< prev index next >

src/hotspot/share/opto/parse2.cpp

Print this page

   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"

  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileLog.hpp"
  29 #include "interpreter/linkResolver.hpp"
  30 #include "jvm_io.h"
  31 #include "memory/resourceArea.hpp"
  32 #include "memory/universe.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/divnode.hpp"
  38 #include "opto/idealGraphPrinter.hpp"


  39 #include "opto/matcher.hpp"
  40 #include "opto/memnode.hpp"
  41 #include "opto/mulnode.hpp"
  42 #include "opto/opaquenode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "runtime/deoptimization.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 
  48 #ifndef PRODUCT
  49 extern uint explicit_null_checks_inserted,
  50             explicit_null_checks_elided;
  51 #endif
  52 

















  53 //---------------------------------array_load----------------------------------
  54 void Parse::array_load(BasicType bt) {
  55   const Type* elemtype = Type::TOP;
  56   bool big_val = bt == T_DOUBLE || bt == T_LONG;
  57   Node* adr = array_addressing(bt, 0, elemtype);
  58   if (stopped())  return;     // guaranteed null or range check
  59 
  60   pop();                      // index (already used)
  61   Node* array = pop();        // the array itself


















































































  62 
  63   if (elemtype == TypeInt::BOOL) {
  64     bt = T_BOOLEAN;
  65   }
  66   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
  67 
  68   Node* ld = access_load_at(array, adr, adr_type, elemtype, bt,
  69                             IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
  70   if (big_val) {
  71     push_pair(ld);
  72   } else {
  73     push(ld);

  74   }

  75 }
  76 




























  77 
  78 //--------------------------------array_store----------------------------------
  79 void Parse::array_store(BasicType bt) {
  80   const Type* elemtype = Type::TOP;
  81   bool big_val = bt == T_DOUBLE || bt == T_LONG;
  82   Node* adr = array_addressing(bt, big_val ? 2 : 1, elemtype);
  83   if (stopped())  return;     // guaranteed null or range check

  84   if (bt == T_OBJECT) {
  85     array_store_check();
  86     if (stopped()) {
  87       return;
  88     }
  89   }
  90   Node* val;                  // Oop to store
  91   if (big_val) {
  92     val = pop_pair();
  93   } else {
  94     val = pop();
  95   }
  96   pop();                      // index (already used)
  97   Node* array = pop();        // the array itself
  98 
  99   if (elemtype == TypeInt::BOOL) {
 100     bt = T_BOOLEAN;



















































































































 101   }
 102   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
 103 
 104   access_store_at(array, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
 105 }
 106 















 107 
 108 //------------------------------array_addressing-------------------------------
 109 // Pull array and index from the stack.  Compute pointer-to-element.
 110 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) {
 111   Node *idx   = peek(0+vals);   // Get from stack without popping
 112   Node *ary   = peek(1+vals);   // in case of exception
 113 
 114   // Null check the array base, with correct stack contents
 115   ary = null_check(ary, T_ARRAY);
 116   // Compile-time detect of null-exception?
 117   if (stopped())  return top();
 118 
 119   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
 120   const TypeInt*    sizetype = arytype->size();
 121   elemtype = arytype->elem();
 122 
 123   if (UseUniqueSubclasses) {
 124     const Type* el = elemtype->make_ptr();
 125     if (el && el->isa_instptr()) {
 126       const TypeInstPtr* toop = el->is_instptr();
 127       if (toop->instance_klass()->unique_concrete_subklass()) {
 128         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
 129         const Type* subklass = Type::get_const_type(toop->instance_klass());
 130         elemtype = subklass->join_speculative(el);
 131       }
 132     }
 133   }
 134 
 135   // Check for big class initializers with all constant offsets
 136   // feeding into a known-size array.
 137   const TypeInt* idxtype = _gvn.type(idx)->is_int();
 138   // See if the highest idx value is less than the lowest array bound,
 139   // and if the idx value cannot be negative:
 140   bool need_range_check = true;
 141   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
 142     need_range_check = false;
 143     if (C->log() != nullptr)   C->log()->elem("observe that='!need_range_check'");
 144   }
 145 
 146   if (!arytype->is_loaded()) {
 147     // Only fails for some -Xcomp runs
 148     // The class is unloaded.  We have to run this bytecode in the interpreter.
 149     ciKlass* klass = arytype->unloaded_klass();
 150 
 151     uncommon_trap(Deoptimization::Reason_unloaded,
 152                   Deoptimization::Action_reinterpret,
 153                   klass, "!loaded array");
 154     return top();
 155   }
 156 
 157   // Do the range check
 158   if (need_range_check) {
 159     Node* tst;
 160     if (sizetype->_hi <= 0) {
 161       // The greatest array bound is negative, so we can conclude that we're
 162       // compiling unreachable code, but the unsigned compare trick used below
 163       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
 164       // the uncommon_trap path will always be taken.
 165       tst = _gvn.intcon(0);
 166     } else {
 167       // Range is constant in array-oop, so we can use the original state of mem
 168       Node* len = load_array_length(ary);
 169 
 170       // Test length vs index (standard trick using unsigned compare)
 171       Node* chk = _gvn.transform( new CmpUNode(idx, len) );
 172       BoolTest::mask btest = BoolTest::lt;
 173       tst = _gvn.transform( new BoolNode(chk, btest) );
 174     }
 175     RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 176     _gvn.set_type(rc, rc->Value(&_gvn));
 177     if (!tst->is_Con()) {
 178       record_for_igvn(rc);
 179     }
 180     set_control(_gvn.transform(new IfTrueNode(rc)));
 181     // Branch to failure if out of bounds
 182     {
 183       PreserveJVMState pjvms(this);
 184       set_control(_gvn.transform(new IfFalseNode(rc)));
 185       if (C->allow_range_check_smearing()) {
 186         // Do not use builtin_throw, since range checks are sometimes
 187         // made more stringent by an optimistic transformation.
 188         // This creates "tentative" range checks at this point,
 189         // which are not guaranteed to throw exceptions.
 190         // See IfNode::Ideal, is_range_check, adjust_check.
 191         uncommon_trap(Deoptimization::Reason_range_check,
 192                       Deoptimization::Action_make_not_entrant,
 193                       nullptr, "range_check");
 194       } else {
 195         // If we have already recompiled with the range-check-widening
 196         // heroic optimization turned off, then we must really be throwing
 197         // range check exceptions.
 198         builtin_throw(Deoptimization::Reason_range_check);
 199       }
 200     }
 201   }

 202   // Check for always knowing you are throwing a range-check exception
 203   if (stopped())  return top();
 204 
 205   // Make array address computation control dependent to prevent it
 206   // from floating above the range check during loop optimizations.
 207   Node* ptr = array_element_address(ary, idx, type, sizetype, control());
 208   assert(ptr != top(), "top should go hand-in-hand with stopped");
 209 
 210   return ptr;
 211 }
 212 








































































































































































































 213 
 214 // returns IfNode
 215 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) {
 216   Node   *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
 217   Node   *tst = _gvn.transform(new BoolNode(cmp, mask));
 218   IfNode *iff = create_and_map_if(control(), tst, prob, cnt);
 219   return iff;
 220 }
 221 
 222 
 223 // sentinel value for the target bci to mark never taken branches
 224 // (according to profiling)
 225 static const int never_reached = INT_MAX;
 226 
 227 //------------------------------helper for tableswitch-------------------------
 228 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) {
 229   // True branch, use existing map info
 230   { PreserveJVMState pjvms(this);
 231     Node *iftrue  = _gvn.transform( new IfTrueNode (iff) );
 232     set_control( iftrue );

1446   // False branch
1447   Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1448   set_control(iffalse);
1449 
1450   if (stopped()) {              // Path is dead?
1451     NOT_PRODUCT(explicit_null_checks_elided++);
1452     if (C->eliminate_boxing()) {
1453       // Mark the successor block as parsed
1454       next_block->next_path_num();
1455     }
1456   } else  {                     // Path is live.
1457     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block);
1458   }
1459 
1460   if (do_stress_trap) {
1461     stress_trap(iff, counter, incr_store);
1462   }
1463 }
1464 
1465 //------------------------------------do_if------------------------------------
1466 void Parse::do_if(BoolTest::mask btest, Node* c) {
1467   int target_bci = iter().get_dest();
1468 
1469   Block* branch_block = successor_for_bci(target_bci);
1470   Block* next_block   = successor_for_bci(iter().next_bci());
1471 
1472   float cnt;
1473   float prob = branch_prediction(cnt, btest, target_bci, c);
1474   float untaken_prob = 1.0 - prob;
1475 
1476   if (prob == PROB_UNKNOWN) {
1477     if (PrintOpto && Verbose) {
1478       tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1479     }
1480     repush_if_args(); // to gather stats on loop
1481     uncommon_trap(Deoptimization::Reason_unreached,
1482                   Deoptimization::Action_reinterpret,
1483                   nullptr, "cold");
1484     if (C->eliminate_boxing()) {
1485       // Mark the successor blocks as parsed
1486       branch_block->next_path_num();

1537   }
1538 
1539   // Generate real control flow
1540   float true_prob = (taken_if_true ? prob : untaken_prob);
1541   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1542   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1543   Node* taken_branch   = new IfTrueNode(iff);
1544   Node* untaken_branch = new IfFalseNode(iff);
1545   if (!taken_if_true) {  // Finish conversion to canonical form
1546     Node* tmp      = taken_branch;
1547     taken_branch   = untaken_branch;
1548     untaken_branch = tmp;
1549   }
1550 
1551   // Branch is taken:
1552   { PreserveJVMState pjvms(this);
1553     taken_branch = _gvn.transform(taken_branch);
1554     set_control(taken_branch);
1555 
1556     if (stopped()) {
1557       if (C->eliminate_boxing()) {
1558         // Mark the successor block as parsed
1559         branch_block->next_path_num();
1560       }
1561     } else {
1562       adjust_map_after_if(taken_btest, c, prob, branch_block);
1563       if (!stopped()) {
1564         merge(target_bci);








1565       }
1566     }
1567   }
1568 
1569   untaken_branch = _gvn.transform(untaken_branch);
1570   set_control(untaken_branch);
1571 
1572   // Branch not taken.
1573   if (stopped()) {
1574     if (C->eliminate_boxing()) {
1575       // Mark the successor block as parsed
1576       next_block->next_path_num();
1577     }
1578   } else {
1579     adjust_map_after_if(untaken_btest, c, untaken_prob, next_block);
1580   }
1581 
1582   if (do_stress_trap) {
1583     stress_trap(iff, counter, incr_store);
1584   }
1585 }
1586 




















































































































































































































































































































































































































1587 // Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information.
1588 // Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and
1589 // then either takes the trap or executes the original, unstable if.
1590 void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) {
1591   // Search for an unstable if trap
1592   CallStaticJavaNode* trap = nullptr;
1593   assert(orig_iff->Opcode() == Op_If && orig_iff->outcnt() == 2, "malformed if");
1594   ProjNode* trap_proj = orig_iff->uncommon_trap_proj(trap, Deoptimization::Reason_unstable_if);
1595   if (trap == nullptr || !trap->jvms()->should_reexecute()) {
1596     // No suitable trap found. Remove unused counter load and increment.
1597     C->gvn_replace_by(incr_store, incr_store->in(MemNode::Memory));
1598     return;
1599   }
1600 
1601   // Remove trap from optimization list since we add another path to the trap.
1602   bool success = C->remove_unstable_if_trap(trap, true);
1603   assert(success, "Trap already modified");
1604 
1605   // Add a check before the original if that will trap with a certain frequency and execute the original if otherwise
1606   int freq_log = (C->random() % 31) + 1; // Random logarithmic frequency in [1, 31]

1639 }
1640 
1641 void Parse::maybe_add_predicate_after_if(Block* path) {
1642   if (path->is_SEL_head() && path->preds_parsed() == 0) {
1643     // Add predicates at bci of if dominating the loop so traps can be
1644     // recorded on the if's profile data
1645     int bc_depth = repush_if_args();
1646     add_parse_predicates();
1647     dec_sp(bc_depth);
1648     path->set_has_predicates();
1649   }
1650 }
1651 
1652 
1653 //----------------------------adjust_map_after_if------------------------------
1654 // Adjust the JVM state to reflect the result of taking this path.
1655 // Basically, it means inspecting the CmpNode controlling this
1656 // branch, seeing how it constrains a tested value, and then
1657 // deciding if it's worth our while to encode this constraint
1658 // as graph nodes in the current abstract interpretation map.
1659 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path) {
1660   if (!c->is_Cmp()) {
1661     maybe_add_predicate_after_if(path);
1662     return;
1663   }
1664 
1665   if (stopped() || btest == BoolTest::illegal) {
1666     return;                             // nothing to do
1667   }
1668 
1669   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1670 
1671   if (path_is_suitable_for_uncommon_trap(prob)) {
1672     repush_if_args();
1673     Node* call = uncommon_trap(Deoptimization::Reason_unstable_if,
1674                   Deoptimization::Action_reinterpret,
1675                   nullptr,
1676                   (is_fallthrough ? "taken always" : "taken never"));
1677 
1678     if (call != nullptr) {
1679       C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path));
1680     }
1681     return;
1682   }
1683 
1684   Node* val = c->in(1);
1685   Node* con = c->in(2);
1686   const Type* tcon = _gvn.type(con);
1687   const Type* tval = _gvn.type(val);
1688   bool have_con = tcon->singleton();
1689   if (tval->singleton()) {
1690     if (!have_con) {
1691       // Swap, so constant is in con.

1748     if (obj != nullptr && (con_type->isa_instptr() || con_type->isa_aryptr())) {
1749        // Found:
1750        //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
1751        // or the narrowOop equivalent.
1752        const Type* obj_type = _gvn.type(obj);
1753        const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
1754        if (tboth != nullptr && tboth->klass_is_exact() && tboth != obj_type &&
1755            tboth->higher_equal(obj_type)) {
1756           // obj has to be of the exact type Foo if the CmpP succeeds.
1757           int obj_in_map = map()->find_edge(obj);
1758           JVMState* jvms = this->jvms();
1759           if (obj_in_map >= 0 &&
1760               (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
1761             TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
1762             const Type* tcc = ccast->as_Type()->type();
1763             assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
1764             // Delay transform() call to allow recovery of pre-cast value
1765             // at the control merge.
1766             _gvn.set_type_bottom(ccast);
1767             record_for_igvn(ccast);



1768             // Here's the payoff.
1769             replace_in_map(obj, ccast);
1770           }
1771        }
1772     }
1773   }
1774 
1775   int val_in_map = map()->find_edge(val);
1776   if (val_in_map < 0)  return;          // replace_in_map would be useless
1777   {
1778     JVMState* jvms = this->jvms();
1779     if (!(jvms->is_loc(val_in_map) ||
1780           jvms->is_stk(val_in_map)))
1781       return;                           // again, it would be useless
1782   }
1783 
1784   // Check for a comparison to a constant, and "know" that the compared
1785   // value is constrained on this path.
1786   assert(tcon->singleton(), "");
1787   ConstraintCastNode* ccast = nullptr;

1852   if (c->Opcode() == Op_CmpP &&
1853       (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
1854       c->in(2)->is_Con()) {
1855     Node* load_klass = nullptr;
1856     Node* decode = nullptr;
1857     if (c->in(1)->Opcode() == Op_DecodeNKlass) {
1858       decode = c->in(1);
1859       load_klass = c->in(1)->in(1);
1860     } else {
1861       load_klass = c->in(1);
1862     }
1863     if (load_klass->in(2)->is_AddP()) {
1864       Node* addp = load_klass->in(2);
1865       Node* obj = addp->in(AddPNode::Address);
1866       const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
1867       if (obj_type->speculative_type_not_null() != nullptr) {
1868         ciKlass* k = obj_type->speculative_type();
1869         inc_sp(2);
1870         obj = maybe_cast_profiled_obj(obj, k);
1871         dec_sp(2);




1872         // Make the CmpP use the casted obj
1873         addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
1874         load_klass = load_klass->clone();
1875         load_klass->set_req(2, addp);
1876         load_klass = _gvn.transform(load_klass);
1877         if (decode != nullptr) {
1878           decode = decode->clone();
1879           decode->set_req(1, load_klass);
1880           load_klass = _gvn.transform(decode);
1881         }
1882         c = c->clone();
1883         c->set_req(1, load_klass);
1884         c = _gvn.transform(c);
1885       }
1886     }
1887   }
1888   return c;
1889 }
1890 
1891 //------------------------------do_one_bytecode--------------------------------

2685     // See if we can get some profile data and hand it off to the next block
2686     Block *target_block = block()->successor_for_bci(target_bci);
2687     if (target_block->pred_count() != 1)  break;
2688     ciMethodData* methodData = method()->method_data();
2689     if (!methodData->is_mature())  break;
2690     ciProfileData* data = methodData->bci_to_data(bci());
2691     assert(data != nullptr && data->is_JumpData(), "need JumpData for taken branch");
2692     int taken = ((ciJumpData*)data)->taken();
2693     taken = method()->scale_count(taken);
2694     target_block->set_count(taken);
2695     break;
2696   }
2697 
2698   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2699   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2700   handle_if_null:
2701     // If this is a backwards branch in the bytecodes, add Safepoint
2702     maybe_add_safepoint(iter().get_dest());
2703     a = null();
2704     b = pop();
2705     if (!_gvn.type(b)->speculative_maybe_null() &&
2706         !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2707       inc_sp(1);
2708       Node* null_ctl = top();
2709       b = null_check_oop(b, &null_ctl, true, true, true);
2710       assert(null_ctl->is_top(), "no null control here");
2711       dec_sp(1);
2712     } else if (_gvn.type(b)->speculative_always_null() &&
2713                !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2714       inc_sp(1);
2715       b = null_assert(b);
2716       dec_sp(1);
2717     }
2718     c = _gvn.transform( new CmpPNode(b, a) );






2719     do_ifnull(btest, c);
2720     break;
2721 
2722   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2723   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2724   handle_if_acmp:
2725     // If this is a backwards branch in the bytecodes, add Safepoint
2726     maybe_add_safepoint(iter().get_dest());
2727     a = pop();
2728     b = pop();
2729     c = _gvn.transform( new CmpPNode(b, a) );
2730     c = optimize_cmp_with_klass(c);
2731     do_if(btest, c);
2732     break;
2733 
2734   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2735   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2736   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2737   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2738   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2739   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2740   handle_ifxx:
2741     // If this is a backwards branch in the bytecodes, add Safepoint
2742     maybe_add_safepoint(iter().get_dest());
2743     a = _gvn.intcon(0);
2744     b = pop();
2745     c = _gvn.transform( new CmpINode(b, a) );
2746     do_if(btest, c);
2747     break;
2748 
2749   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2750   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2751   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;

2766     break;
2767 
2768   case Bytecodes::_lookupswitch:
2769     do_lookupswitch();
2770     break;
2771 
2772   case Bytecodes::_invokestatic:
2773   case Bytecodes::_invokedynamic:
2774   case Bytecodes::_invokespecial:
2775   case Bytecodes::_invokevirtual:
2776   case Bytecodes::_invokeinterface:
2777     do_call();
2778     break;
2779   case Bytecodes::_checkcast:
2780     do_checkcast();
2781     break;
2782   case Bytecodes::_instanceof:
2783     do_instanceof();
2784     break;
2785   case Bytecodes::_anewarray:
2786     do_anewarray();
2787     break;
2788   case Bytecodes::_newarray:
2789     do_newarray((BasicType)iter().get_index());
2790     break;
2791   case Bytecodes::_multianewarray:
2792     do_multianewarray();
2793     break;
2794   case Bytecodes::_new:
2795     do_new();
2796     break;
2797 
2798   case Bytecodes::_jsr:
2799   case Bytecodes::_jsr_w:
2800     do_jsr();
2801     break;
2802 
2803   case Bytecodes::_ret:
2804     do_ret();
2805     break;
2806 

   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "interpreter/linkResolver.hpp"
  31 #include "jvm_io.h"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/divnode.hpp"
  39 #include "opto/idealGraphPrinter.hpp"
  40 #include "opto/idealKit.hpp"
  41 #include "opto/inlinetypenode.hpp"
  42 #include "opto/matcher.hpp"
  43 #include "opto/memnode.hpp"
  44 #include "opto/mulnode.hpp"
  45 #include "opto/opaquenode.hpp"
  46 #include "opto/parse.hpp"
  47 #include "opto/runtime.hpp"
  48 #include "runtime/deoptimization.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 
  51 #ifndef PRODUCT
  52 extern uint explicit_null_checks_inserted,
  53             explicit_null_checks_elided;
  54 #endif
  55 
  56 Node* Parse::record_profile_for_speculation_at_array_load(Node* ld) {
  57   // Feed unused profile data to type speculation
  58   if (UseTypeSpeculation && UseArrayLoadStoreProfile) {
  59     ciKlass* array_type = nullptr;
  60     ciKlass* element_type = nullptr;
  61     ProfilePtrKind element_ptr = ProfileMaybeNull;
  62     bool flat_array = true;
  63     bool null_free_array = true;
  64     method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
  65     if (element_type != nullptr || element_ptr != ProfileMaybeNull) {
  66       ld = record_profile_for_speculation(ld, element_type, element_ptr);
  67     }
  68   }
  69   return ld;
  70 }
  71 
  72 
  73 //---------------------------------array_load----------------------------------
  74 void Parse::array_load(BasicType bt) {
  75   const Type* elemtype = Type::TOP;

  76   Node* adr = array_addressing(bt, 0, elemtype);
  77   if (stopped())  return;     // guaranteed null or range check
  78 
  79   Node* array_index = pop();
  80   Node* array = pop();
  81 
  82   // Handle inline type arrays
  83   const TypeOopPtr* element_ptr = elemtype->make_oopptr();
  84   const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr();
  85   if (array_type->is_flat()) {
  86     // Load from flat inline type array
  87     Node* inline_type;
  88     if (element_ptr->klass_is_exact()) {
  89       inline_type = InlineTypeNode::make_from_flat(this, elemtype->inline_klass(), array, adr);
  90     } else {
  91       // Element type of flat array is not exact. Therefore, we cannot determine the flat array layout statically.
  92       // Emit a runtime call to load the element from the flat array.
  93       inline_type = load_from_unknown_flat_array(array, array_index, element_ptr);
  94       inline_type = record_profile_for_speculation_at_array_load(inline_type);
  95     }
  96     push(inline_type);
  97     return;
  98   }
  99 
 100   if (!array_type->is_not_flat()) {
 101     // Cannot statically determine if array is a flat array, emit runtime check
 102     assert(UseFlatArray && is_reference_type(bt) && element_ptr->can_be_inline_type() && !array_type->is_not_null_free() &&
 103            (!element_ptr->is_inlinetypeptr() || element_ptr->inline_klass()->flat_in_array()), "array can't be flat");
 104     IdealKit ideal(this);
 105     IdealVariable res(ideal);
 106     ideal.declarations_done();
 107     ideal.if_then(flat_array_test(array, /* flat = */ false)); {
 108       // Non-flat array
 109       assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found");
 110       sync_kit(ideal);
 111       const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
 112       DecoratorSet decorator_set = IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD;
 113       if (needs_range_check(array_type->size(), array_index)) {
 114         // We've emitted a RangeCheck but now insert an additional check between the range check and the actual load.
 115         // We cannot pin the load to two separate nodes. Instead, we pin it conservatively here such that it cannot
 116         // possibly float above the range check at any point.
 117         decorator_set |= C2_UNKNOWN_CONTROL_LOAD;
 118       }
 119       Node* ld = access_load_at(array, adr, adr_type, element_ptr, bt, decorator_set);
 120       if (element_ptr->is_inlinetypeptr()) {
 121         assert(element_ptr->maybe_null(), "null free array should be handled above");
 122         ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass(), false);
 123       }
 124       ideal.sync_kit(this);
 125       ideal.set(res, ld);
 126     } ideal.else_(); {
 127       // Flat array
 128       sync_kit(ideal);
 129       if (element_ptr->is_inlinetypeptr()) {
 130         // Element type is known, cast and load from flat array layout.
 131         ciInlineKlass* vk = element_ptr->inline_klass();
 132         assert(vk->flat_in_array() && element_ptr->maybe_null(), "never/always flat - should be optimized");
 133         ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* null_free */ true);
 134         const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
 135         Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, arytype));
 136         Node* casted_adr = array_element_address(cast, array_index, T_OBJECT, array_type->size(), control());
 137         // Re-execute flat array load if buffering triggers deoptimization
 138         PreserveReexecuteState preexecs(this);
 139         jvms()->set_should_reexecute(true);
 140         inc_sp(2);
 141         Node* vt = InlineTypeNode::make_from_flat(this, vk, cast, casted_adr)->buffer(this, false);
 142         ideal.set(res, vt);
 143         ideal.sync_kit(this);
 144       } else {
 145         // Element type is unknown, and thus we cannot statically determine the exact flat array layout. Emit a
 146         // runtime call to correctly load the inline type element from the flat array.
 147         Node* inline_type = load_from_unknown_flat_array(array, array_index, element_ptr);
 148         ideal.sync_kit(this);
 149         ideal.set(res, inline_type);
 150       }
 151     } ideal.end_if();
 152     sync_kit(ideal);
 153     Node* ld = _gvn.transform(ideal.value(res));
 154     ld = record_profile_for_speculation_at_array_load(ld);
 155     push_node(bt, ld);
 156     return;
 157   }
 158 
 159   if (array_type->is_null_free()) {
 160     // Load from non-flat inline type array (elements can never be null)
 161     bt = T_OBJECT;
 162   }
 163 
 164   if (elemtype == TypeInt::BOOL) {
 165     bt = T_BOOLEAN;
 166   }
 167   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);

 168   Node* ld = access_load_at(array, adr, adr_type, elemtype, bt,
 169                             IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
 170   ld = record_profile_for_speculation_at_array_load(ld);
 171   // Loading an inline type from a non-flat array
 172   if (element_ptr != nullptr && element_ptr->is_inlinetypeptr()) {
 173     assert(!array_type->is_null_free() || !element_ptr->maybe_null(), "inline type array elements should never be null");
 174     ld = InlineTypeNode::make_from_oop(this, ld, element_ptr->inline_klass(), !element_ptr->maybe_null());
 175   }
 176   push_node(bt, ld);
 177 }
 178 
 179 Node* Parse::load_from_unknown_flat_array(Node* array, Node* array_index, const TypeOopPtr* element_ptr) {
 180   // Below membars keep this access to an unknown flat array correctly
 181   // ordered with other unknown and known flat array accesses.
 182   insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
 183 
 184   Node* call = nullptr;
 185   {
 186     // Re-execute flat array load if runtime call triggers deoptimization
 187     PreserveReexecuteState preexecs(this);
 188     jvms()->set_bci(_bci);
 189     jvms()->set_should_reexecute(true);
 190     inc_sp(2);
 191     kill_dead_locals();
 192     call = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
 193                              OptoRuntime::load_unknown_inline_Type(),
 194                              OptoRuntime::load_unknown_inline_Java(),
 195                              nullptr, TypeRawPtr::BOTTOM,
 196                              array, array_index);
 197   }
 198   make_slow_call_ex(call, env()->Throwable_klass(), false);
 199   Node* buffer = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
 200 
 201   insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
 202 
 203   // Keep track of the information that the inline type is in flat arrays
 204   const Type* unknown_value = element_ptr->is_instptr()->cast_to_flat_in_array();
 205   return _gvn.transform(new CheckCastPPNode(control(), buffer, unknown_value));
 206 }
 207 
 208 //--------------------------------array_store----------------------------------
 209 void Parse::array_store(BasicType bt) {
 210   const Type* elemtype = Type::TOP;
 211   Node* adr = array_addressing(bt, type2size[bt], elemtype);

 212   if (stopped())  return;     // guaranteed null or range check
 213   Node* stored_value_casted = nullptr;
 214   if (bt == T_OBJECT) {
 215     stored_value_casted = array_store_check(adr, elemtype);
 216     if (stopped()) {
 217       return;
 218     }
 219   }
 220   Node* const stored_value = pop_node(bt); // Value to store
 221   Node* const array_index = pop();         // Index in the array
 222   Node* array = pop();                     // The array itself
 223 
 224   const TypeAryPtr* array_type = _gvn.type(array)->is_aryptr();
 225   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);


 226 
 227   if (elemtype == TypeInt::BOOL) {
 228     bt = T_BOOLEAN;
 229   } else if (bt == T_OBJECT) {
 230     elemtype = elemtype->make_oopptr();
 231     const Type* stored_value_casted_type = _gvn.type(stored_value_casted);
 232     // Based on the value to be stored, try to determine if the array is not null-free and/or not flat.
 233     // This is only legal for non-null stores because the array_store_check always passes for null, even
 234     // if the array is null-free. Null stores are handled in GraphKit::inline_array_null_guard().
 235     bool not_null_free = !stored_value_casted_type->maybe_null() &&
 236                          !stored_value_casted_type->is_oopptr()->can_be_inline_type();
 237     bool not_flat = not_null_free || (stored_value_casted_type->is_inlinetypeptr() &&
 238                                       !stored_value_casted_type->inline_klass()->flat_in_array());
 239     if (!array_type->is_not_null_free() && not_null_free) {
 240       // Storing a non-inline type, mark array as not null-free (-> not flat).
 241       array_type = array_type->cast_to_not_null_free();
 242       Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type));
 243       replace_in_map(array, cast);
 244       array = cast;
 245     } else if (!array_type->is_not_flat() && not_flat) {
 246       // Storing to a non-flat array, mark array as not flat.
 247       array_type = array_type->cast_to_not_flat();
 248       Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, array_type));
 249       replace_in_map(array, cast);
 250       array = cast;
 251     }
 252 
 253     if (array_type->is_flat()) {
 254       // Store to flat inline type array
 255       assert(!stored_value_casted_type->maybe_null(), "should be guaranteed by array store check");
 256       if (array_type->klass_is_exact()) {
 257         // Store to exact flat inline type array where we know the flat array layout statically.
 258         // Re-execute flat array store if buffering triggers deoptimization
 259         PreserveReexecuteState preexecs(this);
 260         inc_sp(3);
 261         jvms()->set_should_reexecute(true);
 262         stored_value_casted->as_InlineType()->store_flat(this, array, adr, nullptr, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY);
 263       } else {
 264         // Element type of flat array is not exact. Therefore, we cannot determine the flat array layout statically.
 265         // Emit a runtime call to store the element to the flat array.
 266         store_to_unknown_flat_array(array, array_index, stored_value_casted);
 267       }
 268       return;
 269     }
 270     if (array_type->is_null_free()) {
 271       // Store to non-flat null-free inline type array (elements can never be null)
 272       assert(!stored_value_casted_type->maybe_null(), "should be guaranteed by array store check");
 273       if (elemtype->inline_klass()->is_empty()) {
 274         // Ignore empty inline stores, array is already initialized.
 275         return;
 276       }
 277     } else if (!array_type->is_not_flat() && (stored_value_casted_type != TypePtr::NULL_PTR || StressReflectiveCode)) {
 278       // Array might be a flat array, emit runtime checks (for nullptr, a simple inline_array_null_guard is sufficient).
 279       assert(UseFlatArray && !not_flat && elemtype->is_oopptr()->can_be_inline_type() &&
 280              !array_type->klass_is_exact() && !array_type->is_not_null_free(), "array can't be a flat array");
 281       IdealKit ideal(this);
 282       ideal.if_then(flat_array_test(array, /* flat = */ false)); {
 283         // Non-flat array
 284         assert(ideal.ctrl()->in(0)->as_If()->is_flat_array_check(&_gvn), "Should be found");
 285         sync_kit(ideal);
 286         Node* cast_array = inline_array_null_guard(array, stored_value_casted, 3);
 287         inc_sp(3);
 288         access_store_at(cast_array, adr, adr_type, stored_value_casted, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY, false);
 289         dec_sp(3);
 290         ideal.sync_kit(this);
 291       } ideal.else_(); {
 292         sync_kit(ideal);
 293         // flat array
 294         Node* null_ctl = top();
 295         Node* null_checked_stored_value_casted = null_check_oop(stored_value_casted, &null_ctl);
 296         if (null_ctl != top()) {
 297           PreserveJVMState pjvms(this);
 298           inc_sp(3);
 299           set_control(null_ctl);
 300           uncommon_trap(Deoptimization::Reason_null_check, Deoptimization::Action_none);
 301           dec_sp(3);
 302         }
 303         // Try to determine the inline klass
 304         ciInlineKlass* inline_Klass = nullptr;
 305         if (stored_value_casted_type->is_inlinetypeptr()) {
 306           inline_Klass = stored_value_casted_type->inline_klass();
 307         } else if (elemtype->is_inlinetypeptr()) {
 308           inline_Klass = elemtype->inline_klass();
 309         }
 310         if (!stopped()) {
 311           if (inline_Klass != nullptr) {
 312             // Element type is known, cast and store to flat array layout.
 313             assert(inline_Klass->flat_in_array() && elemtype->maybe_null(), "never/always flat - should be optimized");
 314             ciArrayKlass* array_klass = ciArrayKlass::make(inline_Klass, /* null_free */ true);
 315             const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
 316             Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, arytype));
 317             Node* casted_adr = array_element_address(casted_array, array_index, T_OBJECT, arytype->size(), control());
 318             if (!null_checked_stored_value_casted->is_InlineType()) {
 319               assert(!gvn().type(null_checked_stored_value_casted)->maybe_null(),
 320                      "inline type array elements should never be null");
 321               null_checked_stored_value_casted = InlineTypeNode::make_from_oop(this, null_checked_stored_value_casted,
 322                                                                                inline_Klass);
 323             }
 324             // Re-execute flat array store if buffering triggers deoptimization
 325             PreserveReexecuteState preexecs(this);
 326             inc_sp(3);
 327             jvms()->set_should_reexecute(true);
 328             null_checked_stored_value_casted->as_InlineType()->store_flat(this, casted_array, casted_adr, nullptr, 0, MO_UNORDERED | IN_HEAP | IS_ARRAY);
 329           } else {
 330             // Element type is unknown, emit a runtime call since the flat array layout is not statically known.
 331             store_to_unknown_flat_array(array, array_index, null_checked_stored_value_casted);
 332           }
 333         }
 334         ideal.sync_kit(this);
 335       }
 336       ideal.end_if();
 337       sync_kit(ideal);
 338       return;
 339     } else if (!array_type->is_not_null_free()) {
 340       // Array is not flat but may be null free
 341       assert(elemtype->is_oopptr()->can_be_inline_type(), "array can't be null-free");
 342       array = inline_array_null_guard(array, stored_value_casted, 3, true);
 343     }
 344   }
 345   inc_sp(3);
 346   access_store_at(array, adr, adr_type, stored_value, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
 347   dec_sp(3);
 348 }
 349 
 350 // Emit a runtime call to store to a flat array whose element type is either unknown (i.e. we do not know the flat
 351 // array layout) or not exact (could have different flat array layouts at runtime).
 352 void Parse::store_to_unknown_flat_array(Node* array, Node* const idx, Node* non_null_stored_value) {
 353   // Below membars keep this access to an unknown flat array correctly
 354   // ordered with other unknown and known flat array accesses.
 355   insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
 356 
 357   make_runtime_call(RC_LEAF,
 358                     OptoRuntime::store_unknown_inline_Type(),
 359                     CAST_FROM_FN_PTR(address, OptoRuntime::store_unknown_inline_C),
 360                     "store_unknown_inline", TypeRawPtr::BOTTOM,
 361                     non_null_stored_value, array, idx);
 362 
 363   insert_mem_bar_volatile(Op_MemBarCPUOrder, C->get_alias_index(TypeAryPtr::INLINES));
 364 }
 365 
 366 //------------------------------array_addressing-------------------------------
 367 // Pull array and index from the stack.  Compute pointer-to-element.
 368 Node* Parse::array_addressing(BasicType type, int vals, const Type*& elemtype) {
 369   Node *idx   = peek(0+vals);   // Get from stack without popping
 370   Node *ary   = peek(1+vals);   // in case of exception
 371 
 372   // Null check the array base, with correct stack contents
 373   ary = null_check(ary, T_ARRAY);
 374   // Compile-time detect of null-exception?
 375   if (stopped())  return top();
 376 
 377   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
 378   const TypeInt*    sizetype = arytype->size();
 379   elemtype = arytype->elem();
 380 
 381   if (UseUniqueSubclasses) {
 382     const Type* el = elemtype->make_ptr();
 383     if (el && el->isa_instptr()) {
 384       const TypeInstPtr* toop = el->is_instptr();
 385       if (toop->instance_klass()->unique_concrete_subklass()) {
 386         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
 387         const Type* subklass = Type::get_const_type(toop->instance_klass());
 388         elemtype = subklass->join_speculative(el);
 389       }
 390     }
 391   }
 392 











 393   if (!arytype->is_loaded()) {
 394     // Only fails for some -Xcomp runs
 395     // The class is unloaded.  We have to run this bytecode in the interpreter.
 396     ciKlass* klass = arytype->unloaded_klass();
 397 
 398     uncommon_trap(Deoptimization::Reason_unloaded,
 399                   Deoptimization::Action_reinterpret,
 400                   klass, "!loaded array");
 401     return top();
 402   }
 403 
 404   ary = create_speculative_inline_type_array_checks(ary, arytype, elemtype);











 405 
 406   if (needs_range_check(sizetype, idx)) {
 407     create_range_check(idx, ary, sizetype);
 408   } else if (C->log() != nullptr) {
 409     C->log()->elem("observe that='!need_range_check'");



























 410   }
 411 
 412   // Check for always knowing you are throwing a range-check exception
 413   if (stopped())  return top();
 414 
 415   // Make array address computation control dependent to prevent it
 416   // from floating above the range check during loop optimizations.
 417   Node* ptr = array_element_address(ary, idx, type, sizetype, control());
 418   assert(ptr != top(), "top should go hand-in-hand with stopped");
 419 
 420   return ptr;
 421 }
 422 
 423 // Check if we need a range check for an array access. This is the case if the index is either negative or if it could
 424 // be greater or equal the smallest possible array size (i.e. out-of-bounds).
 425 bool Parse::needs_range_check(const TypeInt* size_type, const Node* index) const {
 426   const TypeInt* index_type = _gvn.type(index)->is_int();
 427   return index_type->_hi >= size_type->_lo || index_type->_lo < 0;
 428 }
 429 
 430 void Parse::create_range_check(Node* idx, Node* ary, const TypeInt* sizetype) {
 431   Node* tst;
 432   if (sizetype->_hi <= 0) {
 433     // The greatest array bound is negative, so we can conclude that we're
 434     // compiling unreachable code, but the unsigned compare trick used below
 435     // only works with non-negative lengths.  Instead, hack "tst" to be zero so
 436     // the uncommon_trap path will always be taken.
 437     tst = _gvn.intcon(0);
 438   } else {
 439     // Range is constant in array-oop, so we can use the original state of mem
 440     Node* len = load_array_length(ary);
 441 
 442     // Test length vs index (standard trick using unsigned compare)
 443     Node* chk = _gvn.transform(new CmpUNode(idx, len) );
 444     BoolTest::mask btest = BoolTest::lt;
 445     tst = _gvn.transform(new BoolNode(chk, btest) );
 446   }
 447   RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 448   _gvn.set_type(rc, rc->Value(&_gvn));
 449   if (!tst->is_Con()) {
 450     record_for_igvn(rc);
 451   }
 452   set_control(_gvn.transform(new IfTrueNode(rc)));
 453   // Branch to failure if out of bounds
 454   {
 455     PreserveJVMState pjvms(this);
 456     set_control(_gvn.transform(new IfFalseNode(rc)));
 457     if (C->allow_range_check_smearing()) {
 458       // Do not use builtin_throw, since range checks are sometimes
 459       // made more stringent by an optimistic transformation.
 460       // This creates "tentative" range checks at this point,
 461       // which are not guaranteed to throw exceptions.
 462       // See IfNode::Ideal, is_range_check, adjust_check.
 463       uncommon_trap(Deoptimization::Reason_range_check,
 464                     Deoptimization::Action_make_not_entrant,
 465                     nullptr, "range_check");
 466     } else {
 467       // If we have already recompiled with the range-check-widening
 468       // heroic optimization turned off, then we must really be throwing
 469       // range check exceptions.
 470       builtin_throw(Deoptimization::Reason_range_check);
 471     }
 472   }
 473 }
 474 
 475 // For inline type arrays, we can use the profiling information for array accesses to speculate on the type, flatness,
 476 // and null-freeness. We can either prepare the speculative type for later uses or emit explicit speculative checks with
 477 // traps now. In the latter case, the speculative type guarantees can avoid additional runtime checks later (e.g.
 478 // non-null-free implies non-flat which allows us to remove flatness checks). This makes the graph simpler.
 479 Node* Parse::create_speculative_inline_type_array_checks(Node* array, const TypeAryPtr* array_type,
 480                                                          const Type*& element_type) {
 481   if (!array_type->is_flat() && !array_type->is_not_flat()) {
 482     // For arrays that might be flat, speculate that the array has the exact type reported in the profile data such that
 483     // we can rely on a fixed memory layout (i.e. either a flat layout or not).
 484     array = cast_to_speculative_array_type(array, array_type, element_type);
 485   } else if (UseTypeSpeculation && UseArrayLoadStoreProfile) {
 486     // Array is known to be either flat or not flat. If possible, update the speculative type by using the profile data
 487     // at this bci.
 488     array = cast_to_profiled_array_type(array);
 489   }
 490 
 491   // Even though the type does not tell us whether we have an inline type array or not, we can still check the profile data
 492   // whether we have a non-null-free or non-flat array. Since non-null-free implies non-flat, we check this first.
 493   // Speculating on a non-null-free array doesn't help aaload but could be profitable for a subsequent aastore.
 494   if (!array_type->is_null_free() && !array_type->is_not_null_free()) {
 495     array = speculate_non_null_free_array(array, array_type);
 496   }
 497 
 498   if (!array_type->is_flat() && !array_type->is_not_flat()) {
 499     array = speculate_non_flat_array(array, array_type);
 500   }
 501   return array;
 502 }
 503 
 504 // Speculate that the array has the exact type reported in the profile data. We emit a trap when this turns out to be
 505 // wrong. On the fast path, we add a CheckCastPP to use the exact type.
 506 Node* Parse::cast_to_speculative_array_type(Node* const array, const TypeAryPtr*& array_type, const Type*& element_type) {
 507   Deoptimization::DeoptReason reason = Deoptimization::Reason_speculate_class_check;
 508   ciKlass* speculative_array_type = array_type->speculative_type();
 509   if (too_many_traps_or_recompiles(reason) || speculative_array_type == nullptr) {
 510     // No speculative type, check profile data at this bci
 511     speculative_array_type = nullptr;
 512     reason = Deoptimization::Reason_class_check;
 513     if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) {
 514       ciKlass* profiled_element_type = nullptr;
 515       ProfilePtrKind element_ptr = ProfileMaybeNull;
 516       bool flat_array = true;
 517       bool null_free_array = true;
 518       method()->array_access_profiled_type(bci(), speculative_array_type, profiled_element_type, element_ptr, flat_array,
 519                                            null_free_array);
 520     }
 521   }
 522   if (speculative_array_type != nullptr) {
 523     // Speculate that this array has the exact type reported by profile data
 524     Node* casted_array = nullptr;
 525     DEBUG_ONLY(Node* old_control = control();)
 526     Node* slow_ctl = type_check_receiver(array, speculative_array_type, 1.0, &casted_array);
 527     if (stopped()) {
 528       // The check always fails and therefore profile information is incorrect. Don't use it.
 529       assert(old_control == slow_ctl, "type check should have been removed");
 530       set_control(slow_ctl);
 531     } else if (!slow_ctl->is_top()) {
 532       { PreserveJVMState pjvms(this);
 533         set_control(slow_ctl);
 534         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
 535       }
 536       replace_in_map(array, casted_array);
 537       array_type = _gvn.type(casted_array)->is_aryptr();
 538       element_type = array_type->elem();
 539       return casted_array;
 540     }
 541   }
 542   return array;
 543 }
 544 
 545 // Create a CheckCastPP when the speculative type can improve the current type.
 546 Node* Parse::cast_to_profiled_array_type(Node* const array) {
 547   ciKlass* array_type = nullptr;
 548   ciKlass* element_type = nullptr;
 549   ProfilePtrKind element_ptr = ProfileMaybeNull;
 550   bool flat_array = true;
 551   bool null_free_array = true;
 552   method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
 553   if (array_type != nullptr) {
 554     return record_profile_for_speculation(array, array_type, ProfileMaybeNull);
 555   }
 556   return array;
 557 }
 558 
 559 // Speculate that the array is non-null-free. This will imply non-flatness. We emit a trap when this turns out to be
 560 // wrong. On the fast path, we add a CheckCastPP to use the non-null-free type.
 561 Node* Parse::speculate_non_null_free_array(Node* const array, const TypeAryPtr*& array_type) {
 562   bool null_free_array = true;
 563   Deoptimization::DeoptReason reason = Deoptimization::Reason_none;
 564   if (array_type->speculative() != nullptr &&
 565       array_type->speculative()->is_aryptr()->is_not_null_free() &&
 566       !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
 567     null_free_array = false;
 568     reason = Deoptimization::Reason_speculate_class_check;
 569   } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) {
 570     ciKlass* profiled_array_type = nullptr;
 571     ciKlass* profiled_element_type = nullptr;
 572     ProfilePtrKind element_ptr = ProfileMaybeNull;
 573     bool flat_array = true;
 574     method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array,
 575                                          null_free_array);
 576     reason = Deoptimization::Reason_class_check;
 577   }
 578   if (!null_free_array) {
 579     { // Deoptimize if null-free array
 580       BuildCutout unless(this, null_free_array_test(array, /* null_free = */ false), PROB_MAX);
 581       uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
 582     }
 583     assert(!stopped(), "null-free array should have been caught earlier");
 584     Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_null_free()));
 585     replace_in_map(array, casted_array);
 586     array_type = _gvn.type(casted_array)->is_aryptr();
 587     return casted_array;
 588   }
 589   return array;
 590 }
 591 
 592 // Speculate that the array is non-flat. We emit a trap when this turns out to be wrong. On the fast path, we add a
 593 // CheckCastPP to use the non-flat type.
 594 Node* Parse::speculate_non_flat_array(Node* const array, const TypeAryPtr* const array_type) {
 595   bool flat_array = true;
 596   Deoptimization::DeoptReason reason = Deoptimization::Reason_none;
 597   if (array_type->speculative() != nullptr &&
 598       array_type->speculative()->is_aryptr()->is_not_flat() &&
 599       !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
 600     flat_array = false;
 601     reason = Deoptimization::Reason_speculate_class_check;
 602   } else if (UseArrayLoadStoreProfile && !too_many_traps_or_recompiles(reason)) {
 603     ciKlass* profiled_array_type = nullptr;
 604     ciKlass* profiled_element_type = nullptr;
 605     ProfilePtrKind element_ptr = ProfileMaybeNull;
 606     bool null_free_array = true;
 607     method()->array_access_profiled_type(bci(), profiled_array_type, profiled_element_type, element_ptr, flat_array,
 608                                          null_free_array);
 609     reason = Deoptimization::Reason_class_check;
 610   }
 611   if (!flat_array) {
 612     { // Deoptimize if flat array
 613       BuildCutout unless(this, flat_array_test(array, /* flat = */ false), PROB_MAX);
 614       uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
 615     }
 616     assert(!stopped(), "flat array should have been caught earlier");
 617     Node* casted_array = _gvn.transform(new CheckCastPPNode(control(), array, array_type->cast_to_not_flat()));
 618     replace_in_map(array, casted_array);
 619     return casted_array;
 620   }
 621   return array;
 622 }
 623 
 624 // returns IfNode
 625 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) {
 626   Node   *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
 627   Node   *tst = _gvn.transform(new BoolNode(cmp, mask));
 628   IfNode *iff = create_and_map_if(control(), tst, prob, cnt);
 629   return iff;
 630 }
 631 
 632 
 633 // sentinel value for the target bci to mark never taken branches
 634 // (according to profiling)
 635 static const int never_reached = INT_MAX;
 636 
 637 //------------------------------helper for tableswitch-------------------------
 638 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, bool unc) {
 639   // True branch, use existing map info
 640   { PreserveJVMState pjvms(this);
 641     Node *iftrue  = _gvn.transform( new IfTrueNode (iff) );
 642     set_control( iftrue );

1856   // False branch
1857   Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1858   set_control(iffalse);
1859 
1860   if (stopped()) {              // Path is dead?
1861     NOT_PRODUCT(explicit_null_checks_elided++);
1862     if (C->eliminate_boxing()) {
1863       // Mark the successor block as parsed
1864       next_block->next_path_num();
1865     }
1866   } else  {                     // Path is live.
1867     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob, next_block);
1868   }
1869 
1870   if (do_stress_trap) {
1871     stress_trap(iff, counter, incr_store);
1872   }
1873 }
1874 
1875 //------------------------------------do_if------------------------------------
1876 void Parse::do_if(BoolTest::mask btest, Node* c, bool can_trap, bool new_path, Node** ctrl_taken) {
1877   int target_bci = iter().get_dest();
1878 
1879   Block* branch_block = successor_for_bci(target_bci);
1880   Block* next_block   = successor_for_bci(iter().next_bci());
1881 
1882   float cnt;
1883   float prob = branch_prediction(cnt, btest, target_bci, c);
1884   float untaken_prob = 1.0 - prob;
1885 
1886   if (prob == PROB_UNKNOWN) {
1887     if (PrintOpto && Verbose) {
1888       tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1889     }
1890     repush_if_args(); // to gather stats on loop
1891     uncommon_trap(Deoptimization::Reason_unreached,
1892                   Deoptimization::Action_reinterpret,
1893                   nullptr, "cold");
1894     if (C->eliminate_boxing()) {
1895       // Mark the successor blocks as parsed
1896       branch_block->next_path_num();

1947   }
1948 
1949   // Generate real control flow
1950   float true_prob = (taken_if_true ? prob : untaken_prob);
1951   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1952   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1953   Node* taken_branch   = new IfTrueNode(iff);
1954   Node* untaken_branch = new IfFalseNode(iff);
1955   if (!taken_if_true) {  // Finish conversion to canonical form
1956     Node* tmp      = taken_branch;
1957     taken_branch   = untaken_branch;
1958     untaken_branch = tmp;
1959   }
1960 
1961   // Branch is taken:
1962   { PreserveJVMState pjvms(this);
1963     taken_branch = _gvn.transform(taken_branch);
1964     set_control(taken_branch);
1965 
1966     if (stopped()) {
1967       if (C->eliminate_boxing() && !new_path) {
1968         // Mark the successor block as parsed (if we haven't created a new path)
1969         branch_block->next_path_num();
1970       }
1971     } else {
1972       adjust_map_after_if(taken_btest, c, prob, branch_block, can_trap);
1973       if (!stopped()) {
1974         if (new_path) {
1975           // Merge by using a new path
1976           merge_new_path(target_bci);
1977         } else if (ctrl_taken != nullptr) {
1978           // Don't merge but save taken branch to be wired by caller
1979           *ctrl_taken = control();
1980         } else {
1981           merge(target_bci);
1982         }
1983       }
1984     }
1985   }
1986 
1987   untaken_branch = _gvn.transform(untaken_branch);
1988   set_control(untaken_branch);
1989 
1990   // Branch not taken.
1991   if (stopped() && ctrl_taken == nullptr) {
1992     if (C->eliminate_boxing()) {
1993       // Mark the successor block as parsed (if caller does not re-wire control flow)
1994       next_block->next_path_num();
1995     }
1996   } else {
1997     adjust_map_after_if(untaken_btest, c, untaken_prob, next_block, can_trap);
1998   }
1999 
2000   if (do_stress_trap) {
2001     stress_trap(iff, counter, incr_store);
2002   }
2003 }
2004 
2005 
2006 static ProfilePtrKind speculative_ptr_kind(const TypeOopPtr* t) {
2007   if (t->speculative() == nullptr) {
2008     return ProfileUnknownNull;
2009   }
2010   if (t->speculative_always_null()) {
2011     return ProfileAlwaysNull;
2012   }
2013   if (t->speculative_maybe_null()) {
2014     return ProfileMaybeNull;
2015   }
2016   return ProfileNeverNull;
2017 }
2018 
2019 void Parse::acmp_always_null_input(Node* input, const TypeOopPtr* tinput, BoolTest::mask btest, Node* eq_region) {
2020   inc_sp(2);
2021   Node* cast = null_check_common(input, T_OBJECT, true, nullptr,
2022                                  !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check) &&
2023                                  speculative_ptr_kind(tinput) == ProfileAlwaysNull);
2024   dec_sp(2);
2025   if (btest == BoolTest::ne) {
2026     {
2027       PreserveJVMState pjvms(this);
2028       replace_in_map(input, cast);
2029       int target_bci = iter().get_dest();
2030       merge(target_bci);
2031     }
2032     record_for_igvn(eq_region);
2033     set_control(_gvn.transform(eq_region));
2034   } else {
2035     replace_in_map(input, cast);
2036   }
2037 }
2038 
2039 Node* Parse::acmp_null_check(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, Node*& null_ctl) {
2040   inc_sp(2);
2041   null_ctl = top();
2042   Node* cast = null_check_oop(input, &null_ctl,
2043                               input_ptr == ProfileNeverNull || (input_ptr == ProfileUnknownNull && !too_many_traps_or_recompiles(Deoptimization::Reason_null_check)),
2044                               false,
2045                               speculative_ptr_kind(tinput) == ProfileNeverNull &&
2046                               !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check));
2047   dec_sp(2);
2048   assert(!stopped(), "null input should have been caught earlier");
2049   return cast;
2050 }
2051 
2052 void Parse::acmp_known_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, ciKlass* input_type, BoolTest::mask btest, Node* eq_region) {
2053   Node* ne_region = new RegionNode(1);
2054   Node* null_ctl;
2055   Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl);
2056   ne_region->add_req(null_ctl);
2057 
2058   Node* slow_ctl = type_check_receiver(cast, input_type, 1.0, &cast);
2059   {
2060     PreserveJVMState pjvms(this);
2061     inc_sp(2);
2062     set_control(slow_ctl);
2063     Deoptimization::DeoptReason reason;
2064     if (tinput->speculative_type() != nullptr && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
2065       reason = Deoptimization::Reason_speculate_class_check;
2066     } else {
2067       reason = Deoptimization::Reason_class_check;
2068     }
2069     uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2070   }
2071   ne_region->add_req(control());
2072 
2073   record_for_igvn(ne_region);
2074   set_control(_gvn.transform(ne_region));
2075   if (btest == BoolTest::ne) {
2076     {
2077       PreserveJVMState pjvms(this);
2078       if (null_ctl == top()) {
2079         replace_in_map(input, cast);
2080       }
2081       int target_bci = iter().get_dest();
2082       merge(target_bci);
2083     }
2084     record_for_igvn(eq_region);
2085     set_control(_gvn.transform(eq_region));
2086   } else {
2087     if (null_ctl == top()) {
2088       replace_in_map(input, cast);
2089     }
2090     set_control(_gvn.transform(ne_region));
2091   }
2092 }
2093 
2094 void Parse::acmp_unknown_non_inline_type_input(Node* input, const TypeOopPtr* tinput, ProfilePtrKind input_ptr, BoolTest::mask btest, Node* eq_region) {
2095   Node* ne_region = new RegionNode(1);
2096   Node* null_ctl;
2097   Node* cast = acmp_null_check(input, tinput, input_ptr, null_ctl);
2098   ne_region->add_req(null_ctl);
2099 
2100   {
2101     BuildCutout unless(this, inline_type_test(cast, /* is_inline = */ false), PROB_MAX);
2102     inc_sp(2);
2103     uncommon_trap_exact(Deoptimization::Reason_class_check, Deoptimization::Action_maybe_recompile);
2104   }
2105 
2106   ne_region->add_req(control());
2107 
2108   record_for_igvn(ne_region);
2109   set_control(_gvn.transform(ne_region));
2110   if (btest == BoolTest::ne) {
2111     {
2112       PreserveJVMState pjvms(this);
2113       if (null_ctl == top()) {
2114         replace_in_map(input, cast);
2115       }
2116       int target_bci = iter().get_dest();
2117       merge(target_bci);
2118     }
2119     record_for_igvn(eq_region);
2120     set_control(_gvn.transform(eq_region));
2121   } else {
2122     if (null_ctl == top()) {
2123       replace_in_map(input, cast);
2124     }
2125     set_control(_gvn.transform(ne_region));
2126   }
2127 }
2128 
2129 void Parse::do_acmp(BoolTest::mask btest, Node* left, Node* right) {
2130   ciKlass* left_type = nullptr;
2131   ciKlass* right_type = nullptr;
2132   ProfilePtrKind left_ptr = ProfileUnknownNull;
2133   ProfilePtrKind right_ptr = ProfileUnknownNull;
2134   bool left_inline_type = true;
2135   bool right_inline_type = true;
2136 
2137   // Leverage profiling at acmp
2138   if (UseACmpProfile) {
2139     method()->acmp_profiled_type(bci(), left_type, right_type, left_ptr, right_ptr, left_inline_type, right_inline_type);
2140     if (too_many_traps_or_recompiles(Deoptimization::Reason_class_check)) {
2141       left_type = nullptr;
2142       right_type = nullptr;
2143       left_inline_type = true;
2144       right_inline_type = true;
2145     }
2146     if (too_many_traps_or_recompiles(Deoptimization::Reason_null_check)) {
2147       left_ptr = ProfileUnknownNull;
2148       right_ptr = ProfileUnknownNull;
2149     }
2150   }
2151 
2152   if (UseTypeSpeculation) {
2153     record_profile_for_speculation(left, left_type, left_ptr);
2154     record_profile_for_speculation(right, right_type, right_ptr);
2155   }
2156 
2157   if (!EnableValhalla) {
2158     Node* cmp = CmpP(left, right);
2159     cmp = optimize_cmp_with_klass(cmp);
2160     do_if(btest, cmp);
2161     return;
2162   }
2163 
2164   // Check for equality before potentially allocating
2165   if (left == right) {
2166     do_if(btest, makecon(TypeInt::CC_EQ));
2167     return;
2168   }
2169 
2170   // Allocate inline type operands and re-execute on deoptimization
2171   if (left->is_InlineType()) {
2172     if (_gvn.type(right)->is_zero_type() ||
2173         (right->is_InlineType() && _gvn.type(right->as_InlineType()->get_is_init())->is_zero_type())) {
2174       // Null checking a scalarized but nullable inline type. Check the IsInit
2175       // input instead of the oop input to avoid keeping buffer allocations alive.
2176       Node* cmp = CmpI(left->as_InlineType()->get_is_init(), intcon(0));
2177       do_if(btest, cmp);
2178       return;
2179     } else {
2180       PreserveReexecuteState preexecs(this);
2181       inc_sp(2);
2182       jvms()->set_should_reexecute(true);
2183       left = left->as_InlineType()->buffer(this)->get_oop();
2184     }
2185   }
2186   if (right->is_InlineType()) {
2187     PreserveReexecuteState preexecs(this);
2188     inc_sp(2);
2189     jvms()->set_should_reexecute(true);
2190     right = right->as_InlineType()->buffer(this)->get_oop();
2191   }
2192 
2193   // First, do a normal pointer comparison
2194   const TypeOopPtr* tleft = _gvn.type(left)->isa_oopptr();
2195   const TypeOopPtr* tright = _gvn.type(right)->isa_oopptr();
2196   Node* cmp = CmpP(left, right);
2197   cmp = optimize_cmp_with_klass(cmp);
2198   if (tleft == nullptr || !tleft->can_be_inline_type() ||
2199       tright == nullptr || !tright->can_be_inline_type()) {
2200     // This is sufficient, if one of the operands can't be an inline type
2201     do_if(btest, cmp);
2202     return;
2203   }
2204 
2205   // Don't add traps to unstable if branches because additional checks are required to
2206   // decide if the operands are equal/substitutable and we therefore shouldn't prune
2207   // branches for one if based on the profiling of the acmp branches.
2208   // Also, OptimizeUnstableIf would set an incorrect re-rexecution state because it
2209   // assumes that there is a 1-1 mapping between the if and the acmp branches and that
2210   // hitting a trap means that we will take the corresponding acmp branch on re-execution.
2211   const bool can_trap = true;
2212 
2213   Node* eq_region = nullptr;
2214   if (btest == BoolTest::eq) {
2215     do_if(btest, cmp, !can_trap, true);
2216     if (stopped()) {
2217       // Pointers are equal, operands must be equal
2218       return;
2219     }
2220   } else {
2221     assert(btest == BoolTest::ne, "only eq or ne");
2222     Node* is_not_equal = nullptr;
2223     eq_region = new RegionNode(3);
2224     {
2225       PreserveJVMState pjvms(this);
2226       // Pointers are not equal, but more checks are needed to determine if the operands are (not) substitutable
2227       do_if(btest, cmp, !can_trap, false, &is_not_equal);
2228       if (!stopped()) {
2229         eq_region->init_req(1, control());
2230       }
2231     }
2232     if (is_not_equal == nullptr || is_not_equal->is_top()) {
2233       record_for_igvn(eq_region);
2234       set_control(_gvn.transform(eq_region));
2235       return;
2236     }
2237     set_control(is_not_equal);
2238   }
2239 
2240   // Prefer speculative types if available
2241   if (!too_many_traps_or_recompiles(Deoptimization::Reason_speculate_class_check)) {
2242     if (tleft->speculative_type() != nullptr) {
2243       left_type = tleft->speculative_type();
2244     }
2245     if (tright->speculative_type() != nullptr) {
2246       right_type = tright->speculative_type();
2247     }
2248   }
2249 
2250   if (speculative_ptr_kind(tleft) != ProfileMaybeNull && speculative_ptr_kind(tleft) != ProfileUnknownNull) {
2251     ProfilePtrKind speculative_left_ptr = speculative_ptr_kind(tleft);
2252     if (speculative_left_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) {
2253       left_ptr = speculative_left_ptr;
2254     } else if (speculative_left_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) {
2255       left_ptr = speculative_left_ptr;
2256     }
2257   }
2258   if (speculative_ptr_kind(tright) != ProfileMaybeNull && speculative_ptr_kind(tright) != ProfileUnknownNull) {
2259     ProfilePtrKind speculative_right_ptr = speculative_ptr_kind(tright);
2260     if (speculative_right_ptr == ProfileAlwaysNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_assert)) {
2261       right_ptr = speculative_right_ptr;
2262     } else if (speculative_right_ptr == ProfileNeverNull && !too_many_traps_or_recompiles(Deoptimization::Reason_speculate_null_check)) {
2263       right_ptr = speculative_right_ptr;
2264     }
2265   }
2266 
2267   if (left_ptr == ProfileAlwaysNull) {
2268     // Comparison with null. Assert the input is indeed null and we're done.
2269     acmp_always_null_input(left, tleft, btest, eq_region);
2270     return;
2271   }
2272   if (right_ptr == ProfileAlwaysNull) {
2273     // Comparison with null. Assert the input is indeed null and we're done.
2274     acmp_always_null_input(right, tright, btest, eq_region);
2275     return;
2276   }
2277   if (left_type != nullptr && !left_type->is_inlinetype()) {
2278     // Comparison with an object of known type
2279     acmp_known_non_inline_type_input(left, tleft, left_ptr, left_type, btest, eq_region);
2280     return;
2281   }
2282   if (right_type != nullptr && !right_type->is_inlinetype()) {
2283     // Comparison with an object of known type
2284     acmp_known_non_inline_type_input(right, tright, right_ptr, right_type, btest, eq_region);
2285     return;
2286   }
2287   if (!left_inline_type) {
2288     // Comparison with an object known not to be an inline type
2289     acmp_unknown_non_inline_type_input(left, tleft, left_ptr, btest, eq_region);
2290     return;
2291   }
2292   if (!right_inline_type) {
2293     // Comparison with an object known not to be an inline type
2294     acmp_unknown_non_inline_type_input(right, tright, right_ptr, btest, eq_region);
2295     return;
2296   }
2297 
2298   // Pointers are not equal, check if first operand is non-null
2299   Node* ne_region = new RegionNode(6);
2300   Node* null_ctl;
2301   Node* not_null_right = acmp_null_check(right, tright, right_ptr, null_ctl);
2302   ne_region->init_req(1, null_ctl);
2303 
2304   // First operand is non-null, check if it is an inline type
2305   Node* is_value = inline_type_test(not_null_right);
2306   IfNode* is_value_iff = create_and_map_if(control(), is_value, PROB_FAIR, COUNT_UNKNOWN);
2307   Node* not_value = _gvn.transform(new IfFalseNode(is_value_iff));
2308   ne_region->init_req(2, not_value);
2309   set_control(_gvn.transform(new IfTrueNode(is_value_iff)));
2310 
2311   // The first operand is an inline type, check if the second operand is non-null
2312   Node* not_null_left = acmp_null_check(left, tleft, left_ptr, null_ctl);
2313   ne_region->init_req(3, null_ctl);
2314 
2315   // Check if both operands are of the same class.
2316   Node* kls_left = load_object_klass(not_null_left);
2317   Node* kls_right = load_object_klass(not_null_right);
2318   Node* kls_cmp = CmpP(kls_left, kls_right);
2319   Node* kls_bol = _gvn.transform(new BoolNode(kls_cmp, BoolTest::ne));
2320   IfNode* kls_iff = create_and_map_if(control(), kls_bol, PROB_FAIR, COUNT_UNKNOWN);
2321   Node* kls_ne = _gvn.transform(new IfTrueNode(kls_iff));
2322   set_control(_gvn.transform(new IfFalseNode(kls_iff)));
2323   ne_region->init_req(4, kls_ne);
2324 
2325   if (stopped()) {
2326     record_for_igvn(ne_region);
2327     set_control(_gvn.transform(ne_region));
2328     if (btest == BoolTest::ne) {
2329       {
2330         PreserveJVMState pjvms(this);
2331         int target_bci = iter().get_dest();
2332         merge(target_bci);
2333       }
2334       record_for_igvn(eq_region);
2335       set_control(_gvn.transform(eq_region));
2336     }
2337     return;
2338   }
2339 
2340   // Both operands are values types of the same class, we need to perform a
2341   // substitutability test. Delegate to ValueObjectMethods::isSubstitutable().
2342   Node* ne_io_phi = PhiNode::make(ne_region, i_o());
2343   Node* mem = reset_memory();
2344   Node* ne_mem_phi = PhiNode::make(ne_region, mem);
2345 
2346   Node* eq_io_phi = nullptr;
2347   Node* eq_mem_phi = nullptr;
2348   if (eq_region != nullptr) {
2349     eq_io_phi = PhiNode::make(eq_region, i_o());
2350     eq_mem_phi = PhiNode::make(eq_region, mem);
2351   }
2352 
2353   set_all_memory(mem);
2354 
2355   kill_dead_locals();
2356   ciMethod* subst_method = ciEnv::current()->ValueObjectMethods_klass()->find_method(ciSymbols::isSubstitutable_name(), ciSymbols::object_object_boolean_signature());
2357   CallStaticJavaNode *call = new CallStaticJavaNode(C, TypeFunc::make(subst_method), SharedRuntime::get_resolve_static_call_stub(), subst_method);
2358   call->set_override_symbolic_info(true);
2359   call->init_req(TypeFunc::Parms, not_null_left);
2360   call->init_req(TypeFunc::Parms+1, not_null_right);
2361   inc_sp(2);
2362   set_edges_for_java_call(call, false, false);
2363   Node* ret = set_results_for_java_call(call, false, true);
2364   dec_sp(2);
2365 
2366   // Test the return value of ValueObjectMethods::isSubstitutable()
2367   // This is the last check, do_if can emit traps now.
2368   Node* subst_cmp = _gvn.transform(new CmpINode(ret, intcon(1)));
2369   Node* ctl = C->top();
2370   if (btest == BoolTest::eq) {
2371     PreserveJVMState pjvms(this);
2372     do_if(btest, subst_cmp, can_trap);
2373     if (!stopped()) {
2374       ctl = control();
2375     }
2376   } else {
2377     assert(btest == BoolTest::ne, "only eq or ne");
2378     PreserveJVMState pjvms(this);
2379     do_if(btest, subst_cmp, can_trap, false, &ctl);
2380     if (!stopped()) {
2381       eq_region->init_req(2, control());
2382       eq_io_phi->init_req(2, i_o());
2383       eq_mem_phi->init_req(2, reset_memory());
2384     }
2385   }
2386   ne_region->init_req(5, ctl);
2387   ne_io_phi->init_req(5, i_o());
2388   ne_mem_phi->init_req(5, reset_memory());
2389 
2390   record_for_igvn(ne_region);
2391   set_control(_gvn.transform(ne_region));
2392   set_i_o(_gvn.transform(ne_io_phi));
2393   set_all_memory(_gvn.transform(ne_mem_phi));
2394 
2395   if (btest == BoolTest::ne) {
2396     {
2397       PreserveJVMState pjvms(this);
2398       int target_bci = iter().get_dest();
2399       merge(target_bci);
2400     }
2401 
2402     record_for_igvn(eq_region);
2403     set_control(_gvn.transform(eq_region));
2404     set_i_o(_gvn.transform(eq_io_phi));
2405     set_all_memory(_gvn.transform(eq_mem_phi));
2406   }
2407 }
2408 
2409 // Force unstable if traps to be taken randomly to trigger intermittent bugs such as incorrect debug information.
2410 // Add another if before the unstable if that checks a "random" condition at runtime (a simple shared counter) and
2411 // then either takes the trap or executes the original, unstable if.
2412 void Parse::stress_trap(IfNode* orig_iff, Node* counter, Node* incr_store) {
2413   // Search for an unstable if trap
2414   CallStaticJavaNode* trap = nullptr;
2415   assert(orig_iff->Opcode() == Op_If && orig_iff->outcnt() == 2, "malformed if");
2416   ProjNode* trap_proj = orig_iff->uncommon_trap_proj(trap, Deoptimization::Reason_unstable_if);
2417   if (trap == nullptr || !trap->jvms()->should_reexecute()) {
2418     // No suitable trap found. Remove unused counter load and increment.
2419     C->gvn_replace_by(incr_store, incr_store->in(MemNode::Memory));
2420     return;
2421   }
2422 
2423   // Remove trap from optimization list since we add another path to the trap.
2424   bool success = C->remove_unstable_if_trap(trap, true);
2425   assert(success, "Trap already modified");
2426 
2427   // Add a check before the original if that will trap with a certain frequency and execute the original if otherwise
2428   int freq_log = (C->random() % 31) + 1; // Random logarithmic frequency in [1, 31]

2461 }
2462 
2463 void Parse::maybe_add_predicate_after_if(Block* path) {
2464   if (path->is_SEL_head() && path->preds_parsed() == 0) {
2465     // Add predicates at bci of if dominating the loop so traps can be
2466     // recorded on the if's profile data
2467     int bc_depth = repush_if_args();
2468     add_parse_predicates();
2469     dec_sp(bc_depth);
2470     path->set_has_predicates();
2471   }
2472 }
2473 
2474 
2475 //----------------------------adjust_map_after_if------------------------------
2476 // Adjust the JVM state to reflect the result of taking this path.
2477 // Basically, it means inspecting the CmpNode controlling this
2478 // branch, seeing how it constrains a tested value, and then
2479 // deciding if it's worth our while to encode this constraint
2480 // as graph nodes in the current abstract interpretation map.
2481 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob, Block* path, bool can_trap) {
2482   if (!c->is_Cmp()) {
2483     maybe_add_predicate_after_if(path);
2484     return;
2485   }
2486 
2487   if (stopped() || btest == BoolTest::illegal) {
2488     return;                             // nothing to do
2489   }
2490 
2491   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
2492 
2493   if (can_trap && path_is_suitable_for_uncommon_trap(prob)) {
2494     repush_if_args();
2495     Node* call = uncommon_trap(Deoptimization::Reason_unstable_if,
2496                   Deoptimization::Action_reinterpret,
2497                   nullptr,
2498                   (is_fallthrough ? "taken always" : "taken never"));
2499 
2500     if (call != nullptr) {
2501       C->record_unstable_if_trap(new UnstableIfTrap(call->as_CallStaticJava(), path));
2502     }
2503     return;
2504   }
2505 
2506   Node* val = c->in(1);
2507   Node* con = c->in(2);
2508   const Type* tcon = _gvn.type(con);
2509   const Type* tval = _gvn.type(val);
2510   bool have_con = tcon->singleton();
2511   if (tval->singleton()) {
2512     if (!have_con) {
2513       // Swap, so constant is in con.

2570     if (obj != nullptr && (con_type->isa_instptr() || con_type->isa_aryptr())) {
2571        // Found:
2572        //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
2573        // or the narrowOop equivalent.
2574        const Type* obj_type = _gvn.type(obj);
2575        const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
2576        if (tboth != nullptr && tboth->klass_is_exact() && tboth != obj_type &&
2577            tboth->higher_equal(obj_type)) {
2578           // obj has to be of the exact type Foo if the CmpP succeeds.
2579           int obj_in_map = map()->find_edge(obj);
2580           JVMState* jvms = this->jvms();
2581           if (obj_in_map >= 0 &&
2582               (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
2583             TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
2584             const Type* tcc = ccast->as_Type()->type();
2585             assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
2586             // Delay transform() call to allow recovery of pre-cast value
2587             // at the control merge.
2588             _gvn.set_type_bottom(ccast);
2589             record_for_igvn(ccast);
2590             if (tboth->is_inlinetypeptr()) {
2591               ccast = InlineTypeNode::make_from_oop(this, ccast, tboth->exact_klass(true)->as_inline_klass());
2592             }
2593             // Here's the payoff.
2594             replace_in_map(obj, ccast);
2595           }
2596        }
2597     }
2598   }
2599 
2600   int val_in_map = map()->find_edge(val);
2601   if (val_in_map < 0)  return;          // replace_in_map would be useless
2602   {
2603     JVMState* jvms = this->jvms();
2604     if (!(jvms->is_loc(val_in_map) ||
2605           jvms->is_stk(val_in_map)))
2606       return;                           // again, it would be useless
2607   }
2608 
2609   // Check for a comparison to a constant, and "know" that the compared
2610   // value is constrained on this path.
2611   assert(tcon->singleton(), "");
2612   ConstraintCastNode* ccast = nullptr;

2677   if (c->Opcode() == Op_CmpP &&
2678       (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
2679       c->in(2)->is_Con()) {
2680     Node* load_klass = nullptr;
2681     Node* decode = nullptr;
2682     if (c->in(1)->Opcode() == Op_DecodeNKlass) {
2683       decode = c->in(1);
2684       load_klass = c->in(1)->in(1);
2685     } else {
2686       load_klass = c->in(1);
2687     }
2688     if (load_klass->in(2)->is_AddP()) {
2689       Node* addp = load_klass->in(2);
2690       Node* obj = addp->in(AddPNode::Address);
2691       const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2692       if (obj_type->speculative_type_not_null() != nullptr) {
2693         ciKlass* k = obj_type->speculative_type();
2694         inc_sp(2);
2695         obj = maybe_cast_profiled_obj(obj, k);
2696         dec_sp(2);
2697         if (obj->is_InlineType()) {
2698           assert(obj->as_InlineType()->is_allocated(&_gvn), "must be allocated");
2699           obj = obj->as_InlineType()->get_oop();
2700         }
2701         // Make the CmpP use the casted obj
2702         addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
2703         load_klass = load_klass->clone();
2704         load_klass->set_req(2, addp);
2705         load_klass = _gvn.transform(load_klass);
2706         if (decode != nullptr) {
2707           decode = decode->clone();
2708           decode->set_req(1, load_klass);
2709           load_klass = _gvn.transform(decode);
2710         }
2711         c = c->clone();
2712         c->set_req(1, load_klass);
2713         c = _gvn.transform(c);
2714       }
2715     }
2716   }
2717   return c;
2718 }
2719 
2720 //------------------------------do_one_bytecode--------------------------------

3514     // See if we can get some profile data and hand it off to the next block
3515     Block *target_block = block()->successor_for_bci(target_bci);
3516     if (target_block->pred_count() != 1)  break;
3517     ciMethodData* methodData = method()->method_data();
3518     if (!methodData->is_mature())  break;
3519     ciProfileData* data = methodData->bci_to_data(bci());
3520     assert(data != nullptr && data->is_JumpData(), "need JumpData for taken branch");
3521     int taken = ((ciJumpData*)data)->taken();
3522     taken = method()->scale_count(taken);
3523     target_block->set_count(taken);
3524     break;
3525   }
3526 
3527   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
3528   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
3529   handle_if_null:
3530     // If this is a backwards branch in the bytecodes, add Safepoint
3531     maybe_add_safepoint(iter().get_dest());
3532     a = null();
3533     b = pop();
3534     if (b->is_InlineType()) {
3535       // Null checking a scalarized but nullable inline type. Check the IsInit
3536       // input instead of the oop input to avoid keeping buffer allocations alive
3537       c = _gvn.transform(new CmpINode(b->as_InlineType()->get_is_init(), zerocon(T_INT)));
3538     } else {
3539       if (!_gvn.type(b)->speculative_maybe_null() &&
3540           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
3541         inc_sp(1);
3542         Node* null_ctl = top();
3543         b = null_check_oop(b, &null_ctl, true, true, true);
3544         assert(null_ctl->is_top(), "no null control here");
3545         dec_sp(1);
3546       } else if (_gvn.type(b)->speculative_always_null() &&
3547                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
3548         inc_sp(1);
3549         b = null_assert(b);
3550         dec_sp(1);
3551       }
3552       c = _gvn.transform( new CmpPNode(b, a) );
3553     }
3554     do_ifnull(btest, c);
3555     break;
3556 
3557   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
3558   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
3559   handle_if_acmp:
3560     // If this is a backwards branch in the bytecodes, add Safepoint
3561     maybe_add_safepoint(iter().get_dest());
3562     a = pop();
3563     b = pop();
3564     do_acmp(btest, b, a);


3565     break;
3566 
3567   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
3568   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
3569   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
3570   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
3571   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
3572   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
3573   handle_ifxx:
3574     // If this is a backwards branch in the bytecodes, add Safepoint
3575     maybe_add_safepoint(iter().get_dest());
3576     a = _gvn.intcon(0);
3577     b = pop();
3578     c = _gvn.transform( new CmpINode(b, a) );
3579     do_if(btest, c);
3580     break;
3581 
3582   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
3583   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
3584   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;

3599     break;
3600 
3601   case Bytecodes::_lookupswitch:
3602     do_lookupswitch();
3603     break;
3604 
3605   case Bytecodes::_invokestatic:
3606   case Bytecodes::_invokedynamic:
3607   case Bytecodes::_invokespecial:
3608   case Bytecodes::_invokevirtual:
3609   case Bytecodes::_invokeinterface:
3610     do_call();
3611     break;
3612   case Bytecodes::_checkcast:
3613     do_checkcast();
3614     break;
3615   case Bytecodes::_instanceof:
3616     do_instanceof();
3617     break;
3618   case Bytecodes::_anewarray:
3619     do_newarray();
3620     break;
3621   case Bytecodes::_newarray:
3622     do_newarray((BasicType)iter().get_index());
3623     break;
3624   case Bytecodes::_multianewarray:
3625     do_multianewarray();
3626     break;
3627   case Bytecodes::_new:
3628     do_new();
3629     break;
3630 
3631   case Bytecodes::_jsr:
3632   case Bytecodes::_jsr_w:
3633     do_jsr();
3634     break;
3635 
3636   case Bytecodes::_ret:
3637     do_ret();
3638     break;
3639 
< prev index next >