust_map_after_if(untaken_btest, c, untaken_prob, next_block, can_trap); 1967 } 1968 1969 if (do_stress_trap) { 1970 stress_trap(iff, counter, incr_store); 1971 } 1972 } 1973 1974 1975 static ProfilePtrKind speculative_ptr_kind(const TypeOopPtr* t) { 1976 if (t->speculative() == nullptr) { 1977 return ProfileUnknownNull; 1978 } 1979 if (t->speculative_always_null()) { 1980 return ProfileAlwaysNull; 1981 } 1982 if (t->speculative_maybe_null()) { 1983 return ProfileMaybeNull; 1984 } 1985 return ProfileNeverNull; 1986 } 1987 1988 void Parse::acmp_always_null_input(Node* input, const TypeOopPtr* tinput, BoolTest::mask btest, Node* eq_region) { 1989 inc_sp(2); 1990 Node* cast = null_check_common(input, T_OBJECT, true, nullptr, 1991 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check) && 1992 speculative_ptr_kind(tinput) == ProfileAlwaysNull); 1993 dec_sp(2); 1994 if (btest == BoolTest::ne) { 1995 { 1996 PreserveJVMState pjvms(this); 1997 replace_in_map(input, cast); 1998 int target_bci = iter().get_dest(); 1999 merge(target_bci); 2000 } 2001 record_for_igvn(eq_region); 2002 set_control(_gvn.transform(eq_region)); 2003 } else { 2004 replace_in_map(input, cast); 2005 } 2006 } 2007 2008 Node* Parse::acmp_null_check(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, Node*& null_ctl) { 2009 inc_sp(2); 2010 null_ctl = top(); 2011 Node* cast = null_check_oop(input, &null_ctl, 2012 input_ptr == ProfileNeverNull || (input_ptr == ProfileUnknownNull && !too_many_traps_or_recompiles(Deoptimization::Reason_null_check)), 2013 false, 2014 speculative_ptr_kind(tinput) == ProfileNeverNull && 2015 !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)); 2016 dec_sp(2); 2017 assert(!stopped(), "null input should have been caught earlier"); 2018 return cast; 2019 } 2020 2021 void Parse::acmp_known_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, ciKlass* input_type, BoolTest::mask btest, Node* eq_region) { 2022 Node* ne_region = new RegionNode(1); 2023 Node* null_ctl; 2024 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl); 2025 ne_region->add_req(null_ctl); 2026 2027 Node* slow_ctl = type_check_receiver(cast, input_type, 1.0, &cast); 2028 { 2029 PreserveJVMState pjvms(this); 2030 inc_sp(2); 2031 set_control(slow_ctl); 2032 Deoptimization::DeoptReason reason; 2033 if (tinput->speculative_type() != nullptr && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 2034 reason = Deoptimization::Reason_speculate_class_check; 2035 } else { 2036 reason = Deoptimization::Reason_class_check; 2037 } 2038 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile); 2039 } 2040 ne_region->add_req(control()); 2041 2042 record_for_igvn(ne_region); 2043 set_control(_gvn.transform(ne_region)); 2044 if (btest == BoolTest::ne) { 2045 { 2046 PreserveJVMState pjvms(this); 2047 if (null_ctl == top()) { 2048 replace_in_map(input, cast); 2049 } 2050 int target_bci = iter().get_dest(); 2051 merge(target_bci); 2052 } 2053 record_for_igvn(eq_region); 2054 set_control(_gvn.transform(eq_region)); 2055 } else { 2056 if (null_ctl == top()) { 2057 replace_in_map(input, cast); 2058 } 2059 set_control(_gvn.transform(ne_region)); 2060 } 2061 } 2062 2063 void Parse::acmp_unknown_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, BoolTest::mask btest, Node* eq_region) { 2064 Node* ne_region = new RegionNode(1); 2065 Node* null_ctl; 2066 Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl); 2067 ne_region->add_req(null_ctl); 2068 2069 { 2070 BuildCutout unless(this, inline_type_test(cast, /* is_inline = */ false), PROB_MAX); 2071 inc_sp(2); 2072 uncommon_trap_exact(Deoptimization::Reason_class_check, Deoptimization::Action_maybe_recompile); 2073 } 2074 2075 ne_region->add_req(control()); 2076 2077 record_for_igvn(ne_region); 2078 set_control(_gvn.transform(ne_region)); 2079 if (btest == BoolTest::ne) { 2080 { 2081 PreserveJVMState pjvms(this); 2082 if (null_ctl == top()) { 2083 replace_in_map(input, cast); 2084 } 2085 int target_bci = iter().get_dest(); 2086 merge(target_bci); 2087 } 2088 record_for_igvn(eq_region); 2089 set_control(_gvn.transform(eq_region)); 2090 } else { 2091 if (null_ctl == top()) { 2092 replace_in_map(input, cast); 2093 } 2094 set_control(_gvn.transform(ne_region)); 2095 } 2096 } 2097 2098 void Parse::do_acmp(BoolTest::mask btest, Node* left, Node* right) { 2099 ciKlass* left_type = nullptr; 2100 ciKlass* right_type = nullptr; 2101 ProfilePtrKind left_ptr = ProfileUnknownNull; 2102 ProfilePtrKind right_ptr = ProfileUnknownNull; 2103 bool left_inline_type = true; 2104 bool right_inline_type = true; 2105 2106 // Leverage profiling at acmp 2107 if (UseACmpProfile) { 2108 method()->acmp_profiled_type(bci(), left_type, right_type, left_ptr, right_ptr, left_inline_type, right_inline_type); 2109 if (too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) { 2110 left_type = nullptr; 2111 right_type = nullptr; 2112 left_inline_type = true; 2113 right_inline_type = true; 2114 } 2115 if (too_many_traps_or_recompiles(Deoptimization::Reason_null_check)) { 2116 left_ptr = ProfileUnknownNull; 2117 right_ptr = ProfileUnknownNull; 2118 } 2119 } 2120 2121 if (UseTypeSpeculation) { 2122 record_profile_for_speculation(left, left_type, left_ptr); 2123 record_profile_for_speculation(right, right_type, right_ptr); 2124 } 2125 2126 if (!EnableValhalla) { 2127 Node* cmp = CmpP(left, right); 2128 cmp = optimize_cmp_with_klass(cmp); 2129 do_if(btest, cmp); 2130 return; 2131 } 2132 2133 // Check for equality before potentially allocating 2134 if (left == right) { 2135 do_if(btest, makecon(TypeInt::CC_EQ)); 2136 return; 2137 } 2138 2139 // Allocate inline type operands and re-execute on deoptimization 2140 if (left->is_InlineType()) { 2141 if (_gvn.type(right)->is_zero_type() || 2142 (right->is_InlineType() && _gvn.type(right->as_InlineType()->get_is_init())->is_zero_type())) { 2143 // Null checking a scalarized but nullable inline type. Check the IsInit 2144 // input instead of the oop input to avoid keeping buffer allocations alive. 2145 Node* cmp = CmpI(left->as_InlineType()->get_is_init(), intcon(0)); 2146 do_if(btest, cmp); 2147 return; 2148 } else { 2149 PreserveReexecuteState preexecs(this); 2150 inc_sp(2); 2151 jvms()->set_should_reexecute(true); 2152 left = left->as_InlineType()->buffer(this)->get_oop(); 2153 } 2154 } 2155 if (right->is_InlineType()) { 2156 PreserveReexecuteState preexecs(this); 2157 inc_sp(2); 2158 jvms()->set_should_reexecute(true); 2159 right = right->as_InlineType()->buffer(this)->get_oop(); 2160 } 2161 2162 // First, do a normal pointer comparison 2163 const TypeOopPtr* tleft = _gvn.type(left)->isa_oopptr(); 2164 const TypeOopPtr* tright = _gvn.type(right)->isa_oopptr(); 2165 Node* cmp = CmpP(left, right); 2166 cmp = optimize_cmp_with_klass(cmp); 2167 if (tleft == nullptr || !tleft->can_be_inline_type() || 2168 tright == nullptr || !tright->can_be_inline_type()) { 2169 // This is sufficient, if one of the operands can't be an inline type 2170 do_if(btest, cmp); 2171 return; 2172 } 2173 2174 // Don't add traps to unstable if branches because additional checks are required to 2175 // decide if the operands are equal/substitutable and we therefore shouldn't prune 2176 // branches for one if based on the profiling of the acmp branches. 2177 // Also, OptimizeUnstableIf would set an incorrect re-rexecution state because it 2178 // assumes that there is a 1-1 mapping between the if and the acmp branches and that 2179 // hitting a trap means that we will take the corresponding acmp branch on re-execution. 2180 const bool can_trap = true; 2181 2182 Node* eq_region = nullptr; 2183 if (btest == BoolTest::eq) { 2184 do_if(btest, cmp, !can_trap, true); 2185 if (stopped()) { 2186 // Pointers are equal, operands must be equal 2187 return; 2188 } 2189 } else { 2190 assert(btest == BoolTest::ne, "only eq or ne"); 2191 Node* is_not_equal = nullptr; 2192 eq_region = new RegionNode(3); 2193 { 2194 PreserveJVMState pjvms(this); 2195 // Pointers are not equal, but more checks are needed to determine if the operands are (not) substitutable 2196 do_if(btest, cmp, !can_trap, false, &is_not_equal); 2197 if (!stopped()) { 2198 eq_region->init_req(1, control()); 2199 } 2200 } 2201 if (is_not_equal == nullptr || is_not_equal->is_top()) { 2202 record_for_igvn(eq_region); 2203 set_control(_gvn.transform(eq_region)); 2204 return; 2205 } 2206 set_control(is_not_equal); 2207 } 2208 2209 // Prefer speculative types if available 2210 if (!too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) { 2211 if (tleft->speculative_type() != nullptr) { 2212 left_type = tleft->speculative_type(); 2213 } 2214 if (tright->speculative_type() != nullptr) { 2215 right_type = tright->speculative_type(); 2216 } 2217 } 2218 2219 if (speculative_ptr_kind(tleft) != ProfileMaybeNull && speculative_ptr_kind(tleft) != ProfileUnknownNull) { 2220 ProfilePtrKind speculative_left_ptr = speculative_ptr_kind(tleft); 2221 if (speculative_left_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) { 2222 left_ptr = speculative_left_ptr; 2223 } else if (speculative_left_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) { 2224 left_ptr = speculative_left_ptr; 2225 } 2226 } 2227 if (speculative_ptr_kind(tright) != ProfileMaybeNull && speculative_ptr_kind(tright) != ProfileUnknownNull) { 2228 ProfilePtrKind speculative_right_ptr = speculative_ptr_kind(tright); 2229 if (speculative_right_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) { 2230 right_ptr = speculative_right_ptr; 2231 } else if (speculative_right_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) { 2232 right_ptr = speculative_right_ptr; 2233 } 2234 } 2235 2236 if (left_ptr == ProfileAlwaysNull) { 2237 // Comparison with null. Assert the input is indeed null and we're done. 2238 acmp_always_null_input(left, tleft, btest, eq_region); 2239 return; 2240 } 2241 if (right_ptr == ProfileAlwaysNull) { 2242 // Comparison with null. Assert the input is indeed null and we're done. 2243 acmp_always_null_input(right, tright, btest, eq_region); 2244 return; 2245 } 2246 if (left_type != nullptr && !left_type->is_inlinetype()) { 2247 // Comparison with an object of known type 2248 acmp_known_non_inline_type_input(left, tleft, left_ptr, left_type, btest, eq_region); 2249 return; 2250 } 2251 if (right_type != nullptr && !right_type->is_inlinetype()) { 2252 // Comparison with an object of known type 2253 acmp_known_non_inline_type_input(right, tright, right_ptr, right_type, btest, eq_region); 2254 return; 2255 } 2256 if (!left_inline_type) { 2257 // Comparison with an object known not to be an inline type 2258 acmp_unknown_non_inline_type_input(left, tleft, left_ptr, btest, eq_region); 2259 return; 2260 } 2261 if (!right_inline_type) { 2262 // Comparison with an object known not to be an inline type 2263 acmp_unknown_non_inline_type_input(right, tright, right_ptr, btest, eq_region); 2264 return; 2265 } 2266 2267 // Pointers are not equal, check if first operand is non-null 2268 Node* ne_region = new RegionNode(6); 2269 Node* null_ctl; 2270 Node* not_null_right = acmp_null_check(right, tright, right_ptr, null_ctl); 2271 ne_region->init_req(1, null_ctl); 2272 2273 // First operand is non-null, check if it is an inline type 2274 Node* is_value = inline_type_test(not_null_right); 2275 IfNode* is_value_iff = create_and_map_if(control(), is_value, PROB_FAIR, COUNT_UNKNOWN); 2276 Node* not_value = _gvn.transform(new IfFalseNode(is_value_iff)); 2277 ne_region->init_req(2, not_value); 2278 set_control(_gvn.transform(new IfTrueNode(is_value_iff))); 2279 2280 // The first operand is an inline type, check if the second operand is non-null 2281 Node* not_null_left = acmp_null_check(left, tleft, left_ptr, null_ctl); 2282 ne_region->init_req(3, null_ctl); 2283 2284 // Check if both operands are of the same class. 2285 Node* kls_left = load_object_klass(not_null_left); 2286 Node* kls_right = load_object_klass(not_null_right); 2287 Node* kls_cmp = CmpP(kls_left, kls_right); 2288 Node* kls_bol = _gvn.transform(new BoolNode(kls_cmp, BoolTest::ne)); 2289 IfNode* kls_iff = create_and_map_if(control(), kls_bol, PROB_FAIR, COUNT_UNKNOWN); 2290 Node* kls_ne = _gvn.transform(new IfTrueNode(kls_iff)); 2291 set_control(_gvn.transform(new IfFalseNode(kls_iff))); 2292 ne_region->init_req(4, kls_ne); 2293 2294 if (stopped()) { 2295 record_for_igvn(ne_region); 2296 set_control(_gvn.transform(ne_region)); 2297 if (btest == BoolTest::ne) { 2298 { 2299 PreserveJVMState pjvms(this); 2300 int target_bci = iter().get_dest(); 2301 merge(target_bci); 2302 } 2303 record_for_igvn(eq_region); 2304 set_control(_gvn.transform(eq_region)); 2305 } 2306 return; 2307 } 2308 2309 // Both operands are values types of the same class, we need to perform a 2310 // substitutability test. Delegate to ValueObjectMethods::isSubstitutable(). 2311 Node* ne_io_phi = PhiNode::make(ne_region, i_o()); 2312 Node* mem = reset_memory(); 2313 Node* ne_mem_phi = PhiNode::make(ne_region, mem); 2314 2315 Node* eq_io_phi = nullptr; 2316 Node* eq_mem_phi = nullptr; 2317 if (eq_region != nullptr) { 2318 eq_io_phi = PhiNode::make(eq_region, i_o()); 2319 eq_mem_phi = PhiNode::make(eq_region, mem); 2320 } 2321 2322 set_all_memory(mem); 2323 2324 kill_dead_locals(); 2325 ciMethod* subst_method = ciEnv::current()->ValueObjectMethods_klass()->find_method(ciSymbols::isSubstitutable_name(), ciSymbols::object_object_boolean_signature()); 2326 CallStaticJavaNode *call = new CallStaticJavaNode(C, TypeFunc::make(subst_method), SharedRuntime::get_resolve_static_call_stub(), subst_method); 2327 call->set_override_symbolic_info(true); 2328 call->init_req(TypeFunc::Parms, not_null_left); 2329 call->init_req(TypeFunc::Parms+1, not_null_right); 2330 inc_sp(2); 2331 set_edges_for_java_call(call, false, false); 2332 Node* ret = set_results_for_java_call(call, false, true); 2333 dec_sp(2); 2334 2335 // Test the return value of ValueObjectMethods::isSubstitutable() 2336 // This is the last check, do_if can emit traps now. 2337 Node* subst_cmp = _gvn.transform(new CmpINode(ret, intcon(1))); 2338 Node* ctl = C->top(); 2339 if (btest == BoolTest::eq) { 2340 PreserveJVMState pjvms(this); 2341 do_if(btest, subst_cmp, can_trap); 2342 if (!stopped()) { 2343 ctl = control(); 2344 } 2345 } else { 2346 assert(btest == BoolTest::ne, "only eq or ne"); 2347 PreserveJVMState pjvms(this); 2348 do_if(btest, subst_cmp, can_trap, false, &ctl); 2349 if (!stopped()) { 2350 eq_region->init_req(2, control()); 2351 eq_io_phi->init_req(2, i_o()); 2352 eq_mem_phi->init_req(2, reset_memory()); 2353 } 2354 } 2355 ne_region->init_req(5, ctl); 2356 ne_io_phi->init_req(5, i_o()); 2357 ne_mem_phi->init_req(5, reset_memory()); 2358 2359 record_for_igvn(ne_region); 2360 set_control(_gvn.transform(ne_region)); 2361 set_i_o(_gvn.transform(ne_io_phi)); 2362 set_all_memory(_gvn.transform(ne_mem_phi)); 2363 2364 if (btest == BoolTest::ne) { 2365 { 2366 PreserveJVMState pjvms(this); 2367 int target_bci = iter().get_dest(); 2368 merge(target_bci); 2369 } 2370 2371 record_for_igvn(eq_region); 2372 set_control(_gvn.transform(eq_region)); 2373 set_i_o(_gvn.transform(eq_io_phi)); 2374 set_all_memory(_gvn.transform(eq_mem_phi)); 2375 } 2376 } 2377 2378 // Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information. 2379 // Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and 2380 // then either takes the trap or executes the original, unstable if. 2381 void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) { 2382 // Search for an unstable if trap 2383 CallStaticJavaNode* trap = nullptr; 2384 assert(orig_iff->Opcode() == Op_If && orig_iff->outcnt() == 2, "malformed if"); 2385 ProjNode* trap_proj = orig_iff->uncommon_trap_proj(trap, Deoptimization::Reason_unstable_if); 2386 if (trap == nullptr || !trap->jvms()->should_reexecute()) { 2387 // No suitable trap found. Remove unused counter load and increment. 2388 C->gvn_replace_by(incr_store, incr_store->in(MemNode::Memory)); 2389 return; 2390 } 2391 2392 // Remove trap from optimization list since we add another path to the trap. 2393 bool success = C->remove_unstable_if_trap(trap, true); 2394 assert(success, "Trap already modified"); 2395 2396 // Add a check before the original if that will trap with a certain frequency and execute the original if otherwise 2397 int freq_log = (C->random() % 31) + 1; // Random logarithmic frequency in [1, 31] 2398 Node* mask = intcon(right_n_bits(freq_log)); 2399 counter = _gvn.transform(new AndINode(counter, mask)); 2400 Node* cmp = _gvn.transform(new CmpINode(counter, intcon(0))); 2401 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::mask::eq)); 2402 IfNode* iff = _gvn.transform(new IfNode(orig_iff->in(0), bol, orig_iff->_prob, orig_iff->_fcnt))->as_If(); 2403 Node* if_true = _gvn.transform(new IfTrueNode(iff)); 2404 Node* if_false = _gvn.transform(new IfFalseNode(iff)); 2405 assert(!if_true->is_top() && !if_false->is_top(), "trap always / never taken"); 2406 2407 // Trap 2408 assert(trap_proj->outcnt() == 1, "some other nodes are dependent on the trap projection"); 2409 2410 Node* trap_region = new RegionNode(3); 2411 trap_region->set_req(1, trap_proj); 2412 trap_region->set_req(2, if_true); 2413 trap->set_req(0, _gvn.transform(trap_region)); 2414 2415 // Don't trap, execute original if 2416 orig_iff->set_req(0, if_false); 2417 } 2418 2419 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const { 2420 // Randomly skip emitting an uncommon trap 2421 if (StressUnstableIfTraps && ((C->random() % 2) == 0)) { 2422 return false; 2423 } 2424 // Don't want to speculate on uncommon traps when running with -Xcomp 2425 if (!UseInterpreter) { 2426 return false; 2427 } 2428 return seems_never_taken(prob) && 2429 !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if); 2430 } 2431 2432 void Parse::maybe_add_predicate_after_if(Block* path) { 2433 if (path->is_SEL_head() && path->preds_parsed() == 0) { 2434 // Add predicates at bci of if dominating the loop so traps can be 2435 // recorded on the if's profile data 2436 int bc_depth = repush_if_args(); 2437 add_parse_predicates(); 2438 dec_sp(bc_depth); 2439 path->set_has_predicates(); 2440 } 2441 } 2442 2443 2444 //----------------------------adjust_map_after_if------------------------------ 2445 // Adjust the JVM state to reflect the result of taking this path. 2446 // Basically, it means inspecting the CmpNode controlling this 2447 // branch, seeing how it constrains a tested value, and then 2448 // deciding if it's worth our while to encode this constraint 2449 // as graph nodes in the current abstract interpretation map. 2450 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path, bool can_trap) { 2451 if (!c->is_Cmp()) { 2452 maybe_add_predicate_after_if(path); 2453 return; 2454 } 2455 2456 if (stopped() || btest == BoolTest::illegal) { 2457 return; // nothing to do 2458 } 2459 2460 bool is_fallthrough = (path == successor_for_bci(iter().next_bci())); 2461 2462 if (can_trap && path_is_suitable_for_uncommon_trap(prob)) { 2463 repush_if_args(); 2464 Node* call = uncommon_trap(Deoptimization::Reason_unstable_if, 2465 Deoptimization::Action_reinterpret, 2466 nullptr, 2467 (is_fallthrough ? "taken always" : "taken never")); 2468 2469 if (call != nullptr) { 2470 C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path)); 2471 } 2472 return; 2473 } 2474 2475 Node* val = c->in(1); 2476 Node* con = c->in(2); 2477 const Type* tcon = _gvn.type(con); 2478 const Type* tval = _gvn.type(val); 2479 bool have_con = tcon->singleton(); 2480 if (tval->singleton()) { 2481 if (!have_con) { 2482 // Swap, so constant is in con. 2483 con = val; 2484 tcon = tval; 2485 val = c->in(2); 2486 tval = _gvn.type(val); 2487 btest = BoolTest(btest).commute(); 2488 have_con = true; 2489 } else { 2490 // Do we have two constants? Then leave well enough alone. 2491 have_con = false; 2492 } 2493 } 2494 if (!have_con) { // remaining adjustments need a con 2495 maybe_add_predicate_after_if(path); 2496 return; 2497 } 2498 2499 sharpen_type_after_if(btest, con, tcon, val, tval); 2500 maybe_add_predicate_after_if(path); 2501 } 2502 2503 2504 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) { 2505 Node* ldk; 2506 if (n->is_DecodeNKlass()) { 2507 if (n->in(1)->Opcode() != Op_LoadNKlass) { 2508 return nullptr; 2509 } else { 2510 ldk = n->in(1); 2511 } 2512 } else if (n->Opcode() != Op_LoadKlass) { 2513 return nullptr; 2514 } else { 2515 ldk = n; 2516 } 2517 assert(ldk != nullptr && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node"); 2518 2519 Node* adr = ldk->in(MemNode::Address); 2520 intptr_t off = 0; 2521 Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off); 2522 if (obj == nullptr || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass? 2523 return nullptr; 2524 const TypePtr* tp = gvn->type(obj)->is_ptr(); 2525 if (tp == nullptr || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr? 2526 return nullptr; 2527 2528 return obj; 2529 } 2530 2531 void Parse::sharpen_type_after_if(BoolTest::mask btest, 2532 Node* con, const Type* tcon, 2533 Node* val, const Type* tval) { 2534 // Look for opportunities to sharpen the type of a node 2535 // whose klass is compared with a constant klass. 2536 if (btest == BoolTest::eq && tcon->isa_klassptr()) { 2537 Node* obj = extract_obj_from_klass_load(&_gvn, val); 2538 const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type(); 2539 if (obj != nullptr && (con_type->isa_instptr() || con_type->isa_aryptr())) { 2540 // Found: 2541 // Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq]) 2542 // or the narrowOop equivalent. 2543 const Type* obj_type = _gvn.type(obj); 2544 const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr(); 2545 if (tboth != nullptr && tboth->klass_is_exact() && tboth != obj_type && 2546 tboth->higher_equal(obj_type)) { 2547 // obj has to be of the exact type Foo if the CmpP succeeds. 2548 int obj_in_map = map()->find_edge(obj); 2549 JVMState* jvms = this->jvms(); 2550 if (obj_in_map >= 0 && 2551 (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) { 2552 TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth); 2553 const Type* tcc = ccast->as_Type()->type(); 2554 assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve"); 2555 // Delay transform() call to allow recovery of pre-cast value 2556 // at the control merge. 2557 _gvn.set_type_bottom(ccast); 2558 record_for_igvn(ccast); 2559 if (tboth->is_inlinetypeptr()) { 2560 ccast = InlineTypeNode::make_from_oop(this, ccast, tboth->exact_klass(true)->as_inline_klass()); 2561 } 2562 // Here's the payoff. 2563 replace_in_map(obj, ccast); 2564 } 2565 } 2566 } 2567 } 2568 2569 int val_in_map = map()->find_edge(val); 2570 if (val_in_map < 0) return; // replace_in_map would be useless 2571 { 2572 JVMState* jvms = this->jvms(); 2573 if (!(jvms->is_loc(val_in_map) || 2574 jvms->is_stk(val_in_map))) 2575 return; // again, it would be useless 2576 } 2577 2578 // Check for a comparison to a constant, and "know" that the compared 2579 // value is constrained on this path. 2580 assert(tcon->singleton(), ""); 2581 ConstraintCastNode* ccast = nullptr; 2582 Node* cast = nullptr; 2583 2584 switch (btest) { 2585 case BoolTest::eq: // Constant test? 2586 { 2587 const Type* tboth = tcon->join_speculative(tval); 2588 if (tboth == tval) break; // Nothing to gain. 2589 if (tcon->isa_int()) { 2590 ccast = new CastIINode(control(), val, tboth); 2591 } else if (tcon == TypePtr::NULL_PTR) { 2592 // Cast to null, but keep the pointer identity temporarily live. 2593 ccast = new CastPPNode(control(), val, tboth); 2594 } else { 2595 const TypeF* tf = tcon->isa_float_constant(); 2596 const TypeD* td = tcon->isa_double_constant(); 2597 // Exclude tests vs float/double 0 as these could be 2598 // either +0 or -0. Just because you are equal to +0 2599 // doesn't mean you ARE +0! 2600 // Note, following code also replaces Long and Oop values. 2601 if ((!tf || tf->_f != 0.0) && 2602 (!td || td->_d != 0.0)) 2603 cast = con; // Replace non-constant val by con. 2604 } 2605 } 2606 break; 2607 2608 case BoolTest::ne: 2609 if (tcon == TypePtr::NULL_PTR) { 2610 cast = cast_not_null(val, false); 2611 } 2612 break; 2613 2614 default: 2615 // (At this point we could record int range types with CastII.) 2616 break; 2617 } 2618 2619 if (ccast != nullptr) { 2620 const Type* tcc = ccast->as_Type()->type(); 2621 assert(tcc != tval && tcc->higher_equal(tval), "must improve"); 2622 // Delay transform() call to allow recovery of pre-cast value 2623 // at the control merge. 2624 _gvn.set_type_bottom(ccast); 2625 record_for_igvn(ccast); 2626 cast = ccast; 2627 } 2628 2629 if (cast != nullptr) { // Here's the payoff. 2630 replace_in_map(val, cast); 2631 } 2632 } 2633 2634 /** 2635 * Use speculative type to optimize CmpP node: if comparison is 2636 * against the low level class, cast the object to the speculative 2637 * type if any. CmpP should then go away. 2638 * 2639 * @param c expected CmpP node 2640 * @return result of CmpP on object casted to speculative type 2641 * 2642 */ 2643 Node* Parse::optimize_cmp_with_klass(Node* c) { 2644 // If this is transformed by the _gvn to a comparison with the low 2645 // level klass then we may be able to use speculation 2646 if (c->Opcode() == Op_CmpP && 2647 (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) && 2648 c->in(2)->is_Con()) { 2649 Node* load_klass = nullptr; 2650 Node* decode = nullptr; 2651 if (c->in(1)->Opcode() == Op_DecodeNKlass) { 2652 decode = c->in(1); 2653 load_klass = c->in(1)->in(1); 2654 } else { 2655 load_klass = c->in(1); 2656 } 2657 if (load_klass->in(2)->is_AddP()) { 2658 Node* addp = load_klass->in(2); 2659 Node* obj = addp->in(AddPNode::Address); 2660 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 2661 if (obj_type->speculative_type_not_null() != nullptr) { 2662 ciKlass* k = obj_type->speculative_type(); 2663 inc_sp(2); 2664 obj = maybe_cast_profiled_obj(obj, k); 2665 dec_sp(2); 2666 if (obj->is_InlineType()) { 2667 assert(obj->as_InlineType()->is_allocated(&_gvn), "must be allocated"); 2668 obj = obj->as_InlineType()->get_oop(); 2669 } 2670 // Make the CmpP use the casted obj 2671 addp = basic_plus_adr(obj, addp->in(AddPNode::Offset)); 2672 load_klass = load_klass->clone(); 2673 load_klass->set_req(2, addp); 2674 load_klass = _gvn.transform(load_klass); 2675 if (decode != nullptr) { 2676 decode = decode->clone(); 2677 decode->set_req(1, load_klass); 2678 load_klass = _gvn.transform(decode); 2679 } 2680 c = c->clone(); 2681 c->set_req(1, load_klass); 2682 c = _gvn.transform(c); 2683 } 2684 } 2685 } 2686 return c; 2687 } 2688 2689 //------------------------------do_one_bytecode-------------------------------- 2690 // Parse this bytecode, and alter the Parsers JVM->Node mapping 2691 void Parse::do_one_bytecode() { 2692 Node *a, *b, *c, *d; // Handy temps 2693 BoolTest::mask btest; 2694 int i; 2695 2696 assert(!has_exceptions(), "bytecode entry state must be clear of throws"); 2697 2698 if (C->check_node_count(NodeLimitFudgeFactor * 5, 2699 "out of nodes parsing method")) { 2700 return; 2701 } 2702 2703 #ifdef ASSERT 2704 // for setting breakpoints 2705 if (TraceOptoParse) { 2706 tty->print(" @"); 2707 dump_bci(bci()); 2708 tty->print(" %s", Bytecodes::name(bc())); 2709 tty->cr(); 2710 } 2711 #endif 2712 2713 switch (bc()) { 2714 case Bytecodes::_nop: 2715 // do nothing 2716 break; 2717 case Bytecodes::_lconst_0: 2718 push_pair(longcon(0)); 2719 break; 2720 2721 case Bytecodes::_lconst_1: 2722 push_pair(longcon(1)); 2723 break; 2724 2725 case Bytecodes::_fconst_0: 2726 push(zerocon(T_FLOAT)); 2727 break; 2728 2729 case Bytecodes::_fconst_1: 2730 push(makecon(TypeF::ONE)); 2731 break; 2732 2733 case Bytecodes::_fconst_2: 2734 push(makecon(TypeF::make(2.0f))); 2735 break; 2736 2737 case Bytecodes::_dconst_0: 2738 push_pair(zerocon(T_DOUBLE)); 2739 break; 2740 2741 case Bytecodes::_dconst_1: 2742 push_pair(makecon(TypeD::ONE)); 2743 break; 2744 2745 case Bytecodes::_iconst_m1:push(intcon(-1)); break; 2746 case Bytecodes::_iconst_0: push(intcon( 0)); break; 2747 case Bytecodes::_iconst_1: push(intcon( 1)); break; 2748 case Bytecodes::_iconst_2: push(intcon( 2)); break; 2749 case Bytecodes::_iconst_3: push(intcon( 3)); break; 2750 case Bytecodes::_iconst_4: push(intcon( 4)); break; 2751 case Bytecodes::_iconst_5: push(intcon( 5)); break; 2752 case Bytecodes::_bipush: push(intcon(iter().get_constant_u1())); break; 2753 case Bytecodes::_sipush: push(intcon(iter().get_constant_u2())); break; 2754 case Bytecodes::_aconst_null: push(null()); break; 2755 2756 case Bytecodes::_ldc: 2757 case Bytecodes::_ldc_w: 2758 case Bytecodes::_ldc2_w: { 2759 // ciTypeFlow should trap if the ldc is in error state or if the constant is not loaded 2760 assert(!iter().is_in_error(), "ldc is in error state"); 2761 ciConstant constant = iter().get_constant(); 2762 assert(constant.is_loaded(), "constant is not loaded"); 2763 const Type* con_type = Type::make_from_constant(constant); 2764 if (con_type != nullptr) { 2765 push_node(con_type->basic_type(), makecon(con_type)); 2766 } 2767 break; 2768 } 2769 2770 case Bytecodes::_aload_0: 2771 push( local(0) ); 2772 break; 2773 case Bytecodes::_aload_1: 2774 push( local(1) ); 2775 break; 2776 case Bytecodes::_aload_2: 2777 push( local(2) ); 2778 break; 2779 case Bytecodes::_aload_3: 2780 push( local(3) ); 2781 break; 2782 case Bytecodes::_aload: 2783 push( local(iter().get_index()) ); 2784 break; 2785 2786 case Bytecodes::_fload_0: 2787 case Bytecodes::_iload_0: 2788 push( local(0) ); 2789 break; 2790 case Bytecodes::_fload_1: 2791 case Bytecodes::_iload_1: 2792 push( local(1) ); 2793 break; 2794 case Bytecodes::_fload_2: 2795 case Bytecodes::_iload_2: 2796 push( local(2) ); 2797 break; 2798 case Bytecodes::_fload_3: 2799 case Bytecodes::_iload_3: 2800 push( local(3) ); 2801 break; 2802 case Bytecodes::_fload: 2803 case Bytecodes::_iload: 2804 push( local(iter().get_index()) ); 2805 break; 2806 case Bytecodes::_lload_0: 2807 push_pair_local( 0 ); 2808 break; 2809 case Bytecodes::_lload_1: 2810 push_pair_local( 1 ); 2811 break; 2812 case Bytecodes::_lload_2: 2813 push_pair_local( 2 ); 2814 break; 2815 case Bytecodes::_lload_3: 2816 push_pair_local( 3 ); 2817 break; 2818 case Bytecodes::_lload: 2819 push_pair_local( iter().get_index() ); 2820 break; 2821 2822 case Bytecodes::_dload_0: 2823 push_pair_local(0); 2824 break; 2825 case Bytecodes::_dload_1: 2826 push_pair_local(1); 2827 break; 2828 case Bytecodes::_dload_2: 2829 push_pair_local(2); 2830 break; 2831 case Bytecodes::_dload_3: 2832 push_pair_local(3); 2833 break; 2834 case Bytecodes::_dload: 2835 push_pair_local(iter().get_index()); 2836 break; 2837 case Bytecodes::_fstore_0: 2838 case Bytecodes::_istore_0: 2839 case Bytecodes::_astore_0: 2840 set_local( 0, pop() ); 2841 break; 2842 case Bytecodes::_fstore_1: 2843 case Bytecodes::_istore_1: 2844 case Bytecodes::_astore_1: 2845 set_local( 1, pop() ); 2846 break; 2847 case Bytecodes::_fstore_2: 2848 case Bytecodes::_istore_2: 2849 case Bytecodes::_astore_2: 2850 set_local( 2, pop() ); 2851 break; 2852 case Bytecodes::_fstore_3: 2853 case Bytecodes::_istore_3: 2854 case Bytecodes::_astore_3: 2855 set_local( 3, pop() ); 2856 break; 2857 case Bytecodes::_fstore: 2858 case Bytecodes::_istore: 2859 case Bytecodes::_astore: 2860 set_local( iter().get_index(), pop() ); 2861 break; 2862 // long stores 2863 case Bytecodes::_lstore_0: 2864 set_pair_local( 0, pop_pair() ); 2865 break; 2866 case Bytecodes::_lstore_1: 2867 set_pair_local( 1, pop_pair() ); 2868 break; 2869 case Bytecodes::_lstore_2: 2870 set_pair_local( 2, pop_pair() ); 2871 break; 2872 case Bytecodes::_lstore_3: 2873 set_pair_local( 3, pop_pair() ); 2874 break; 2875 case Bytecodes::_lstore: 2876 set_pair_local( iter().get_index(), pop_pair() ); 2877 break; 2878 2879 // double stores 2880 case Bytecodes::_dstore_0: 2881 set_pair_local( 0, pop_pair() ); 2882 break; 2883 case Bytecodes::_dstore_1: 2884 set_pair_local( 1, pop_pair() ); 2885 break; 2886 case Bytecodes::_dstore_2: 2887 set_pair_local( 2, pop_pair() ); 2888 break; 2889 case Bytecodes::_dstore_3: 2890 set_pair_local( 3, pop_pair() ); 2891 break; 2892 case Bytecodes::_dstore: 2893 set_pair_local( iter().get_index(), pop_pair() ); 2894 break; 2895 2896 case Bytecodes::_pop: dec_sp(1); break; 2897 case Bytecodes::_pop2: dec_sp(2); break; 2898 case Bytecodes::_swap: 2899 a = pop(); 2900 b = pop(); 2901 push(a); 2902 push(b); 2903 break; 2904 case Bytecodes::_dup: 2905 a = pop(); 2906 push(a); 2907 push(a); 2908 break; 2909 case Bytecodes::_dup_x1: 2910 a = pop(); 2911 b = pop(); 2912 push( a ); 2913 push( b ); 2914 push( a ); 2915 break; 2916 case Bytecodes::_dup_x2: 2917 a = pop(); 2918 b = pop(); 2919 c = pop(); 2920 push( a ); 2921 push( c ); 2922 push( b ); 2923 push( a ); 2924 break; 2925 case Bytecodes::_dup2: 2926 a = pop(); 2927 b = pop(); 2928 push( b ); 2929 push( a ); 2930 push( b ); 2931 push( a ); 2932 break; 2933 2934 case Bytecodes::_dup2_x1: 2935 // before: .. c, b, a 2936 // after: .. b, a, c, b, a 2937 // not tested 2938 a = pop(); 2939 b = pop(); 2940 c = pop(); 2941 push( b ); 2942 push( a ); 2943 push( c ); 2944 push( b ); 2945 push( a ); 2946 break; 2947 case Bytecodes::_dup2_x2: 2948 // before: .. d, c, b, a 2949 // after: .. b, a, d, c, b, a 2950 // not tested 2951 a = pop(); 2952 b = pop(); 2953 c = pop(); 2954 d = pop(); 2955 push( b ); 2956 push( a ); 2957 push( d ); 2958 push( c ); 2959 push( b ); 2960 push( a ); 2961 break; 2962 2963 case Bytecodes::_arraylength: { 2964 // Must do null-check with value on expression stack 2965 Node *ary = null_check(peek(), T_ARRAY); 2966 // Compile-time detect of null-exception? 2967 if (stopped()) return; 2968 a = pop(); 2969 push(load_array_length(a)); 2970 break; 2971 } 2972 2973 case Bytecodes::_baload: array_load(T_BYTE); break; 2974 case Bytecodes::_caload: array_load(T_CHAR); break; 2975 case Bytecodes::_iaload: array_load(T_INT); break; 2976 case Bytecodes::_saload: array_load(T_SHORT); break; 2977 case Bytecodes::_faload: array_load(T_FLOAT); break; 2978 case Bytecodes::_aaload: array_load(T_OBJECT); break; 2979 case Bytecodes::_laload: array_load(T_LONG); break; 2980 case Bytecodes::_daload: array_load(T_DOUBLE); break; 2981 case Bytecodes::_bastore: array_store(T_BYTE); break; 2982 case Bytecodes::_castore: array_store(T_CHAR); break; 2983 case Bytecodes::_iastore: array_store(T_INT); break; 2984 case Bytecodes::_sastore: array_store(T_SHORT); break; 2985 case Bytecodes::_fastore: array_store(T_FLOAT); break; 2986 case Bytecodes::_aastore: array_store(T_OBJECT); break; 2987 case Bytecodes::_lastore: array_store(T_LONG); break; 2988 case Bytecodes::_dastore: array_store(T_DOUBLE); break; 2989 2990 case Bytecodes::_getfield: 2991 do_getfield(); 2992 break; 2993 2994 case Bytecodes::_getstatic: 2995 do_getstatic(); 2996 break; 2997 2998 case Bytecodes::_putfield: 2999 do_putfield(); 3000 break; 3001 3002 case Bytecodes::_putstatic: 3003 do_putstatic(); 3004 break; 3005 3006 case Bytecodes::_irem: 3007 // Must keep both values on the expression-stack during null-check 3008 zero_check_int(peek()); 3009 // Compile-time detect of null-exception? 3010 if (stopped()) return; 3011 b = pop(); 3012 a = pop(); 3013 push(_gvn.transform(new ModINode(control(), a, b))); 3014 break; 3015 case Bytecodes::_idiv: 3016 // Must keep both values on the expression-stack during null-check 3017 zero_check_int(peek()); 3018 // Compile-time detect of null-exception? 3019 if (stopped()) return; 3020 b = pop(); 3021 a = pop(); 3022 push( _gvn.transform( new DivINode(control(),a,b) ) ); 3023 break; 3024 case Bytecodes::_imul: 3025 b = pop(); a = pop(); 3026 push( _gvn.transform( new MulINode(a,b) ) ); 3027 break; 3028 case Bytecodes::_iadd: 3029 b = pop(); a = pop(); 3030 push( _gvn.transform( new AddINode(a,b) ) ); 3031 break; 3032 case Bytecodes::_ineg: 3033 a = pop(); 3034 push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) ); 3035 break; 3036 case Bytecodes::_isub: 3037 b = pop(); a = pop(); 3038 push( _gvn.transform( new SubINode(a,b) ) ); 3039 break; 3040 case Bytecodes::_iand: 3041 b = pop(); a = pop(); 3042 push( _gvn.transform( new AndINode(a,b) ) ); 3043 break; 3044 case Bytecodes::_ior: 3045 b = pop(); a = pop(); 3046 push( _gvn.transform( new OrINode(a,b) ) ); 3047 break; 3048 case Bytecodes::_ixor: 3049 b = pop(); a = pop(); 3050 push( _gvn.transform( new XorINode(a,b) ) ); 3051 break; 3052 case Bytecodes::_ishl: 3053 b = pop(); a = pop(); 3054 push( _gvn.transform( new LShiftINode(a,b) ) ); 3055 break; 3056 case Bytecodes::_ishr: 3057 b = pop(); a = pop(); 3058 push( _gvn.transform( new RShiftINode(a,b) ) ); 3059 break; 3060 case Bytecodes::_iushr: 3061 b = pop(); a = pop(); 3062 push( _gvn.transform( new URShiftINode(a,b) ) ); 3063 break; 3064 3065 case Bytecodes::_fneg: 3066 a = pop(); 3067 b = _gvn.transform(new NegFNode (a)); 3068 push(b); 3069 break; 3070 3071 case Bytecodes::_fsub: 3072 b = pop(); 3073 a = pop(); 3074 c = _gvn.transform( new SubFNode(a,b) ); 3075 push(c); 3076 break; 3077 3078 case Bytecodes::_fadd: 3079 b = pop(); 3080 a = pop(); 3081 c = _gvn.transform( new AddFNode(a,b) ); 3082 push(c); 3083 break; 3084 3085 case Bytecodes::_fmul: 3086 b = pop(); 3087 a = pop(); 3088 c = _gvn.transform( new MulFNode(a,b) ); 3089 push(c); 3090 break; 3091 3092 case Bytecodes::_fdiv: 3093 b = pop(); 3094 a = pop(); 3095 c = _gvn.transform( new DivFNode(nullptr,a,b) ); 3096 push(c); 3097 break; 3098 3099 case Bytecodes::_frem: 3100 // Generate a ModF node. 3101 b = pop(); 3102 a = pop(); 3103 push(floating_point_mod(a, b, BasicType::T_FLOAT)); 3104 break; 3105 3106 case Bytecodes::_fcmpl: 3107 b = pop(); 3108 a = pop(); 3109 c = _gvn.transform( new CmpF3Node( a, b)); 3110 push(c); 3111 break; 3112 case Bytecodes::_fcmpg: 3113 b = pop(); 3114 a = pop(); 3115 3116 // Same as fcmpl but need to flip the unordered case. Swap the inputs, 3117 // which negates the result sign except for unordered. Flip the unordered 3118 // as well by using CmpF3 which implements unordered-lesser instead of 3119 // unordered-greater semantics. Finally, commute the result bits. Result 3120 // is same as using a CmpF3Greater except we did it with CmpF3 alone. 3121 c = _gvn.transform( new CmpF3Node( b, a)); 3122 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 3123 push(c); 3124 break; 3125 3126 case Bytecodes::_f2i: 3127 a = pop(); 3128 push(_gvn.transform(new ConvF2INode(a))); 3129 break; 3130 3131 case Bytecodes::_d2i: 3132 a = pop_pair(); 3133 b = _gvn.transform(new ConvD2INode(a)); 3134 push( b ); 3135 break; 3136 3137 case Bytecodes::_f2d: 3138 a = pop(); 3139 b = _gvn.transform( new ConvF2DNode(a)); 3140 push_pair( b ); 3141 break; 3142 3143 case Bytecodes::_d2f: 3144 a = pop_pair(); 3145 b = _gvn.transform( new ConvD2FNode(a)); 3146 push( b ); 3147 break; 3148 3149 case Bytecodes::_l2f: 3150 if (Matcher::convL2FSupported()) { 3151 a = pop_pair(); 3152 b = _gvn.transform( new ConvL2FNode(a)); 3153 push(b); 3154 } else { 3155 l2f(); 3156 } 3157 break; 3158 3159 case Bytecodes::_l2d: 3160 a = pop_pair(); 3161 b = _gvn.transform( new ConvL2DNode(a)); 3162 push_pair(b); 3163 break; 3164 3165 case Bytecodes::_f2l: 3166 a = pop(); 3167 b = _gvn.transform( new ConvF2LNode(a)); 3168 push_pair(b); 3169 break; 3170 3171 case Bytecodes::_d2l: 3172 a = pop_pair(); 3173 b = _gvn.transform( new ConvD2LNode(a)); 3174 push_pair(b); 3175 break; 3176 3177 case Bytecodes::_dsub: 3178 b = pop_pair(); 3179 a = pop_pair(); 3180 c = _gvn.transform( new SubDNode(a,b) ); 3181 push_pair(c); 3182 break; 3183 3184 case Bytecodes::_dadd: 3185 b = pop_pair(); 3186 a = pop_pair(); 3187 c = _gvn.transform( new AddDNode(a,b) ); 3188 push_pair(c); 3189 break; 3190 3191 case Bytecodes::_dmul: 3192 b = pop_pair(); 3193 a = pop_pair(); 3194 c = _gvn.transform( new MulDNode(a,b) ); 3195 push_pair(c); 3196 break; 3197 3198 case Bytecodes::_ddiv: 3199 b = pop_pair(); 3200 a = pop_pair(); 3201 c = _gvn.transform( new DivDNode(nullptr,a,b) ); 3202 push_pair(c); 3203 break; 3204 3205 case Bytecodes::_dneg: 3206 a = pop_pair(); 3207 b = _gvn.transform(new NegDNode (a)); 3208 push_pair(b); 3209 break; 3210 3211 case Bytecodes::_drem: 3212 // Generate a ModD node. 3213 b = pop_pair(); 3214 a = pop_pair(); 3215 push_pair(floating_point_mod(a, b, BasicType::T_DOUBLE)); 3216 break; 3217 3218 case Bytecodes::_dcmpl: 3219 b = pop_pair(); 3220 a = pop_pair(); 3221 c = _gvn.transform( new CmpD3Node( a, b)); 3222 push(c); 3223 break; 3224 3225 case Bytecodes::_dcmpg: 3226 b = pop_pair(); 3227 a = pop_pair(); 3228 // Same as dcmpl but need to flip the unordered case. 3229 // Commute the inputs, which negates the result sign except for unordered. 3230 // Flip the unordered as well by using CmpD3 which implements 3231 // unordered-lesser instead of unordered-greater semantics. 3232 // Finally, negate the result bits. Result is same as using a 3233 // CmpD3Greater except we did it with CmpD3 alone. 3234 c = _gvn.transform( new CmpD3Node( b, a)); 3235 c = _gvn.transform( new SubINode(_gvn.intcon(0),c) ); 3236 push(c); 3237 break; 3238 3239 3240 // Note for longs -> lo word is on TOS, hi word is on TOS - 1 3241 case Bytecodes::_land: 3242 b = pop_pair(); 3243 a = pop_pair(); 3244 c = _gvn.transform( new AndLNode(a,b) ); 3245 push_pair(c); 3246 break; 3247 case Bytecodes::_lor: 3248 b = pop_pair(); 3249 a = pop_pair(); 3250 c = _gvn.transform( new OrLNode(a,b) ); 3251 push_pair(c); 3252 break; 3253 case Bytecodes::_lxor: 3254 b = pop_pair(); 3255 a = pop_pair(); 3256 c = _gvn.transform( new XorLNode(a,b) ); 3257 push_pair(c); 3258 break; 3259 3260 case Bytecodes::_lshl: 3261 b = pop(); // the shift count 3262 a = pop_pair(); // value to be shifted 3263 c = _gvn.transform( new LShiftLNode(a,b) ); 3264 push_pair(c); 3265 break; 3266 case Bytecodes::_lshr: 3267 b = pop(); // the shift count 3268 a = pop_pair(); // value to be shifted 3269 c = _gvn.transform( new RShiftLNode(a,b) ); 3270 push_pair(c); 3271 break; 3272 case Bytecodes::_lushr: 3273 b = pop(); // the shift count 3274 a = pop_pair(); // value to be shifted 3275 c = _gvn.transform( new URShiftLNode(a,b) ); 3276 push_pair(c); 3277 break; 3278 case Bytecodes::_lmul: 3279 b = pop_pair(); 3280 a = pop_pair(); 3281 c = _gvn.transform( new MulLNode(a,b) ); 3282 push_pair(c); 3283 break; 3284 3285 case Bytecodes::_lrem: 3286 // Must keep both values on the expression-stack during null-check 3287 assert(peek(0) == top(), "long word order"); 3288 zero_check_long(peek(1)); 3289 // Compile-time detect of null-exception? 3290 if (stopped()) return; 3291 b = pop_pair(); 3292 a = pop_pair(); 3293 c = _gvn.transform( new ModLNode(control(),a,b) ); 3294 push_pair(c); 3295 break; 3296 3297 case Bytecodes::_ldiv: 3298 // Must keep both values on the expression-stack during null-check 3299 assert(peek(0) == top(), "long word order"); 3300 zero_check_long(peek(1)); 3301 // Compile-time detect of null-exception? 3302 if (stopped()) return; 3303 b = pop_pair(); 3304 a = pop_pair(); 3305 c = _gvn.transform( new DivLNode(control(),a,b) ); 3306 push_pair(c); 3307 break; 3308 3309 case Bytecodes::_ladd: 3310 b = pop_pair(); 3311 a = pop_pair(); 3312 c = _gvn.transform( new AddLNode(a,b) ); 3313 push_pair(c); 3314 break; 3315 case Bytecodes::_lsub: 3316 b = pop_pair(); 3317 a = pop_pair(); 3318 c = _gvn.transform( new SubLNode(a,b) ); 3319 push_pair(c); 3320 break; 3321 case Bytecodes::_lcmp: 3322 // Safepoints are now inserted _before_ branches. The long-compare 3323 // bytecode painfully produces a 3-way value (-1,0,+1) which requires a 3324 // slew of control flow. These are usually followed by a CmpI vs zero and 3325 // a branch; this pattern then optimizes to the obvious long-compare and 3326 // branch. However, if the branch is backwards there's a Safepoint 3327 // inserted. The inserted Safepoint captures the JVM state at the 3328 // pre-branch point, i.e. it captures the 3-way value. Thus if a 3329 // long-compare is used to control a loop the debug info will force 3330 // computation of the 3-way value, even though the generated code uses a 3331 // long-compare and branch. We try to rectify the situation by inserting 3332 // a SafePoint here and have it dominate and kill the safepoint added at a 3333 // following backwards branch. At this point the JVM state merely holds 2 3334 // longs but not the 3-way value. 3335 switch (iter().next_bc()) { 3336 case Bytecodes::_ifgt: 3337 case Bytecodes::_iflt: 3338 case Bytecodes::_ifge: 3339 case Bytecodes::_ifle: 3340 case Bytecodes::_ifne: 3341 case Bytecodes::_ifeq: 3342 // If this is a backwards branch in the bytecodes, add Safepoint 3343 maybe_add_safepoint(iter().next_get_dest()); 3344 default: 3345 break; 3346 } 3347 b = pop_pair(); 3348 a = pop_pair(); 3349 c = _gvn.transform( new CmpL3Node( a, b )); 3350 push(c); 3351 break; 3352 3353 case Bytecodes::_lneg: 3354 a = pop_pair(); 3355 b = _gvn.transform( new SubLNode(longcon(0),a)); 3356 push_pair(b); 3357 break; 3358 case Bytecodes::_l2i: 3359 a = pop_pair(); 3360 push( _gvn.transform( new ConvL2INode(a))); 3361 break; 3362 case Bytecodes::_i2l: 3363 a = pop(); 3364 b = _gvn.transform( new ConvI2LNode(a)); 3365 push_pair(b); 3366 break; 3367 case Bytecodes::_i2b: 3368 // Sign extend 3369 a = pop(); 3370 a = Compile::narrow_value(T_BYTE, a, nullptr, &_gvn, true); 3371 push(a); 3372 break; 3373 case Bytecodes::_i2s: 3374 a = pop(); 3375 a = Compile::narrow_value(T_SHORT, a, nullptr, &_gvn, true); 3376 push(a); 3377 break; 3378 case Bytecodes::_i2c: 3379 a = pop(); 3380 a = Compile::narrow_value(T_CHAR, a, nullptr, &_gvn, true); 3381 push(a); 3382 break; 3383 3384 case Bytecodes::_i2f: 3385 a = pop(); 3386 b = _gvn.transform( new ConvI2FNode(a) ) ; 3387 push(b); 3388 break; 3389 3390 case Bytecodes::_i2d: 3391 a = pop(); 3392 b = _gvn.transform( new ConvI2DNode(a)); 3393 push_pair(b); 3394 break; 3395 3396 case Bytecodes::_iinc: // Increment local 3397 i = iter().get_index(); // Get local index 3398 set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) ); 3399 break; 3400 3401 // Exit points of synchronized methods must have an unlock node 3402 case Bytecodes::_return: 3403 return_current(nullptr); 3404 break; 3405 3406 case Bytecodes::_ireturn: 3407 case Bytecodes::_areturn: 3408 case Bytecodes::_freturn: 3409 return_current(pop()); 3410 break; 3411 case Bytecodes::_lreturn: 3412 return_current(pop_pair()); 3413 break; 3414 case Bytecodes::_dreturn: 3415 return_current(pop_pair()); 3416 break; 3417 3418 case Bytecodes::_athrow: 3419 // null exception oop throws null pointer exception 3420 null_check(peek()); 3421 if (stopped()) return; 3422 // Hook the thrown exception directly to subsequent handlers. 3423 if (BailoutToInterpreterForThrows) { 3424 // Keep method interpreted from now on. 3425 uncommon_trap(Deoptimization::Reason_unhandled, 3426 Deoptimization::Action_make_not_compilable); 3427 return; 3428 } 3429 if (env()->jvmti_can_post_on_exceptions()) { 3430 // check if we must post exception events, take uncommon trap if so (with must_throw = false) 3431 uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false); 3432 } 3433 // Here if either can_post_on_exceptions or should_post_on_exceptions is false 3434 add_exception_state(make_exception_state(peek())); 3435 break; 3436 3437 case Bytecodes::_goto: // fall through 3438 case Bytecodes::_goto_w: { 3439 int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest(); 3440 3441 // If this is a backwards branch in the bytecodes, add Safepoint 3442 maybe_add_safepoint(target_bci); 3443 3444 // Merge the current control into the target basic block 3445 merge(target_bci); 3446 3447 // See if we can get some profile data and hand it off to the next block 3448 Block *target_block = block()->successor_for_bci(target_bci); 3449 if (target_block->pred_count() != 1) break; 3450 ciMethodData* methodData = method()->method_data(); 3451 if (!methodData->is_mature()) break; 3452 ciProfileData* data = methodData->bci_to_data(bci()); 3453 assert(data != nullptr && data->is_JumpData(), "need JumpData for taken branch"); 3454 int taken = ((ciJumpData*)data)->taken(); 3455 taken = method()->scale_count(taken); 3456 target_block->set_count(taken); 3457 break; 3458 } 3459 3460 case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null; 3461 case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null; 3462 handle_if_null: 3463 // If this is a backwards branch in the bytecodes, add Safepoint 3464 maybe_add_safepoint(iter().get_dest()); 3465 a = null(); 3466 b = pop(); 3467 if (b->is_InlineType()) { 3468 // Null checking a scalarized but nullable inline type. Check the IsInit 3469 // input instead of the oop input to avoid keeping buffer allocations alive 3470 c = _gvn.transform(new CmpINode(b->as_InlineType()->get_is_init(), zerocon(T_INT))); 3471 } else { 3472 if (!_gvn.type(b)->speculative_maybe_null() && 3473 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 3474 inc_sp(1); 3475 Node* null_ctl = top(); 3476 b = null_check_oop(b, &null_ctl, true, true, true); 3477 assert(null_ctl->is_top(), "no null control here"); 3478 dec_sp(1); 3479 } else if (_gvn.type(b)->speculative_always_null() && 3480 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 3481 inc_sp(1); 3482 b = null_assert(b); 3483 dec_sp(1); 3484 } 3485 c = _gvn.transform( new CmpPNode(b, a) ); 3486 } 3487 do_ifnull(btest, c); 3488 break; 3489 3490 case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp; 3491 case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp; 3492 handle_if_acmp: 3493 // If this is a backwards branch in the bytecodes, add Safepoint 3494 maybe_add_safepoint(iter().get_dest()); 3495 a = pop(); 3496 b = pop(); 3497 do_acmp(btest, b, a); 3498 break; 3499 3500 case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx; 3501 case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx; 3502 case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx; 3503 case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx; 3504 case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx; 3505 case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx; 3506 handle_ifxx: 3507 // If this is a backwards branch in the bytecodes, add Safepoint 3508 maybe_add_safepoint(iter().get_dest()); 3509 a = _gvn.intcon(0); 3510 b = pop(); 3511 c = _gvn.transform( new CmpINode(b, a) ); 3512 do_if(btest, c); 3513 break; 3514 3515 case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp; 3516 case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp; 3517 case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp; 3518 case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp; 3519 case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp; 3520 case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp; 3521 handle_if_icmp: 3522 // If this is a backwards branch in the bytecodes, add Safepoint 3523 maybe_add_safepoint(iter().get_dest()); 3524 a = pop(); 3525 b = pop(); 3526 c = _gvn.transform( new CmpINode( b, a ) ); 3527 do_if(btest, c); 3528 break; 3529 3530 case Bytecodes::_tableswitch: 3531 do_tableswitch(); 3532 break; 3533 3534 case Bytecodes::_lookupswitch: 3535 do_lookupswitch(); 3536 break; 3537 3538 case Bytecodes::_invokestatic: 3539 case Bytecodes::_invokedynamic: 3540 case Bytecodes::_invokespecial: 3541 case Bytecodes::_invokevirtual: 3542 case Bytecodes::_invokeinterface: 3543 do_call(); 3544 break; 3545 case Bytecodes::_checkcast: 3546 do_checkcast(); 3547 break; 3548 case Bytecodes::_instanceof: 3549 do_instanceof(); 3550 break; 3551 case Bytecodes::_anewarray: 3552 do_newarray(); 3553 break; 3554 case Bytecodes::_newarray: 3555 do_newarray((BasicType)iter().get_index()); 3556 break; 3557 case Bytecodes::_multianewarray: 3558 do_multianewarray(); 3559 break; 3560 case Bytecodes::_new: 3561 do_new(); 3562 break; 3563 3564 case Bytecodes::_jsr: 3565 case Bytecodes::_jsr_w: 3566 do_jsr(); 3567 break; 3568 3569 case Bytecodes::_ret: 3570 do_ret(); 3571 break; 3572 3573 3574 case Bytecodes::_monitorenter: 3575 do_monitor_enter(); 3576 break; 3577 3578 case Bytecodes::_monitorexit: 3579 do_monitor_exit(); 3580 break; 3581 3582 case Bytecodes::_breakpoint: 3583 // Breakpoint set concurrently to compile 3584 // %%% use an uncommon trap? 3585 C->record_failure("breakpoint in method"); 3586 return; 3587 3588 default: 3589 #ifndef PRODUCT 3590 map()->dump(99); 3591 #endif 3592 tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) ); 3593 ShouldNotReachHere(); 3594 } 3595 3596 #ifndef PRODUCT 3597 if (failing()) { return; } 3598 constexpr int perBytecode = 6; 3599 if (C->should_print_igv(perBytecode)) { 3600 IdealGraphPrinter* printer = C->igv_printer(); 3601 char buffer[256]; 3602 jio_snprintf(buffer, sizeof(buffer), "Bytecode %d: %s", bci(), Bytecodes::name(bc())); 3603 bool old = printer->traverse_outs(); 3604 printer->set_traverse_outs(true); 3605 printer->print_graph(buffer); 3606 printer->set_traverse_outs(old); 3607 } 3608 #endif 3609 }