1 /*
  2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
  3  * Copyright (c) 2021, Azul Systems, Inc. All rights reserved.
  4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  5  *
  6  * This code is free software; you can redistribute it and/or modify it
  7  * under the terms of the GNU General Public License version 2 only, as
  8  * published by the Free Software Foundation.
  9  *
 10  * This code is distributed in the hope that it will be useful, but WITHOUT
 11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 13  * version 2 for more details (a copy is included in the LICENSE file that
 14  * accompanied this code).
 15  *
 16  * You should have received a copy of the GNU General Public License version
 17  * 2 along with this work; if not, write to the Free Software Foundation,
 18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 19  *
 20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 21  * or visit www.oracle.com if you need additional information or have any
 22  * questions.
 23  *
 24  */
 25 
 26 #ifndef SHARE_RUNTIME_SIGNATURE_HPP
 27 #define SHARE_RUNTIME_SIGNATURE_HPP
 28 
 29 #include "memory/allocation.hpp"
 30 #include "oops/method.hpp"
 31 
 32 // Static routines and parsing loops for processing field and method
 33 // descriptors.  In the HotSpot sources we call them "signatures".
 34 //
 35 // A SignatureStream iterates over a Java descriptor (or parts of it).
 36 // The syntax is documented in the Java Virtual Machine Specification,
 37 // section 4.3.
 38 //
 39 // The syntax may be summarized as follows:
 40 //
 41 //     MethodType: '(' {FieldType}* ')' (FieldType | 'V')
 42 //     FieldType: PrimitiveType | ObjectType | ArrayType
 43 //     PrimitiveType: 'B' | 'C' | 'D' | 'F' | 'I' | 'J' | 'S' | 'Z'
 44 //     ObjectType: 'L' ClassName ';' | ArrayType
 45 //     ArrayType: '[' FieldType
 46 //     ClassName: {UnqualifiedName '/'}* UnqualifiedName
 47 //     UnqualifiedName: NameChar {NameChar}*
 48 //     NameChar: ANY_CHAR_EXCEPT('/' | '.' | ';' | '[')
 49 //
 50 // All of the concrete characters in the above grammar are given
 51 // standard manifest constant names of the form JVM_SIGNATURE_x.
 52 // Executable code uses these constant names in preference to raw
 53 // character constants.  Comments and assertion code sometimes use
 54 // the raw character constants for brevity.
 55 //
 56 // The primitive field types (like 'I') correspond 1-1 with type codes
 57 // (like T_INT) which form part of the specification of the 'newarray'
 58 // instruction (JVMS 6.5, section on newarray).  These type codes are
 59 // widely used in the HotSpot code.  They are joined by ad hoc codes
 60 // like T_OBJECT and T_ARRAY (defined in HotSpot but not in the JVMS)
 61 // so that each "basic type" of field descriptor (or void return type)
 62 // has a corresponding T_x code.  Thus, while T_x codes play a very
 63 // minor role in the JVMS, they play a major role in the HotSpot
 64 // sources.  There are fewer than 16 such "basic types", so they fit
 65 // nicely into bitfields.
 66 //
 67 // The syntax of ClassName overlaps slightly with the descriptor
 68 // syntaxes.  The strings "I" and "(I)V" are both class names
 69 // *and* descriptors.  If a class name contains any character other
 70 // than "BCDFIJSZ()V" it cannot be confused with a descriptor.
 71 // Class names inside of descriptors are always contained in an
 72 // "envelope" syntax which starts with 'L' and ends with ';'.
 73 //
 74 // As a confounding factor, array types report their type name strings
 75 // in descriptor format.  These name strings are easy to recognize,
 76 // since they begin with '['.  For this reason some API points on
 77 // HotSpot look for array descriptors as well as proper class names.
 78 //
 79 // For historical reasons some API points that accept class names and
 80 // array names also look for class names wrapped inside an envelope
 81 // (like "LFoo;") and unwrap them on the fly (to a name like "Foo").
 82 
 83 class Signature : AllStatic {
 84  private:
 85   static bool is_valid_array_signature(const Symbol* sig);
 86 
 87  public:
 88 
 89   // Returns the basic type of a field signature (or T_VOID for "V").
 90   // Assumes the signature is a valid field descriptor.
 91   // Do not apply this function to class names or method signatures.
 92   static BasicType basic_type(const Symbol* signature) {
 93     return basic_type(signature->char_at(0));
 94   }
 95 
 96   // Returns T_ILLEGAL for an illegal signature char.
 97   static BasicType basic_type(int ch);
 98 
 99   // Assuming it is either a class name or signature,
100   // determine if it in fact is an array descriptor.
101   static bool is_array(const Symbol* signature) {
102     return (signature->utf8_length() > 1 &&
103             signature->char_at(0) == JVM_SIGNATURE_ARRAY &&
104             is_valid_array_signature(signature));
105   }
106 
107   // Assuming it is either a class name or signature,
108   // determine if it contains a class name plus ';'.
109   static bool has_envelope(const Symbol* signature) {
110     return ((signature->utf8_length() > 0) &&
111             signature->ends_with(JVM_SIGNATURE_ENDCLASS) &&
112             has_envelope(signature->char_at(0)));
113   }
114 
115   // Determine if this signature char introduces an
116   // envelope, which is a class name plus ';'.
117   static bool has_envelope(char signature_char) {
118     return (signature_char == JVM_SIGNATURE_CLASS);
119   }
120 
121   // Assuming has_envelope is true, return the symbol
122   // inside the envelope, by stripping 'L' and ';'.
123   // Caller is responsible for decrementing the newly created
124   // Symbol's refcount, use TempNewSymbol.
125   static Symbol* strip_envelope(const Symbol* signature);
126 
127   // Assuming it's either a field or method descriptor, determine
128   // whether it is in fact a method descriptor:
129   static bool is_method(const Symbol* signature) {
130     return signature->starts_with(JVM_SIGNATURE_FUNC);
131   }
132 
133   // Assuming it's a method signature, determine if it must
134   // return void.
135   static bool is_void_method(const Symbol* signature) {
136     assert(is_method(signature), "signature is not for a method");
137     return signature->ends_with(JVM_SIGNATURE_VOID);
138   }
139 };
140 
141 // A SignatureIterator uses a SignatureStream to produce BasicType
142 // results, discarding class names.  This means it can be accelerated
143 // using a fingerprint mechanism, in many cases, without loss of type
144 // information.  The FingerPrinter class computes and caches this
145 // reduced information for faster iteration.
146 
147 class SignatureIterator: public ResourceObj {
148  public:
149   typedef uint64_t fingerprint_t;
150 
151  protected:
152   Symbol*      _signature;             // the signature to iterate over
153   BasicType    _return_type;
154   fingerprint_t _fingerprint;
155 
156  public:
157   // Definitions used in generating and iterating the
158   // bit field form of the signature generated by the
159   // Fingerprinter.
160   enum {
161     fp_static_feature_size    = 1,
162     fp_is_static_bit          = 1,
163 
164     fp_result_feature_size    = 4,
165     fp_result_feature_mask    = right_n_bits(fp_result_feature_size),
166     fp_parameter_feature_size = 4,
167     fp_parameter_feature_mask = right_n_bits(fp_parameter_feature_size),
168 
169     fp_parameters_done        = 0,  // marker for end of parameters (must be zero)
170 
171     // Parameters take up full wordsize, minus the result and static bit fields.
172     // Since fp_parameters_done is zero, termination field arises from shifting
173     // in zero bits, and therefore occupies no extra space.
174     // The sentinel value is all-zero-bits, which is impossible for a true
175     // fingerprint, since at least the result field will be non-zero.
176     fp_max_size_of_parameters = ((BitsPerLong
177                                   - (fp_result_feature_size + fp_static_feature_size))
178                                  / fp_parameter_feature_size)
179   };
180 
181   static bool fp_is_valid_type(BasicType type, bool for_return_type = false);
182 
183   // Sentinel values are zero and not-zero (-1).
184   // No need to protect the sign bit, since every valid return type is non-zero
185   // (even T_VOID), and there are no valid parameter fields which are 0xF (T_VOID).
186   static fingerprint_t zero_fingerprint() { return (fingerprint_t)0; }
187   static fingerprint_t overflow_fingerprint() { return ~(fingerprint_t)0; }
188   static bool fp_is_valid(fingerprint_t fingerprint) {
189     return (fingerprint != zero_fingerprint()) && (fingerprint != overflow_fingerprint());
190   }
191 
192   // Constructors
193   SignatureIterator(Symbol* signature, fingerprint_t fingerprint = zero_fingerprint()) {
194     _signature   = signature;
195     _return_type = T_ILLEGAL;  // sentinel value for uninitialized
196     _fingerprint = zero_fingerprint();
197     if (fingerprint != _fingerprint) {
198       set_fingerprint(fingerprint);
199     }
200   }
201 
202   // If the fingerprint is present, we can use an accelerated loop.
203   void set_fingerprint(fingerprint_t fingerprint);
204 
205   // Returns the set fingerprint, or zero_fingerprint()
206   // if none has been set already.
207   fingerprint_t fingerprint() const { return _fingerprint; }
208 
209   // Iteration
210   // Hey look:  There are no virtual methods in this class.
211   // So how is it customized?  By calling do_parameters_on
212   // an object which answers to "do_type(BasicType)".
213   // By convention, this object is in the subclass
214   // itself, so the call is "do_parameters_on(this)".
215   // The effect of this is to inline the parsing loop
216   // everywhere "do_parameters_on" is called.
217   // If there is a valid fingerprint in the object,
218   // an improved loop is called which just unpacks the
219   // bitfields from the fingerprint.  Otherwise, the
220   // symbol is parsed.
221   template<typename T> inline void do_parameters_on(T* callback); // iterates over parameters only
222   BasicType return_type();  // computes the value on the fly if necessary
223 
224   static BasicType fp_return_type(fingerprint_t fingerprint) {
225     assert(fp_is_valid(fingerprint), "invalid fingerprint");
226     return (BasicType) ((fingerprint >> fp_static_feature_size) & fp_result_feature_mask);
227   }
228   static fingerprint_t fp_start_parameters(fingerprint_t fingerprint) {
229     assert(fp_is_valid(fingerprint), "invalid fingerprint");
230     return fingerprint >> (fp_static_feature_size + fp_result_feature_size);
231   }
232   static BasicType fp_next_parameter(fingerprint_t& mask) {
233     int result = (mask & fp_parameter_feature_mask);
234     mask >>= fp_parameter_feature_size;
235     return (BasicType) result;
236   }
237 };
238 
239 
240 // Specialized SignatureIterators: Used to compute signature specific values.
241 
242 class SignatureTypeNames : public SignatureIterator {
243  protected:
244   virtual void type_name(const char* name)   = 0;
245 
246   friend class SignatureIterator;  // so do_parameters_on can call do_type
247   void do_type(BasicType type) {
248     switch (type) {
249     case T_BOOLEAN: type_name("jboolean"); break;
250     case T_CHAR:    type_name("jchar"   ); break;
251     case T_FLOAT:   type_name("jfloat"  ); break;
252     case T_DOUBLE:  type_name("jdouble" ); break;
253     case T_BYTE:    type_name("jbyte"   ); break;
254     case T_SHORT:   type_name("jshort"  ); break;
255     case T_INT:     type_name("jint"    ); break;
256     case T_LONG:    type_name("jlong"   ); break;
257     case T_VOID:    type_name("void"    ); break;
258     case T_ARRAY:
259     case T_OBJECT:  type_name("jobject" ); break;
260     default: ShouldNotReachHere();
261     }
262   }
263 
264  public:
265   SignatureTypeNames(Symbol* signature) : SignatureIterator(signature) {}
266 };
267 
268 
269 // Specialized SignatureIterator: Used to compute the argument size.
270 
271 class ArgumentSizeComputer: public SignatureIterator {
272  private:
273   int _size;
274   friend class SignatureIterator;  // so do_parameters_on can call do_type
275   void do_type(BasicType type) { _size += parameter_type_word_count(type); }
276  public:
277   ArgumentSizeComputer(Symbol* signature);
278   int size() { return _size; }
279 };
280 
281 
282 class ArgumentCount: public SignatureIterator {
283  private:
284   int _size;
285   friend class SignatureIterator;  // so do_parameters_on can call do_type
286   void do_type(BasicType type) { _size++; }
287  public:
288   ArgumentCount(Symbol* signature);
289   int size() { return _size; }
290 };
291 
292 
293 class ReferenceArgumentCount: public SignatureIterator {
294  private:
295   int _refs;
296   friend class SignatureIterator;  // so do_parameters_on can call do_type
297   void do_type(BasicType type) { if (is_reference_type(type)) _refs++; }
298  public:
299   ReferenceArgumentCount(Symbol* signature);
300   int count() { return _refs; }
301 };
302 
303 
304 // Specialized SignatureIterator: Used to compute the result type.
305 
306 class ResultTypeFinder: public SignatureIterator {
307  public:
308   BasicType type() { return return_type(); }
309   ResultTypeFinder(Symbol* signature) : SignatureIterator(signature) { }
310 };
311 
312 
313 // Fingerprinter computes a unique ID for a given method. The ID
314 // is a bitvector characterizing the methods signature (incl. the receiver).
315 class Fingerprinter: public SignatureIterator {
316  private:
317   fingerprint_t _accumulator;
318   int _param_size;
319   int _stack_arg_slots;
320   int _shift_count;
321   const Method* _method;
322 
323   uint _int_args;
324   uint _fp_args;
325 
326   void initialize_accumulator() {
327     _accumulator = 0;
328     _shift_count = fp_result_feature_size + fp_static_feature_size;
329     _param_size = 0;
330     _stack_arg_slots = 0;
331   }
332 
333   // Out-of-line method does it all in constructor:
334   void compute_fingerprint_and_return_type(bool static_flag = false);
335 
336   void initialize_calling_convention(bool static_flag);
337   void do_type_calling_convention(BasicType type);
338 
339   friend class SignatureIterator;  // so do_parameters_on can call do_type
340 
341   void do_type(BasicType type) {
342     assert(fp_is_valid_type(type), "bad parameter type");
343     if (_param_size <= fp_max_size_of_parameters) {
344       _accumulator |= ((fingerprint_t)type << _shift_count);
345       _shift_count += fp_parameter_feature_size;
346     }
347     _param_size += (is_double_word_type(type) ? 2 : 1);
348     do_type_calling_convention(type);
349   }
350 
351  public:
352   int size_of_parameters() const { return _param_size; }
353   int num_stack_arg_slots() const { return _stack_arg_slots; }
354 
355   // fingerprint() and return_type() are in super class
356 
357   Fingerprinter(const methodHandle& method)
358     : SignatureIterator(method->signature()),
359       _method(method()) {
360     compute_fingerprint_and_return_type();
361   }
362   Fingerprinter(Symbol* signature, bool is_static)
363     : SignatureIterator(signature),
364       _method(nullptr) {
365     compute_fingerprint_and_return_type(is_static);
366   }
367 };
368 
369 
370 // Specialized SignatureIterator: Used for native call purposes
371 
372 class NativeSignatureIterator: public SignatureIterator {
373  private:
374   methodHandle _method;
375 // We need separate JNI and Java offset values because in 64 bit mode,
376 // the argument offsets are not in sync with the Java stack.
377 // For example a long takes up 1 "C" stack entry but 2 Java stack entries.
378   int          _offset;                // The java stack offset
379   int          _prepended;             // number of prepended JNI parameters (1 JNIEnv, plus 1 mirror if static)
380   int          _jni_offset;            // the current parameter offset, starting with 0
381 
382   friend class SignatureIterator;  // so do_parameters_on can call do_type
383   void do_type(BasicType type) {
384     switch (type) {
385     case T_BYTE:
386     case T_BOOLEAN:
387       pass_byte();  _jni_offset++; _offset++;
388       break;
389     case T_CHAR:
390     case T_SHORT:
391       pass_short();  _jni_offset++; _offset++;
392       break;
393     case T_INT:
394       pass_int();    _jni_offset++; _offset++;
395       break;
396     case T_FLOAT:
397       pass_float();  _jni_offset++; _offset++;
398       break;
399     case T_DOUBLE: {
400       int jni_offset = LP64_ONLY(1) NOT_LP64(2);
401       pass_double(); _jni_offset += jni_offset; _offset += 2;
402       break;
403     }
404     case T_LONG: {
405       int jni_offset = LP64_ONLY(1) NOT_LP64(2);
406       pass_long();   _jni_offset += jni_offset; _offset += 2;
407       break;
408     }
409     case T_ARRAY:
410     case T_OBJECT:
411       pass_object(); _jni_offset++; _offset++;
412       break;
413     default:
414       ShouldNotReachHere();
415     }
416   }
417 
418  public:
419   methodHandle method() const          { return _method; }
420   int          offset() const          { return _offset; }
421   int      jni_offset() const          { return _jni_offset + _prepended; }
422   bool      is_static() const          { return method()->is_static(); }
423   virtual void pass_int()              = 0;
424   virtual void pass_long()             = 0;
425   virtual void pass_object()           = 0;  // objects, arrays, inlines
426   virtual void pass_float()            = 0;
427   virtual void pass_byte()             { pass_int(); };
428   virtual void pass_short()            { pass_int(); };
429 #ifdef _LP64
430   virtual void pass_double()           = 0;
431 #else
432   virtual void pass_double()           { pass_long(); }  // may be same as long
433 #endif
434 
435   NativeSignatureIterator(const methodHandle& method) : SignatureIterator(method->signature()) {
436     _method = method;
437     _offset = 0;
438     _jni_offset = 0;
439 
440     const int JNIEnv_words = 1;
441     const int mirror_words = 1;
442     _prepended = !is_static() ? JNIEnv_words : JNIEnv_words + mirror_words;
443   }
444 
445   void iterate() { iterate(Fingerprinter(method()).fingerprint()); }
446 
447   // iterate() calls the 3 virtual methods according to the following invocation syntax:
448   //
449   // {pass_int | pass_long | pass_object}
450   //
451   // Arguments are handled from left to right (receiver first, if any).
452   // The offset() values refer to the Java stack offsets but are 0 based and increasing.
453   // The java_offset() values count down to 0, and refer to the Java TOS.
454   // The jni_offset() values increase from 1 or 2, and refer to C arguments.
455   // The method's return type is ignored.
456 
457   void iterate(fingerprint_t fingerprint) {
458     set_fingerprint(fingerprint);
459     if (!is_static()) {
460       // handle receiver (not handled by iterate because not in signature)
461       pass_object(); _jni_offset++; _offset++;
462     }
463     do_parameters_on(this);
464   }
465 };
466 
467 
468 // This is the core parsing logic for iterating over signatures.
469 // All of the previous classes use this for doing their work.
470 
471 class SignatureStream : public StackObj {
472  private:
473   const Symbol* _signature;
474   int          _begin;
475   int          _end;
476   int          _limit;
477   int          _array_prefix;  // count of '[' before the array element descr
478   BasicType    _type;
479   int          _state;
480   Symbol*      _previous_name;    // cache the previously looked up symbol to avoid lookups
481   GrowableArray<Symbol*>* _names; // symbols created while parsing that need to be dereferenced
482 
483   Symbol* find_symbol();
484 
485   enum { _s_field = 0, _s_method = 1, _s_method_return = 3 };
486   void set_done() {
487     _state |= -2;   // preserve s_method bit
488     assert(is_done(), "Unable to set state to done");
489   }
490   int scan_type(BasicType bt);
491 
492  public:
493   bool at_return_type() const                    { return _state == (int)_s_method_return; }
494   bool is_done() const                           { return _state < 0; }
495   void next();
496 
497   SignatureStream(const Symbol* signature, bool is_method = true);
498   ~SignatureStream();
499 
500   bool is_reference() const { return is_reference_type(_type); }
501   bool is_array() const     { return _type == T_ARRAY; }
502   BasicType type() const    { return _type; }
503 
504   const u1* raw_bytes() const  { return _signature->bytes() + _begin; }
505   int       raw_length() const { return _end - _begin; }
506   int raw_symbol_begin() const { return _begin + (has_envelope() ? 1 : 0); }
507   int raw_symbol_end() const   { return _end  -  (has_envelope() ? 1 : 0); }
508   char raw_char_at(int i) const {
509     assert(i < _limit, "index for raw_char_at is over the limit");
510     return _signature->char_at(i);
511   }
512 
513   // True if there is an embedded class name in this type,
514   // followed by ';'.
515   bool has_envelope() const {
516     if (!Signature::has_envelope(_signature->char_at(_begin)))
517       return false;
518     // this should always be true, but let's test it:
519     assert(_signature->char_at(_end-1) == JVM_SIGNATURE_ENDCLASS, "signature envelope has no semi-colon at end");
520     return true;
521   }
522 
523   // return the symbol for chars in symbol_begin()..symbol_end()
524   Symbol* as_symbol() {
525     return find_symbol();
526   }
527 
528   // in case you want only the return type:
529   void skip_to_return_type();
530 
531   // number of '[' in array prefix
532   int array_prefix_length() {
533     return _type == T_ARRAY ? _array_prefix : 0;
534   }
535 
536   // In case you want only the array base type,
537   // reset the stream after skipping some brackets '['.
538   // (The argument is clipped to array_prefix_length(),
539   // and if it ends up as zero this call is a nop.
540   // The default is value skips all brackets '['.)
541  private:
542   int skip_whole_array_prefix();
543  public:
544   int skip_array_prefix(int max_skip_length) {
545     if (_type != T_ARRAY) {
546       return 0;
547     }
548      if (_array_prefix > max_skip_length) {
549       // strip some but not all levels of T_ARRAY
550       _array_prefix -= max_skip_length;
551       _begin += max_skip_length;
552       return max_skip_length;
553     }
554     return skip_whole_array_prefix();
555   }
556   int skip_array_prefix() {
557     if (_type != T_ARRAY) {
558       return 0;
559     }
560     return skip_whole_array_prefix();
561   }
562 
563   // free-standing lookups (bring your own CL/PD pair)
564   enum FailureMode { ReturnNull, NCDFError, CachedOrNull };
565   Klass* as_klass(Handle class_loader, FailureMode failure_mode, TRAPS);
566   oop as_java_mirror(Handle class_loader, FailureMode failure_mode, TRAPS);
567 };
568 
569 // Specialized SignatureStream: used for invoking SystemDictionary to either find
570 //                              or resolve the underlying type when iterating over a
571 //                              Java descriptor (or parts of it).
572 class ResolvingSignatureStream : public SignatureStream {
573   Klass*       _load_origin;
574   bool         _handles_cached;
575   Handle       _class_loader;       // cached when needed
576 
577   void initialize_load_origin(Klass* load_origin) {
578     _load_origin = load_origin;
579     _handles_cached = (load_origin == nullptr);
580   }
581   void need_handles() {
582     if (!_handles_cached) {
583       cache_handles();
584       _handles_cached = true;
585     }
586   }
587   void cache_handles();
588 
589  public:
590   ResolvingSignatureStream(Symbol* signature, Klass* load_origin, bool is_method = true);
591   ResolvingSignatureStream(Symbol* signature, Handle class_loader, bool is_method = true);
592   ResolvingSignatureStream(const Method* method);
593 
594   Klass* as_klass(FailureMode failure_mode, TRAPS) {
595     need_handles();
596     return SignatureStream::as_klass(_class_loader, failure_mode, THREAD);
597   }
598   oop as_java_mirror(FailureMode failure_mode, TRAPS) {
599     if (is_reference()) {
600       need_handles();
601     }
602     return SignatureStream::as_java_mirror(_class_loader, failure_mode, THREAD);
603   }
604 };
605 
606 // Here is how all the SignatureIterator classes invoke the
607 // SignatureStream engine to do their parsing.
608 template<typename T> inline
609 void SignatureIterator::do_parameters_on(T* callback) {
610   fingerprint_t unaccumulator = _fingerprint;
611 
612   // Check for too many arguments, or missing fingerprint:
613   if (!fp_is_valid(unaccumulator)) {
614     SignatureStream ss(_signature);
615     for (; !ss.at_return_type(); ss.next()) {
616       callback->do_type(ss.type());
617     }
618     // while we are here, capture the return type
619     _return_type = ss.type();
620   } else {
621     // Optimized version of do_parameters when fingerprint is known
622     assert(_return_type != T_ILLEGAL, "return type already captured from fp");
623     unaccumulator = fp_start_parameters(unaccumulator);
624     for (BasicType type; (type = fp_next_parameter(unaccumulator)) != (BasicType)fp_parameters_done; ) {
625       assert(fp_is_valid_type(type), "garbled fingerprint");
626       callback->do_type(type);
627     }
628   }
629 }
630 
631  #ifdef ASSERT
632  class SignatureVerifier : public StackObj {
633   public:
634     static bool is_valid_method_signature(Symbol* sig);
635     static bool is_valid_type_signature(Symbol* sig);
636   private:
637     static ssize_t is_valid_type(const char*, ssize_t);
638 };
639 #endif
640 #endif // SHARE_RUNTIME_SIGNATURE_HPP