< prev index next >

src/hotspot/share/runtime/stackValue.cpp

Print this page

 23  */
 24 
 25 #include "code/debugInfo.hpp"
 26 #include "oops/access.hpp"
 27 #include "oops/compressedOops.inline.hpp"
 28 #include "oops/oop.hpp"
 29 #include "runtime/frame.inline.hpp"
 30 #include "runtime/globals.hpp"
 31 #include "runtime/handles.inline.hpp"
 32 #include "runtime/stackValue.hpp"
 33 #if INCLUDE_ZGC
 34 #include "gc/z/zBarrier.inline.hpp"
 35 #endif
 36 #if INCLUDE_SHENANDOAHGC
 37 #include "gc/shenandoah/shenandoahBarrierSet.inline.hpp"
 38 #endif
 39 
 40 class RegisterMap;
 41 class SmallRegisterMap;
 42 
 43 template StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv);
 44 template StackValue* StackValue::create_stack_value(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv);
 45 
 46 template<typename RegisterMapT>
 47 StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) {
 48   return create_stack_value(sv, stack_value_address(fr, reg_map, sv), reg_map);
 49 }
 50 
 51 static oop oop_from_oop_location(stackChunkOop chunk, void* addr) {
 52   if (addr == nullptr) {
 53     return nullptr;
 54   }
 55 
 56   if (UseCompressedOops) {
 57     // When compressed oops is enabled, an oop location may
 58     // contain narrow oop values - we deal with that here
 59 
 60     if (chunk != nullptr && chunk->has_bitmap()) {
 61       // Transformed stack chunk with narrow oops
 62       return chunk->load_oop((narrowOop*)addr);
 63     }
 64 
 65 #ifdef _LP64
 66     if (CompressedOops::is_base(*(void**)addr)) {
 67       // Compiled code may produce decoded oop = narrow_oop_base
 68       // when a narrow oop implicit null check is used.
 69       // The narrow_oop_base could be null or be the address

130 
131   return val;
132 }
133 
134 StackValue* StackValue::create_stack_value_from_oop_location(stackChunkOop chunk, void* addr) {
135   oop val = oop_from_oop_location(chunk, addr);
136   assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d",
137          p2i(addr), chunk != nullptr, chunk != nullptr && chunk->has_bitmap() && UseCompressedOops);
138   Handle h(Thread::current(), val); // Wrap a handle around the oop
139   return new StackValue(h);
140 }
141 
142 StackValue* StackValue::create_stack_value_from_narrowOop_location(stackChunkOop chunk, void* addr, bool is_register) {
143   oop val = oop_from_narrowOop_location(chunk, addr, is_register);
144   assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d",
145          p2i(addr), chunk != nullptr, chunk != nullptr && chunk->has_bitmap() && UseCompressedOops);
146   Handle h(Thread::current(), val); // Wrap a handle around the oop
147   return new StackValue(h);
148 }
149 




150 template<typename RegisterMapT>
151 StackValue* StackValue::create_stack_value(ScopeValue* sv, address value_addr, const RegisterMapT* reg_map) {

152   stackChunkOop chunk = reg_map->stack_chunk()();
153   if (sv->is_location()) {
154     // Stack or register value
155     Location loc = ((LocationValue *)sv)->location();
156 
157     // Then package it right depending on type
158     // Note: the transfer of the data is thru a union that contains
159     // an intptr_t. This is because an interpreter stack slot is
160     // really an intptr_t. The use of a union containing an intptr_t
161     // ensures that on a 64 bit platform we have proper alignment
162     // and that we store the value where the interpreter will expect
163     // to find it (i.e. proper endian). Similarly on a 32bit platform
164     // using the intptr_t ensures that when a value is larger than
165     // a stack slot (jlong/jdouble) that we capture the proper part
166     // of the value for the stack slot in question.
167     //
168     switch( loc.type() ) {
169     case Location::float_in_dbl: { // Holds a float in a double register?
170       // The callee has no clue whether the register holds a float,
171       // double or is unused.  He always saves a double.  Here we know

232   } else if (sv->is_constant_oop()) {
233     // constant oop
234     return new StackValue(sv->as_ConstantOopReadValue()->value());
235 #ifdef _LP64
236   } else if (sv->is_constant_double()) {
237     // Constant double in a single stack slot
238     union { intptr_t p; double d; } value;
239     value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
240     value.d = ((ConstantDoubleValue *)sv)->value();
241     return new StackValue(value.p);
242   } else if (sv->is_constant_long()) {
243     // Constant long in a single stack slot
244     union { intptr_t p; jlong jl; } value;
245     value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
246     value.jl = ((ConstantLongValue *)sv)->value();
247     return new StackValue(value.p);
248 #endif
249   } else if (sv->is_object()) { // Scalar replaced object in compiled frame
250     ObjectValue* ov = (ObjectValue *)sv;
251     Handle hdl = ov->value();
252     return new StackValue(hdl, hdl.is_null() && ov->is_scalar_replaced() ? 1 : 0);






253   } else if (sv->is_marker()) {
254     // Should never need to directly construct a marker.
255     ShouldNotReachHere();
256   }
257   // Unknown ScopeValue type
258   ShouldNotReachHere();
259   return new StackValue((intptr_t) 0);   // dummy
260 }
261 
262 template address StackValue::stack_value_address(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv);
263 template address StackValue::stack_value_address(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv);
264 
265 template<typename RegisterMapT>
266 address StackValue::stack_value_address(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) {
267   if (!sv->is_location()) {
268     return nullptr;
269   }
270   Location loc = ((LocationValue *)sv)->location();
271   if (loc.type() == Location::invalid) {
272     return nullptr;

 23  */
 24 
 25 #include "code/debugInfo.hpp"
 26 #include "oops/access.hpp"
 27 #include "oops/compressedOops.inline.hpp"
 28 #include "oops/oop.hpp"
 29 #include "runtime/frame.inline.hpp"
 30 #include "runtime/globals.hpp"
 31 #include "runtime/handles.inline.hpp"
 32 #include "runtime/stackValue.hpp"
 33 #if INCLUDE_ZGC
 34 #include "gc/z/zBarrier.inline.hpp"
 35 #endif
 36 #if INCLUDE_SHENANDOAHGC
 37 #include "gc/shenandoah/shenandoahBarrierSet.inline.hpp"
 38 #endif
 39 
 40 class RegisterMap;
 41 class SmallRegisterMap;
 42 







 43 
 44 static oop oop_from_oop_location(stackChunkOop chunk, void* addr) {
 45   if (addr == nullptr) {
 46     return nullptr;
 47   }
 48 
 49   if (UseCompressedOops) {
 50     // When compressed oops is enabled, an oop location may
 51     // contain narrow oop values - we deal with that here
 52 
 53     if (chunk != nullptr && chunk->has_bitmap()) {
 54       // Transformed stack chunk with narrow oops
 55       return chunk->load_oop((narrowOop*)addr);
 56     }
 57 
 58 #ifdef _LP64
 59     if (CompressedOops::is_base(*(void**)addr)) {
 60       // Compiled code may produce decoded oop = narrow_oop_base
 61       // when a narrow oop implicit null check is used.
 62       // The narrow_oop_base could be null or be the address

123 
124   return val;
125 }
126 
127 StackValue* StackValue::create_stack_value_from_oop_location(stackChunkOop chunk, void* addr) {
128   oop val = oop_from_oop_location(chunk, addr);
129   assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d",
130          p2i(addr), chunk != nullptr, chunk != nullptr && chunk->has_bitmap() && UseCompressedOops);
131   Handle h(Thread::current(), val); // Wrap a handle around the oop
132   return new StackValue(h);
133 }
134 
135 StackValue* StackValue::create_stack_value_from_narrowOop_location(stackChunkOop chunk, void* addr, bool is_register) {
136   oop val = oop_from_narrowOop_location(chunk, addr, is_register);
137   assert(oopDesc::is_oop_or_null(val), "bad oop found at " INTPTR_FORMAT " in_cont: %d compressed: %d",
138          p2i(addr), chunk != nullptr, chunk != nullptr && chunk->has_bitmap() && UseCompressedOops);
139   Handle h(Thread::current(), val); // Wrap a handle around the oop
140   return new StackValue(h);
141 }
142 
143 
144 template StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv);
145 template StackValue* StackValue::create_stack_value(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv);
146 
147 template<typename RegisterMapT>
148 StackValue* StackValue::create_stack_value(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) {
149   address value_addr = stack_value_address(fr, reg_map, sv);
150   stackChunkOop chunk = reg_map->stack_chunk()();
151   if (sv->is_location()) {
152     // Stack or register value
153     Location loc = ((LocationValue *)sv)->location();
154 
155     // Then package it right depending on type
156     // Note: the transfer of the data is thru a union that contains
157     // an intptr_t. This is because an interpreter stack slot is
158     // really an intptr_t. The use of a union containing an intptr_t
159     // ensures that on a 64 bit platform we have proper alignment
160     // and that we store the value where the interpreter will expect
161     // to find it (i.e. proper endian). Similarly on a 32bit platform
162     // using the intptr_t ensures that when a value is larger than
163     // a stack slot (jlong/jdouble) that we capture the proper part
164     // of the value for the stack slot in question.
165     //
166     switch( loc.type() ) {
167     case Location::float_in_dbl: { // Holds a float in a double register?
168       // The callee has no clue whether the register holds a float,
169       // double or is unused.  He always saves a double.  Here we know

230   } else if (sv->is_constant_oop()) {
231     // constant oop
232     return new StackValue(sv->as_ConstantOopReadValue()->value());
233 #ifdef _LP64
234   } else if (sv->is_constant_double()) {
235     // Constant double in a single stack slot
236     union { intptr_t p; double d; } value;
237     value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
238     value.d = ((ConstantDoubleValue *)sv)->value();
239     return new StackValue(value.p);
240   } else if (sv->is_constant_long()) {
241     // Constant long in a single stack slot
242     union { intptr_t p; jlong jl; } value;
243     value.p = (intptr_t) CONST64(0xDEADDEAFDEADDEAF);
244     value.jl = ((ConstantLongValue *)sv)->value();
245     return new StackValue(value.p);
246 #endif
247   } else if (sv->is_object()) { // Scalar replaced object in compiled frame
248     ObjectValue* ov = (ObjectValue *)sv;
249     Handle hdl = ov->value();
250     bool scalar_replaced = hdl.is_null() && ov->is_scalar_replaced();
251     if (ov->maybe_null()) {
252       // Don't treat inline type as scalar replaced if it is null
253       jint is_init = StackValue::create_stack_value(fr, reg_map, ov->is_init())->get_jint();
254       scalar_replaced &= (is_init != 0);
255     }
256     return new StackValue(hdl, scalar_replaced ? 1 : 0);
257   } else if (sv->is_marker()) {
258     // Should never need to directly construct a marker.
259     ShouldNotReachHere();
260   }
261   // Unknown ScopeValue type
262   ShouldNotReachHere();
263   return new StackValue((intptr_t) 0);   // dummy
264 }
265 
266 template address StackValue::stack_value_address(const frame* fr, const RegisterMap* reg_map, ScopeValue* sv);
267 template address StackValue::stack_value_address(const frame* fr, const SmallRegisterMap* reg_map, ScopeValue* sv);
268 
269 template<typename RegisterMapT>
270 address StackValue::stack_value_address(const frame* fr, const RegisterMapT* reg_map, ScopeValue* sv) {
271   if (!sv->is_location()) {
272     return nullptr;
273   }
274   Location loc = ((LocationValue *)sv)->location();
275   if (loc.type() == Location::invalid) {
276     return nullptr;
< prev index next >