1 /*
  2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_OPTO_SUBNODE_HPP
 26 #define SHARE_OPTO_SUBNODE_HPP
 27 
 28 #include "opto/node.hpp"
 29 #include "opto/opcodes.hpp"
 30 #include "opto/type.hpp"
 31 
 32 // Portions of code courtesy of Clifford Click
 33 
 34 //------------------------------SUBNode----------------------------------------
 35 // Class SUBTRACTION functionality.  This covers all the usual 'subtract'
 36 // behaviors.  Subtract-integer, -float, -double, binary xor, compare-integer,
 37 // -float, and -double are all inherited from this class.  The compare
 38 // functions behave like subtract functions, except that all negative answers
 39 // are compressed into -1, and all positive answers compressed to 1.
 40 class SubNode : public Node {
 41 public:
 42   SubNode( Node *in1, Node *in2 ) : Node(nullptr,in1,in2) {
 43     init_class_id(Class_Sub);
 44   }
 45 
 46   // Handle algebraic identities here.  If we have an identity, return the Node
 47   // we are equivalent to.  We look for "add of zero" as an identity.
 48   virtual Node* Identity(PhaseGVN* phase);
 49 
 50   // Compute a new Type for this node.  Basically we just do the pre-check,
 51   // then call the virtual add() to set the type.
 52   virtual const Type* Value(PhaseGVN* phase) const;
 53   const Type* Value_common(PhaseValues* phase) const;
 54 
 55   // Supplied function returns the subtractend of the inputs.
 56   // This also type-checks the inputs for sanity.  Guaranteed never to
 57   // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
 58   virtual const Type *sub( const Type *, const Type * ) const = 0;
 59 
 60   // Supplied function to return the additive identity type.
 61   // This is returned whenever the subtracts inputs are the same.
 62   virtual const Type *add_id() const = 0;
 63 
 64   static SubNode* make(Node* in1, Node* in2, BasicType bt);
 65 };
 66 
 67 
 68 // NOTE: SubINode should be taken away and replaced by add and negate
 69 //------------------------------SubINode---------------------------------------
 70 // Subtract 2 integers
 71 class SubINode : public SubNode {
 72 public:
 73   SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
 74   virtual int Opcode() const;
 75   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 76   virtual const Type *sub( const Type *, const Type * ) const;
 77   const Type *add_id() const { return TypeInt::ZERO; }
 78   const Type *bottom_type() const { return TypeInt::INT; }
 79   virtual uint ideal_reg() const { return Op_RegI; }
 80 };
 81 
 82 //------------------------------SubLNode---------------------------------------
 83 // Subtract 2 integers
 84 class SubLNode : public SubNode {
 85 public:
 86   SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
 87   virtual int Opcode() const;
 88   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 89   virtual const Type *sub( const Type *, const Type * ) const;
 90   const Type *add_id() const { return TypeLong::ZERO; }
 91   const Type *bottom_type() const { return TypeLong::LONG; }
 92   virtual uint ideal_reg() const { return Op_RegL; }
 93 };
 94 
 95 // NOTE: SubFPNode should be taken away and replaced by add and negate
 96 //------------------------------SubFPNode--------------------------------------
 97 // Subtract 2 floats or doubles
 98 class SubFPNode : public SubNode {
 99 protected:
100   SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
101 public:
102   const Type* Value(PhaseGVN* phase) const;
103 };
104 
105 // NOTE: SubFNode should be taken away and replaced by add and negate
106 //------------------------------SubFNode---------------------------------------
107 // Subtract 2 doubles
108 class SubFNode : public SubFPNode {
109 public:
110   SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
111   virtual int Opcode() const;
112   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
113   virtual const Type *sub( const Type *, const Type * ) const;
114   const Type   *add_id() const { return TypeF::ZERO; }
115   const Type   *bottom_type() const { return Type::FLOAT; }
116   virtual uint  ideal_reg() const { return Op_RegF; }
117 };
118 
119 // NOTE: SubDNode should be taken away and replaced by add and negate
120 //------------------------------SubDNode---------------------------------------
121 // Subtract 2 doubles
122 class SubDNode : public SubFPNode {
123 public:
124   SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
125   virtual int Opcode() const;
126   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
127   virtual const Type *sub( const Type *, const Type * ) const;
128   const Type   *add_id() const { return TypeD::ZERO; }
129   const Type   *bottom_type() const { return Type::DOUBLE; }
130   virtual uint  ideal_reg() const { return Op_RegD; }
131 };
132 
133 //------------------------------SubHFNode--------------------------------------
134 // Subtract 2 half floats
135 class SubHFNode : public SubFPNode {
136 public:
137   SubHFNode(Node* in1, Node* in2) : SubFPNode(in1, in2) {}
138   virtual int Opcode() const;
139   virtual const Type* sub(const Type*, const Type*) const;
140   const Type* add_id() const { return TypeH::ZERO; }
141   const Type* bottom_type() const { return Type::HALF_FLOAT; }
142   virtual uint  ideal_reg() const { return Op_RegF; }
143 };
144 
145 //------------------------------CmpNode---------------------------------------
146 // Compare 2 values, returning condition codes (-1, 0 or 1).
147 class CmpNode : public SubNode {
148 public:
149   CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
150     init_class_id(Class_Cmp);
151   }
152   virtual Node* Identity(PhaseGVN* phase);
153   const Type *add_id() const { return TypeInt::ZERO; }
154   const Type *bottom_type() const { return TypeInt::CC; }
155   virtual uint ideal_reg() const { return Op_RegFlags; }
156 
157   static CmpNode *make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp = false);
158 };
159 
160 //------------------------------CmpINode---------------------------------------
161 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
162 class CmpINode : public CmpNode {
163 public:
164   CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
165   virtual int Opcode() const;
166   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
167   virtual const Type *sub( const Type *, const Type * ) const;
168   virtual const Type* Value(PhaseGVN* phase) const;
169 };
170 
171 //------------------------------CmpUNode---------------------------------------
172 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
173 class CmpUNode : public CmpNode {
174 public:
175   CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
176   virtual int Opcode() const;
177   virtual const Type *sub( const Type *, const Type * ) const;
178   const Type* Value(PhaseGVN* phase) const;
179   bool is_index_range_check() const;
180 };
181 
182 //------------------------------CmpU3Node--------------------------------------
183 // Compare 2 unsigned values, returning integer value (-1, 0 or 1).
184 class CmpU3Node : public CmpUNode {
185 public:
186   CmpU3Node( Node *in1, Node *in2 ) : CmpUNode(in1,in2) {
187     // Since it is not consumed by Bools, it is not really a Cmp.
188     init_class_id(Class_Sub);
189   }
190   virtual int Opcode() const;
191   virtual uint ideal_reg() const { return Op_RegI; }
192 };
193 
194 //------------------------------CmpPNode---------------------------------------
195 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
196 class CmpPNode : public CmpNode {
197 public:
198   CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
199   virtual int Opcode() const;
200   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
201   virtual const Type *sub( const Type *, const Type * ) const;
202 };
203 
204 //------------------------------CmpNNode--------------------------------------
205 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
206 class CmpNNode : public CmpNode {
207 public:
208   CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
209   virtual int Opcode() const;
210   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
211   virtual const Type *sub( const Type *, const Type * ) const;
212 };
213 
214 //------------------------------CmpLNode---------------------------------------
215 // Compare 2 long values, returning condition codes (-1, 0 or 1).
216 class CmpLNode : public CmpNode {
217 public:
218   CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
219   virtual int    Opcode() const;
220   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
221   virtual const Type *sub( const Type *, const Type * ) const;
222 };
223 
224 //------------------------------CmpULNode---------------------------------------
225 // Compare 2 unsigned long values, returning condition codes (-1, 0 or 1).
226 class CmpULNode : public CmpNode {
227 public:
228   CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { }
229   virtual int Opcode() const;
230   virtual const Type* sub(const Type*, const Type*) const;
231 };
232 
233 //------------------------------CmpL3Node--------------------------------------
234 // Compare 2 long values, returning integer value (-1, 0 or 1).
235 class CmpL3Node : public CmpLNode {
236 public:
237   CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
238     // Since it is not consumed by Bools, it is not really a Cmp.
239     init_class_id(Class_Sub);
240   }
241   virtual int Opcode() const;
242   virtual uint ideal_reg() const { return Op_RegI; }
243 };
244 
245 //------------------------------CmpUL3Node-------------------------------------
246 // Compare 2 unsigned long values, returning integer value (-1, 0 or 1).
247 class CmpUL3Node : public CmpULNode {
248 public:
249   CmpUL3Node( Node *in1, Node *in2 ) : CmpULNode(in1,in2) {
250     // Since it is not consumed by Bools, it is not really a Cmp.
251     init_class_id(Class_Sub);
252   }
253   virtual int Opcode() const;
254   virtual uint ideal_reg() const { return Op_RegI; }
255 };
256 
257 //------------------------------CmpFNode---------------------------------------
258 // Compare 2 float values, returning condition codes (-1, 0 or 1).
259 // This implements the Java bytecode fcmpl, so unordered returns -1.
260 // Operands may not commute.
261 class CmpFNode : public CmpNode {
262 public:
263   CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
264   virtual int Opcode() const;
265   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return nullptr; }
266   const Type* Value(PhaseGVN* phase) const;
267 };
268 
269 //------------------------------CmpF3Node--------------------------------------
270 // Compare 2 float values, returning integer value (-1, 0 or 1).
271 // This implements the Java bytecode fcmpl, so unordered returns -1.
272 // Operands may not commute.
273 class CmpF3Node : public CmpFNode {
274 public:
275   CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
276     // Since it is not consumed by Bools, it is not really a Cmp.
277     init_class_id(Class_Sub);
278   }
279   virtual int Opcode() const;
280   // Since it is not consumed by Bools, it is not really a Cmp.
281   virtual uint ideal_reg() const { return Op_RegI; }
282 };
283 
284 
285 //------------------------------CmpDNode---------------------------------------
286 // Compare 2 double values, returning condition codes (-1, 0 or 1).
287 // This implements the Java bytecode dcmpl, so unordered returns -1.
288 // Operands may not commute.
289 class CmpDNode : public CmpNode {
290 public:
291   CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
292   virtual int Opcode() const;
293   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return nullptr; }
294   const Type* Value(PhaseGVN* phase) const;
295   virtual Node  *Ideal(PhaseGVN *phase, bool can_reshape);
296 };
297 
298 //------------------------------CmpD3Node--------------------------------------
299 // Compare 2 double values, returning integer value (-1, 0 or 1).
300 // This implements the Java bytecode dcmpl, so unordered returns -1.
301 // Operands may not commute.
302 class CmpD3Node : public CmpDNode {
303 public:
304   CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
305     // Since it is not consumed by Bools, it is not really a Cmp.
306     init_class_id(Class_Sub);
307   }
308   virtual int Opcode() const;
309   virtual uint ideal_reg() const { return Op_RegI; }
310 };
311 
312 
313 //------------------------------BoolTest---------------------------------------
314 // Convert condition codes to a boolean test value (0 or -1).
315 // We pick the values as 3 bits; the low order 2 bits we compare against the
316 // condition codes, the high bit flips the sense of the result.
317 // For vector compares, additionally, the 4th bit indicates if the compare is unsigned
318 struct BoolTest {
319   enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, never = 8, illegal = 9,
320               // The following values are used with vector compares
321               // A BoolTest value should not be constructed for such values
322               unsigned_compare = 16,
323               ule = unsigned_compare | le, uge = unsigned_compare | ge, ult = unsigned_compare | lt, ugt = unsigned_compare | gt };
324   mask _test;
325   BoolTest( mask btm ) : _test(btm) { assert((btm & unsigned_compare) == 0, "unsupported");}
326   const Type *cc2logical( const Type *CC ) const;
327   // Commute the test.  I use a small table lookup.  The table is created as
328   // a simple char array where each element is the ASCII version of a 'mask'
329   // enum from above.
330   mask commute( ) const { return mask("032147658"[_test]-'0'); }
331   mask negate( ) const { return mask(_test^4); }
332   bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
333   bool is_less( )  const { return _test == BoolTest::lt || _test == BoolTest::le; }
334   bool is_greater( ) const { return _test == BoolTest::gt || _test == BoolTest::ge; }
335   void dump_on(outputStream *st) const;
336   mask merge(BoolTest other) const;
337 };
338 
339 //------------------------------BoolNode---------------------------------------
340 // A Node to convert a Condition Codes to a Logical result.
341 class BoolNode : public Node {
342   virtual uint hash() const;
343   virtual bool cmp( const Node &n ) const;
344   virtual uint size_of() const;
345 
346   // Try to optimize signed integer comparison
347   Node* fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
348                   int cmp1_op, const TypeInt* cmp2_type);
349 public:
350   const BoolTest _test;
351   BoolNode(Node *cc, BoolTest::mask t): Node(nullptr,cc), _test(t) {
352     init_class_id(Class_Bool);
353   }
354   // Convert an arbitrary int value to a Bool or other suitable predicate.
355   static Node* make_predicate(Node* test_value, PhaseGVN* phase);
356   // Convert self back to an integer value.
357   Node* as_int_value(PhaseGVN* phase);
358   // Invert sense of self, returning new Bool.
359   BoolNode* negate(PhaseGVN* phase);
360   virtual int Opcode() const;
361   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
362   const Type* Value_cmpu_and_mask(PhaseValues* phase) const;
363   virtual const Type* Value(PhaseGVN* phase) const;
364   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
365   uint match_edge(uint idx) const { return 0; }
366   virtual uint ideal_reg() const { return Op_RegI; }
367 
368   bool is_counted_loop_exit_test();
369 #ifndef PRODUCT
370   virtual void dump_spec(outputStream *st) const;
371 #endif
372 };
373 
374 //------------------------------AbsNode----------------------------------------
375 // Abstract class for absolute value.  Mostly used to get a handy wrapper
376 // for finding this pattern in the graph.
377 class AbsNode : public Node {
378 public:
379   AbsNode( Node *value ) : Node(nullptr,value) {}
380   virtual Node* Identity(PhaseGVN* phase);
381   virtual Node* Ideal(PhaseGVN* phase, bool can_reshape);
382   virtual const Type* Value(PhaseGVN* phase) const;
383 };
384 
385 //------------------------------AbsINode---------------------------------------
386 // Absolute value an integer.  Since a naive graph involves control flow, we
387 // "match" it in the ideal world (so the control flow can be removed).
388 class AbsINode : public AbsNode {
389 public:
390   AbsINode( Node *in1 ) : AbsNode(in1) {}
391   virtual int Opcode() const;
392   const Type *bottom_type() const { return TypeInt::INT; }
393   virtual uint ideal_reg() const { return Op_RegI; }
394 };
395 
396 //------------------------------AbsLNode---------------------------------------
397 // Absolute value a long.  Since a naive graph involves control flow, we
398 // "match" it in the ideal world (so the control flow can be removed).
399 class AbsLNode : public AbsNode {
400 public:
401   AbsLNode( Node *in1 ) : AbsNode(in1) {}
402   virtual int Opcode() const;
403   const Type *bottom_type() const { return TypeLong::LONG; }
404   virtual uint ideal_reg() const { return Op_RegL; }
405 };
406 
407 //------------------------------AbsFNode---------------------------------------
408 // Absolute value a float, a common float-point idiom with a cheap hardware
409 // implementation on most chips.  Since a naive graph involves control flow, we
410 // "match" it in the ideal world (so the control flow can be removed).
411 class AbsFNode : public AbsNode {
412 public:
413   AbsFNode( Node *in1 ) : AbsNode(in1) {}
414   virtual int Opcode() const;
415   const Type *bottom_type() const { return Type::FLOAT; }
416   virtual uint ideal_reg() const { return Op_RegF; }
417 };
418 
419 //------------------------------AbsDNode---------------------------------------
420 // Absolute value a double, a common float-point idiom with a cheap hardware
421 // implementation on most chips.  Since a naive graph involves control flow, we
422 // "match" it in the ideal world (so the control flow can be removed).
423 class AbsDNode : public AbsNode {
424 public:
425   AbsDNode( Node *in1 ) : AbsNode(in1) {}
426   virtual int Opcode() const;
427   const Type *bottom_type() const { return Type::DOUBLE; }
428   virtual uint ideal_reg() const { return Op_RegD; }
429 };
430 
431 
432 //------------------------------CmpLTMaskNode----------------------------------
433 // If p < q, return -1 else return 0.  Nice for flow-free idioms.
434 class CmpLTMaskNode : public Node {
435 public:
436   CmpLTMaskNode( Node *p, Node *q ) : Node(nullptr, p, q) {}
437   virtual int Opcode() const;
438   const Type *bottom_type() const { return TypeInt::INT; }
439   virtual uint ideal_reg() const { return Op_RegI; }
440 };
441 
442 //------------------------------InvolutionNode----------------------------------
443 // Represents a self-inverse operation, i.e., op(op(x)) = x for any x
444 class InvolutionNode : public Node {
445 public:
446   InvolutionNode(Node* in) : Node(nullptr, in) {}
447   virtual Node* Identity(PhaseGVN* phase);
448 };
449 
450 //------------------------------NegNode----------------------------------------
451 class NegNode : public InvolutionNode {
452 public:
453   NegNode(Node* in1) : InvolutionNode(in1) {
454     init_class_id(Class_Neg);
455   }
456 };
457 
458 //------------------------------NegINode---------------------------------------
459 // Negate value an int.  For int values, negation is the same as subtraction
460 // from zero
461 class NegINode : public NegNode {
462 public:
463   NegINode(Node *in1) : NegNode(in1) {}
464   virtual int Opcode() const;
465   const Type *bottom_type() const { return TypeInt::INT; }
466   virtual uint ideal_reg() const { return Op_RegI; }
467 };
468 
469 //------------------------------NegLNode---------------------------------------
470 // Negate value an int.  For int values, negation is the same as subtraction
471 // from zero
472 class NegLNode : public NegNode {
473 public:
474   NegLNode(Node *in1) : NegNode(in1) {}
475   virtual int Opcode() const;
476   const Type *bottom_type() const { return TypeLong::LONG; }
477   virtual uint ideal_reg() const { return Op_RegL; }
478 };
479 
480 //------------------------------NegFNode---------------------------------------
481 // Negate value a float.  Negating 0.0 returns -0.0, but subtracting from
482 // zero returns +0.0 (per JVM spec on 'fneg' bytecode).  As subtraction
483 // cannot be used to replace negation we have to implement negation as ideal
484 // node; note that negation and addition can replace subtraction.
485 class NegFNode : public NegNode {
486 public:
487   NegFNode( Node *in1 ) : NegNode(in1) {}
488   virtual int Opcode() const;
489   const Type *bottom_type() const { return Type::FLOAT; }
490   virtual uint ideal_reg() const { return Op_RegF; }
491 };
492 
493 //------------------------------NegDNode---------------------------------------
494 // Negate value a double.  Negating 0.0 returns -0.0, but subtracting from
495 // zero returns +0.0 (per JVM spec on 'dneg' bytecode).  As subtraction
496 // cannot be used to replace negation we have to implement negation as ideal
497 // node; note that negation and addition can replace subtraction.
498 class NegDNode : public NegNode {
499 public:
500   NegDNode( Node *in1 ) : NegNode(in1) {}
501   virtual int Opcode() const;
502   const Type *bottom_type() const { return Type::DOUBLE; }
503   virtual uint ideal_reg() const { return Op_RegD; }
504 };
505 
506 //------------------------------AtanDNode--------------------------------------
507 // arcus tangens of a double
508 class AtanDNode : public Node {
509 public:
510   AtanDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
511   virtual int Opcode() const;
512   const Type *bottom_type() const { return Type::DOUBLE; }
513   virtual uint ideal_reg() const { return Op_RegD; }
514 };
515 
516 
517 //------------------------------SqrtDNode--------------------------------------
518 // square root a double
519 class SqrtDNode : public Node {
520 public:
521   SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
522     init_flags(Flag_is_expensive);
523     C->add_expensive_node(this);
524   }
525   virtual int Opcode() const;
526   const Type *bottom_type() const { return Type::DOUBLE; }
527   virtual uint ideal_reg() const { return Op_RegD; }
528   virtual const Type* Value(PhaseGVN* phase) const;
529 };
530 
531 //------------------------------SqrtFNode--------------------------------------
532 // square root a float
533 class SqrtFNode : public Node {
534 public:
535   SqrtFNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
536     init_flags(Flag_is_expensive);
537     if (c != nullptr) {
538       // Treat node only as expensive if a control input is set because it might
539       // be created from a SqrtDNode in ConvD2FNode::Ideal() that was found to
540       // be unique and therefore has no control input.
541       C->add_expensive_node(this);
542     }
543   }
544   virtual int Opcode() const;
545   const Type *bottom_type() const { return Type::FLOAT; }
546   virtual uint ideal_reg() const { return Op_RegF; }
547   virtual const Type* Value(PhaseGVN* phase) const;
548 };
549 
550 //------------------------------SqrtHFNode-------------------------------------
551 // square root of a half-precision float
552 class SqrtHFNode : public Node {
553 public:
554   SqrtHFNode(Compile* C, Node* c, Node* in1) : Node(c, in1) {
555     init_flags(Flag_is_expensive);
556     C->add_expensive_node(this);
557   }
558   virtual int Opcode() const;
559   const Type* bottom_type() const { return Type::HALF_FLOAT; }
560   virtual uint ideal_reg() const { return Op_RegF; }
561   virtual const Type* Value(PhaseGVN* phase) const;
562 };
563 
564 //-------------------------------ReverseBytesINode--------------------------------
565 // reverse bytes of an integer
566 class ReverseBytesINode : public InvolutionNode {
567 public:
568   ReverseBytesINode(Node* in) : InvolutionNode(in) {}
569   virtual int Opcode() const;
570   const Type* bottom_type() const { return TypeInt::INT; }
571   virtual uint ideal_reg() const { return Op_RegI; }
572 };
573 
574 //-------------------------------ReverseBytesLNode--------------------------------
575 // reverse bytes of a long
576 class ReverseBytesLNode : public InvolutionNode {
577 public:
578   ReverseBytesLNode(Node* in) : InvolutionNode(in) {}
579   virtual int Opcode() const;
580   const Type* bottom_type() const { return TypeLong::LONG; }
581   virtual uint ideal_reg() const { return Op_RegL; }
582 };
583 
584 //-------------------------------ReverseBytesUSNode--------------------------------
585 // reverse bytes of an unsigned short / char
586 class ReverseBytesUSNode : public InvolutionNode {
587 public:
588   ReverseBytesUSNode(Node* in1) : InvolutionNode(in1) {}
589   virtual int Opcode() const;
590   const Type* bottom_type() const { return TypeInt::CHAR; }
591   virtual uint ideal_reg() const { return Op_RegI; }
592 };
593 
594 //-------------------------------ReverseBytesSNode--------------------------------
595 // reverse bytes of a short
596 class ReverseBytesSNode : public InvolutionNode {
597 public:
598   ReverseBytesSNode(Node* in) : InvolutionNode(in) {}
599   virtual int Opcode() const;
600   const Type* bottom_type() const { return TypeInt::SHORT; }
601   virtual uint ideal_reg() const { return Op_RegI; }
602 };
603 
604 //-------------------------------ReverseINode--------------------------------
605 // reverse bits of an int
606 class ReverseINode : public InvolutionNode {
607 public:
608   ReverseINode(Node* in) : InvolutionNode(in) {}
609   virtual int Opcode() const;
610   const Type* bottom_type() const { return TypeInt::INT; }
611   virtual uint ideal_reg() const { return Op_RegI; }
612   virtual const Type* Value(PhaseGVN* phase) const;
613 };
614 
615 //-------------------------------ReverseLNode--------------------------------
616 // reverse bits of a long
617 class ReverseLNode : public InvolutionNode {
618 public:
619   ReverseLNode(Node* in) : InvolutionNode(in) {}
620   virtual int Opcode() const;
621   const Type* bottom_type() const { return TypeLong::LONG; }
622   virtual uint ideal_reg() const { return Op_RegL; }
623   virtual const Type* Value(PhaseGVN* phase) const;
624 };
625 
626 #endif // SHARE_OPTO_SUBNODE_HPP