1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmSymbols.hpp" 26 #include "gc/shared/collectedHeap.hpp" 27 #include "jfr/jfrEvents.hpp" 28 #include "logging/log.hpp" 29 #include "logging/logStream.hpp" 30 #include "memory/allocation.inline.hpp" 31 #include "memory/padded.hpp" 32 #include "memory/resourceArea.hpp" 33 #include "memory/universe.hpp" 34 #include "oops/markWord.hpp" 35 #include "oops/oop.inline.hpp" 36 #include "runtime/atomic.hpp" 37 #include "runtime/basicLock.inline.hpp" 38 #include "runtime/frame.inline.hpp" 39 #include "runtime/globals.hpp" 40 #include "runtime/handles.inline.hpp" 41 #include "runtime/handshake.hpp" 42 #include "runtime/interfaceSupport.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/lightweightSynchronizer.hpp" 45 #include "runtime/lockStack.inline.hpp" 46 #include "runtime/mutexLocker.hpp" 47 #include "runtime/objectMonitor.hpp" 48 #include "runtime/objectMonitor.inline.hpp" 49 #include "runtime/os.inline.hpp" 50 #include "runtime/osThread.hpp" 51 #include "runtime/safepointMechanism.inline.hpp" 52 #include "runtime/safepointVerifiers.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "runtime/synchronizer.inline.hpp" 56 #include "runtime/threads.hpp" 57 #include "runtime/timer.hpp" 58 #include "runtime/trimNativeHeap.hpp" 59 #include "runtime/vframe.hpp" 60 #include "runtime/vmThread.hpp" 61 #include "utilities/align.hpp" 62 #include "utilities/dtrace.hpp" 63 #include "utilities/events.hpp" 64 #include "utilities/globalCounter.inline.hpp" 65 #include "utilities/globalDefinitions.hpp" 66 #include "utilities/linkedlist.hpp" 67 #include "utilities/preserveException.hpp" 68 69 class ObjectMonitorDeflationLogging; 70 71 void MonitorList::add(ObjectMonitor* m) { 72 ObjectMonitor* head; 73 do { 74 head = Atomic::load(&_head); 75 m->set_next_om(head); 76 } while (Atomic::cmpxchg(&_head, head, m) != head); 77 78 size_t count = Atomic::add(&_count, 1u, memory_order_relaxed); 79 size_t old_max; 80 do { 81 old_max = Atomic::load(&_max); 82 if (count <= old_max) { 83 break; 84 } 85 } while (Atomic::cmpxchg(&_max, old_max, count, memory_order_relaxed) != old_max); 86 } 87 88 size_t MonitorList::count() const { 89 return Atomic::load(&_count); 90 } 91 92 size_t MonitorList::max() const { 93 return Atomic::load(&_max); 94 } 95 96 class ObjectMonitorDeflationSafepointer : public StackObj { 97 JavaThread* const _current; 98 ObjectMonitorDeflationLogging* const _log; 99 100 public: 101 ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log) 102 : _current(current), _log(log) {} 103 104 void block_for_safepoint(const char* op_name, const char* count_name, size_t counter); 105 }; 106 107 // Walk the in-use list and unlink deflated ObjectMonitors. 108 // Returns the number of unlinked ObjectMonitors. 109 size_t MonitorList::unlink_deflated(size_t deflated_count, 110 GrowableArray<ObjectMonitor*>* unlinked_list, 111 ObjectMonitorDeflationSafepointer* safepointer) { 112 size_t unlinked_count = 0; 113 ObjectMonitor* prev = nullptr; 114 ObjectMonitor* m = Atomic::load_acquire(&_head); 115 116 while (m != nullptr) { 117 if (m->is_being_async_deflated()) { 118 // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can 119 // modify the list once per batch. The batch starts at "m". 120 size_t unlinked_batch = 0; 121 ObjectMonitor* next = m; 122 // Look for at most MonitorUnlinkBatch monitors, or the number of 123 // deflated and not unlinked monitors, whatever comes first. 124 assert(deflated_count >= unlinked_count, "Sanity: underflow"); 125 size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch); 126 do { 127 ObjectMonitor* next_next = next->next_om(); 128 unlinked_batch++; 129 unlinked_list->append(next); 130 next = next_next; 131 if (unlinked_batch >= unlinked_batch_limit) { 132 // Reached the max batch, so bail out of the gathering loop. 133 break; 134 } 135 if (prev == nullptr && Atomic::load(&_head) != m) { 136 // Current batch used to be at head, but it is not at head anymore. 137 // Bail out and figure out where we currently are. This avoids long 138 // walks searching for new prev during unlink under heavy list inserts. 139 break; 140 } 141 } while (next != nullptr && next->is_being_async_deflated()); 142 143 // Unlink the found batch. 144 if (prev == nullptr) { 145 // The current batch is the first batch, so there is a chance that it starts at head. 146 // Optimistically assume no inserts happened, and try to unlink the entire batch from the head. 147 ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next); 148 if (prev_head != m) { 149 // Something must have updated the head. Figure out the actual prev for this batch. 150 for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { 151 prev = n; 152 } 153 assert(prev != nullptr, "Should have found the prev for the current batch"); 154 prev->set_next_om(next); 155 } 156 } else { 157 // The current batch is preceded by another batch. This guarantees the current batch 158 // does not start at head. Unlink the entire current batch without updating the head. 159 assert(Atomic::load(&_head) != m, "Sanity"); 160 prev->set_next_om(next); 161 } 162 163 unlinked_count += unlinked_batch; 164 if (unlinked_count >= deflated_count) { 165 // Reached the max so bail out of the searching loop. 166 // There should be no more deflated monitors left. 167 break; 168 } 169 m = next; 170 } else { 171 prev = m; 172 m = m->next_om(); 173 } 174 175 // Must check for a safepoint/handshake and honor it. 176 safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count); 177 } 178 179 #ifdef ASSERT 180 // Invariant: the code above should unlink all deflated monitors. 181 // The code that runs after this unlinking does not expect deflated monitors. 182 // Notably, attempting to deflate the already deflated monitor would break. 183 { 184 ObjectMonitor* m = Atomic::load_acquire(&_head); 185 while (m != nullptr) { 186 assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked"); 187 m = m->next_om(); 188 } 189 } 190 #endif 191 192 Atomic::sub(&_count, unlinked_count); 193 return unlinked_count; 194 } 195 196 MonitorList::Iterator MonitorList::iterator() const { 197 return Iterator(Atomic::load_acquire(&_head)); 198 } 199 200 ObjectMonitor* MonitorList::Iterator::next() { 201 ObjectMonitor* current = _current; 202 _current = current->next_om(); 203 return current; 204 } 205 206 // The "core" versions of monitor enter and exit reside in this file. 207 // The interpreter and compilers contain specialized transliterated 208 // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp 209 // fast_lock(...) for instance. If you make changes here, make sure to modify the 210 // interpreter, and both C1 and C2 fast-path inline locking code emission. 211 // 212 // ----------------------------------------------------------------------------- 213 214 #ifdef DTRACE_ENABLED 215 216 // Only bother with this argument setup if dtrace is available 217 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 218 219 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 220 char* bytes = nullptr; \ 221 int len = 0; \ 222 jlong jtid = SharedRuntime::get_java_tid(thread); \ 223 Symbol* klassname = obj->klass()->name(); \ 224 if (klassname != nullptr) { \ 225 bytes = (char*)klassname->bytes(); \ 226 len = klassname->utf8_length(); \ 227 } 228 229 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 230 { \ 231 if (DTraceMonitorProbes) { \ 232 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 233 HOTSPOT_MONITOR_WAIT(jtid, \ 234 (uintptr_t)(monitor), bytes, len, (millis)); \ 235 } \ 236 } 237 238 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY 239 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL 240 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED 241 242 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 243 { \ 244 if (DTraceMonitorProbes) { \ 245 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 246 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ 247 (uintptr_t)(monitor), bytes, len); \ 248 } \ 249 } 250 251 #else // ndef DTRACE_ENABLED 252 253 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 254 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 255 256 #endif // ndef DTRACE_ENABLED 257 258 // This exists only as a workaround of dtrace bug 6254741 259 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) { 260 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); 261 return 0; 262 } 263 264 static constexpr size_t inflation_lock_count() { 265 return 256; 266 } 267 268 // Static storage for an array of PlatformMutex. 269 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)]; 270 271 static inline PlatformMutex* inflation_lock(size_t index) { 272 return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]); 273 } 274 275 void ObjectSynchronizer::initialize() { 276 for (size_t i = 0; i < inflation_lock_count(); i++) { 277 ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex(); 278 } 279 // Start the ceiling with the estimate for one thread. 280 set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); 281 282 // Start the timer for deflations, so it does not trigger immediately. 283 _last_async_deflation_time_ns = os::javaTimeNanos(); 284 285 if (LockingMode == LM_LIGHTWEIGHT) { 286 LightweightSynchronizer::initialize(); 287 } 288 } 289 290 MonitorList ObjectSynchronizer::_in_use_list; 291 // monitors_used_above_threshold() policy is as follows: 292 // 293 // The ratio of the current _in_use_list count to the ceiling is used 294 // to determine if we are above MonitorUsedDeflationThreshold and need 295 // to do an async monitor deflation cycle. The ceiling is increased by 296 // AvgMonitorsPerThreadEstimate when a thread is added to the system 297 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is 298 // removed from the system. 299 // 300 // Note: If the _in_use_list max exceeds the ceiling, then 301 // monitors_used_above_threshold() will use the in_use_list max instead 302 // of the thread count derived ceiling because we have used more 303 // ObjectMonitors than the estimated average. 304 // 305 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax 306 // no-progress async monitor deflation cycles in a row, then the ceiling 307 // is adjusted upwards by monitors_used_above_threshold(). 308 // 309 // Start the ceiling with the estimate for one thread in initialize() 310 // which is called after cmd line options are processed. 311 static size_t _in_use_list_ceiling = 0; 312 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; 313 bool volatile ObjectSynchronizer::_is_final_audit = false; 314 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; 315 static uintx _no_progress_cnt = 0; 316 static bool _no_progress_skip_increment = false; 317 318 // =====================> Quick functions 319 320 // The quick_* forms are special fast-path variants used to improve 321 // performance. In the simplest case, a "quick_*" implementation could 322 // simply return false, in which case the caller will perform the necessary 323 // state transitions and call the slow-path form. 324 // The fast-path is designed to handle frequently arising cases in an efficient 325 // manner and is just a degenerate "optimistic" variant of the slow-path. 326 // returns true -- to indicate the call was satisfied. 327 // returns false -- to indicate the call needs the services of the slow-path. 328 // A no-loitering ordinance is in effect for code in the quick_* family 329 // operators: safepoints or indefinite blocking (blocking that might span a 330 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon 331 // entry. 332 // 333 // Consider: An interesting optimization is to have the JIT recognize the 334 // following common idiom: 335 // synchronized (someobj) { .... ; notify(); } 336 // That is, we find a notify() or notifyAll() call that immediately precedes 337 // the monitorexit operation. In that case the JIT could fuse the operations 338 // into a single notifyAndExit() runtime primitive. 339 340 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) { 341 assert(current->thread_state() == _thread_in_Java, "invariant"); 342 NoSafepointVerifier nsv; 343 if (obj == nullptr) return false; // slow-path for invalid obj 344 const markWord mark = obj->mark(); 345 346 if (LockingMode == LM_LIGHTWEIGHT) { 347 if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) { 348 // Degenerate notify 349 // fast-locked by caller so by definition the implied waitset is empty. 350 return true; 351 } 352 } else if (LockingMode == LM_LEGACY) { 353 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 354 // Degenerate notify 355 // stack-locked by caller so by definition the implied waitset is empty. 356 return true; 357 } 358 } 359 360 if (mark.has_monitor()) { 361 ObjectMonitor* const mon = read_monitor(current, obj, mark); 362 if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) { 363 // Racing with inflation/deflation go slow path 364 return false; 365 } 366 assert(mon->object() == oop(obj), "invariant"); 367 if (!mon->has_owner(current)) return false; // slow-path for IMS exception 368 369 if (mon->first_waiter() != nullptr) { 370 // We have one or more waiters. Since this is an inflated monitor 371 // that we own, we can transfer one or more threads from the waitset 372 // to the entry_list here and now, avoiding the slow-path. 373 if (all) { 374 DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current); 375 } else { 376 DTRACE_MONITOR_PROBE(notify, mon, obj, current); 377 } 378 do { 379 mon->notify_internal(current); 380 } while (mon->first_waiter() != nullptr && all); 381 } 382 return true; 383 } 384 385 // other IMS exception states take the slow-path 386 return false; 387 } 388 389 static bool useHeavyMonitors() { 390 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390) 391 return LockingMode == LM_MONITOR; 392 #else 393 return false; 394 #endif 395 } 396 397 // The LockNode emitted directly at the synchronization site would have 398 // been too big if it were to have included support for the cases of inflated 399 // recursive enter and exit, so they go here instead. 400 // Note that we can't safely call AsyncPrintJavaStack() from within 401 // quick_enter() as our thread state remains _in_Java. 402 403 bool ObjectSynchronizer::quick_enter_legacy(oop obj, BasicLock* lock, JavaThread* current) { 404 assert(current->thread_state() == _thread_in_Java, "invariant"); 405 406 if (useHeavyMonitors()) { 407 return false; // Slow path 408 } 409 410 assert(LockingMode == LM_LEGACY, "legacy mode below"); 411 412 const markWord mark = obj->mark(); 413 414 if (mark.has_monitor()) { 415 416 ObjectMonitor* const m = read_monitor(mark); 417 // An async deflation or GC can race us before we manage to make 418 // the ObjectMonitor busy by setting the owner below. If we detect 419 // that race we just bail out to the slow-path here. 420 if (m->object_peek() == nullptr) { 421 return false; 422 } 423 424 // Lock contention and Transactional Lock Elision (TLE) diagnostics 425 // and observability 426 // Case: light contention possibly amenable to TLE 427 // Case: TLE inimical operations such as nested/recursive synchronization 428 429 if (m->has_owner(current)) { 430 m->_recursions++; 431 current->inc_held_monitor_count(); 432 return true; 433 } 434 435 // This Java Monitor is inflated so obj's header will never be 436 // displaced to this thread's BasicLock. Make the displaced header 437 // non-null so this BasicLock is not seen as recursive nor as 438 // being locked. We do this unconditionally so that this thread's 439 // BasicLock cannot be mis-interpreted by any stack walkers. For 440 // performance reasons, stack walkers generally first check for 441 // stack-locking in the object's header, the second check is for 442 // recursive stack-locking in the displaced header in the BasicLock, 443 // and last are the inflated Java Monitor (ObjectMonitor) checks. 444 lock->set_displaced_header(markWord::unused_mark()); 445 446 if (!m->has_owner() && m->try_set_owner(current)) { 447 assert(m->_recursions == 0, "invariant"); 448 current->inc_held_monitor_count(); 449 return true; 450 } 451 } 452 453 // Note that we could inflate in quick_enter. 454 // This is likely a useful optimization 455 // Critically, in quick_enter() we must not: 456 // -- block indefinitely, or 457 // -- reach a safepoint 458 459 return false; // revert to slow-path 460 } 461 462 // Handle notifications when synchronizing on value based classes 463 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) { 464 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 465 frame last_frame = locking_thread->last_frame(); 466 bool bcp_was_adjusted = false; 467 // Don't decrement bcp if it points to the frame's first instruction. This happens when 468 // handle_sync_on_value_based_class() is called because of a synchronized method. There 469 // is no actual monitorenter instruction in the byte code in this case. 470 if (last_frame.is_interpreted_frame() && 471 (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { 472 // adjust bcp to point back to monitorenter so that we print the correct line numbers 473 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); 474 bcp_was_adjusted = true; 475 } 476 477 if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { 478 ResourceMark rm; 479 stringStream ss; 480 locking_thread->print_active_stack_on(&ss); 481 char* base = (char*)strstr(ss.base(), "at"); 482 char* newline = (char*)strchr(ss.base(), '\n'); 483 if (newline != nullptr) { 484 *newline = '\0'; 485 } 486 fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); 487 } else { 488 assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); 489 ResourceMark rm; 490 Log(valuebasedclasses) vblog; 491 492 vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); 493 if (locking_thread->has_last_Java_frame()) { 494 LogStream info_stream(vblog.info()); 495 locking_thread->print_active_stack_on(&info_stream); 496 } else { 497 vblog.info("Cannot find the last Java frame"); 498 } 499 500 EventSyncOnValueBasedClass event; 501 if (event.should_commit()) { 502 event.set_valueBasedClass(obj->klass()); 503 event.commit(); 504 } 505 } 506 507 if (bcp_was_adjusted) { 508 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); 509 } 510 } 511 512 // ----------------------------------------------------------------------------- 513 // Monitor Enter/Exit 514 515 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 516 // When called with locking_thread != Thread::current() some mechanism must synchronize 517 // the locking_thread with respect to the current thread. Currently only used when 518 // deoptimizing and re-locking locks. See Deoptimization::relock_objects 519 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 520 521 if (LockingMode == LM_LIGHTWEIGHT) { 522 return LightweightSynchronizer::enter_for(obj, lock, locking_thread); 523 } 524 525 if (!enter_fast_impl(obj, lock, locking_thread)) { 526 // Inflated ObjectMonitor::enter_for is required 527 528 // An async deflation can race after the inflate_for() call and before 529 // enter_for() can make the ObjectMonitor busy. enter_for() returns false 530 // if we have lost the race to async deflation and we simply try again. 531 while (true) { 532 ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter); 533 if (monitor->enter_for(locking_thread)) { 534 return; 535 } 536 assert(monitor->is_being_async_deflated(), "must be"); 537 } 538 } 539 } 540 541 void ObjectSynchronizer::enter_legacy(Handle obj, BasicLock* lock, JavaThread* current) { 542 if (!enter_fast_impl(obj, lock, current)) { 543 // Inflated ObjectMonitor::enter is required 544 545 // An async deflation can race after the inflate() call and before 546 // enter() can make the ObjectMonitor busy. enter() returns false if 547 // we have lost the race to async deflation and we simply try again. 548 while (true) { 549 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter); 550 if (monitor->enter(current)) { 551 return; 552 } 553 } 554 } 555 } 556 557 // The interpreter and compiler assembly code tries to lock using the fast path 558 // of this algorithm. Make sure to update that code if the following function is 559 // changed. The implementation is extremely sensitive to race condition. Be careful. 560 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 561 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 562 563 if (obj->klass()->is_value_based()) { 564 handle_sync_on_value_based_class(obj, locking_thread); 565 } 566 567 locking_thread->inc_held_monitor_count(); 568 569 if (!useHeavyMonitors()) { 570 if (LockingMode == LM_LEGACY) { 571 markWord mark = obj->mark(); 572 if (mark.is_unlocked()) { 573 // Anticipate successful CAS -- the ST of the displaced mark must 574 // be visible <= the ST performed by the CAS. 575 lock->set_displaced_header(mark); 576 if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { 577 return true; 578 } 579 } else if (mark.has_locker() && 580 locking_thread->is_lock_owned((address) mark.locker())) { 581 assert(lock != mark.locker(), "must not re-lock the same lock"); 582 assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock"); 583 lock->set_displaced_header(markWord::from_pointer(nullptr)); 584 return true; 585 } 586 587 // The object header will never be displaced to this lock, 588 // so it does not matter what the value is, except that it 589 // must be non-zero to avoid looking like a re-entrant lock, 590 // and must not look locked either. 591 lock->set_displaced_header(markWord::unused_mark()); 592 593 // Failed to fast lock. 594 return false; 595 } 596 } else if (VerifyHeavyMonitors) { 597 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 598 } 599 600 return false; 601 } 602 603 void ObjectSynchronizer::exit_legacy(oop object, BasicLock* lock, JavaThread* current) { 604 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 605 606 if (!useHeavyMonitors()) { 607 markWord mark = object->mark(); 608 if (LockingMode == LM_LEGACY) { 609 markWord dhw = lock->displaced_header(); 610 if (dhw.value() == 0) { 611 // If the displaced header is null, then this exit matches up with 612 // a recursive enter. No real work to do here except for diagnostics. 613 #ifndef PRODUCT 614 if (mark != markWord::INFLATING()) { 615 // Only do diagnostics if we are not racing an inflation. Simply 616 // exiting a recursive enter of a Java Monitor that is being 617 // inflated is safe; see the has_monitor() comment below. 618 assert(!mark.is_unlocked(), "invariant"); 619 assert(!mark.has_locker() || 620 current->is_lock_owned((address)mark.locker()), "invariant"); 621 if (mark.has_monitor()) { 622 // The BasicLock's displaced_header is marked as a recursive 623 // enter and we have an inflated Java Monitor (ObjectMonitor). 624 // This is a special case where the Java Monitor was inflated 625 // after this thread entered the stack-lock recursively. When a 626 // Java Monitor is inflated, we cannot safely walk the Java 627 // Monitor owner's stack and update the BasicLocks because a 628 // Java Monitor can be asynchronously inflated by a thread that 629 // does not own the Java Monitor. 630 ObjectMonitor* m = read_monitor(mark); 631 assert(m->object()->mark() == mark, "invariant"); 632 assert(m->is_entered(current), "invariant"); 633 } 634 } 635 #endif 636 return; 637 } 638 639 if (mark == markWord::from_pointer(lock)) { 640 // If the object is stack-locked by the current thread, try to 641 // swing the displaced header from the BasicLock back to the mark. 642 assert(dhw.is_neutral(), "invariant"); 643 if (object->cas_set_mark(dhw, mark) == mark) { 644 return; 645 } 646 } 647 } 648 } else if (VerifyHeavyMonitors) { 649 guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 650 } 651 652 // We have to take the slow-path of possible inflation and then exit. 653 // The ObjectMonitor* can't be async deflated until ownership is 654 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 655 ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal); 656 assert(!monitor->has_anonymous_owner(), "must not be"); 657 monitor->exit(current); 658 } 659 660 // ----------------------------------------------------------------------------- 661 // JNI locks on java objects 662 // NOTE: must use heavy weight monitor to handle jni monitor enter 663 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) { 664 // Top native frames in the stack will not be seen if we attempt 665 // preemption, since we start walking from the last Java anchor. 666 NoPreemptMark npm(current); 667 668 if (obj->klass()->is_value_based()) { 669 handle_sync_on_value_based_class(obj, current); 670 } 671 672 // the current locking is from JNI instead of Java code 673 current->set_current_pending_monitor_is_from_java(false); 674 // An async deflation can race after the inflate() call and before 675 // enter() can make the ObjectMonitor busy. enter() returns false if 676 // we have lost the race to async deflation and we simply try again. 677 while (true) { 678 ObjectMonitor* monitor; 679 bool entered; 680 if (LockingMode == LM_LIGHTWEIGHT) { 681 entered = LightweightSynchronizer::inflate_and_enter(obj(), inflate_cause_jni_enter, current, current) != nullptr; 682 } else { 683 monitor = inflate(current, obj(), inflate_cause_jni_enter); 684 entered = monitor->enter(current); 685 } 686 687 if (entered) { 688 current->inc_held_monitor_count(1, true); 689 break; 690 } 691 } 692 current->set_current_pending_monitor_is_from_java(true); 693 } 694 695 // NOTE: must use heavy weight monitor to handle jni monitor exit 696 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) { 697 JavaThread* current = THREAD; 698 699 ObjectMonitor* monitor; 700 if (LockingMode == LM_LIGHTWEIGHT) { 701 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK); 702 } else { 703 // The ObjectMonitor* can't be async deflated until ownership is 704 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 705 monitor = inflate(current, obj, inflate_cause_jni_exit); 706 } 707 // If this thread has locked the object, exit the monitor. We 708 // intentionally do not use CHECK on check_owner because we must exit the 709 // monitor even if an exception was already pending. 710 if (monitor->check_owner(THREAD)) { 711 monitor->exit(current); 712 current->dec_held_monitor_count(1, true); 713 } 714 } 715 716 // ----------------------------------------------------------------------------- 717 // Internal VM locks on java objects 718 // standard constructor, allows locking failures 719 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) : _npm(thread) { 720 _thread = thread; 721 _thread->check_for_valid_safepoint_state(); 722 _obj = obj; 723 724 if (_obj() != nullptr) { 725 ObjectSynchronizer::enter(_obj, &_lock, _thread); 726 } 727 } 728 729 ObjectLocker::~ObjectLocker() { 730 if (_obj() != nullptr) { 731 ObjectSynchronizer::exit(_obj(), &_lock, _thread); 732 } 733 } 734 735 736 // ----------------------------------------------------------------------------- 737 // Wait/Notify/NotifyAll 738 // NOTE: must use heavy weight monitor to handle wait() 739 740 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { 741 JavaThread* current = THREAD; 742 if (millis < 0) { 743 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 744 } 745 746 ObjectMonitor* monitor; 747 if (LockingMode == LM_LIGHTWEIGHT) { 748 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0); 749 } else { 750 // The ObjectMonitor* can't be async deflated because the _waiters 751 // field is incremented before ownership is dropped and decremented 752 // after ownership is regained. 753 monitor = inflate(current, obj(), inflate_cause_wait); 754 } 755 756 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis); 757 monitor->wait(millis, true, THREAD); // Not CHECK as we need following code 758 759 // This dummy call is in place to get around dtrace bug 6254741. Once 760 // that's fixed we can uncomment the following line, remove the call 761 // and change this function back into a "void" func. 762 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); 763 int ret_code = dtrace_waited_probe(monitor, obj, THREAD); 764 return ret_code; 765 } 766 767 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) { 768 if (millis < 0) { 769 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 770 } 771 772 ObjectMonitor* monitor; 773 if (LockingMode == LM_LIGHTWEIGHT) { 774 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK); 775 } else { 776 monitor = inflate(THREAD, obj(), inflate_cause_wait); 777 } 778 monitor->wait(millis, false, THREAD); 779 } 780 781 782 void ObjectSynchronizer::notify(Handle obj, TRAPS) { 783 JavaThread* current = THREAD; 784 785 markWord mark = obj->mark(); 786 if (LockingMode == LM_LIGHTWEIGHT) { 787 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 788 // Not inflated so there can't be any waiters to notify. 789 return; 790 } 791 } else if (LockingMode == LM_LEGACY) { 792 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 793 // Not inflated so there can't be any waiters to notify. 794 return; 795 } 796 } 797 798 ObjectMonitor* monitor; 799 if (LockingMode == LM_LIGHTWEIGHT) { 800 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 801 } else { 802 // The ObjectMonitor* can't be async deflated until ownership is 803 // dropped by the calling thread. 804 monitor = inflate(current, obj(), inflate_cause_notify); 805 } 806 monitor->notify(CHECK); 807 } 808 809 // NOTE: see comment of notify() 810 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { 811 JavaThread* current = THREAD; 812 813 markWord mark = obj->mark(); 814 if (LockingMode == LM_LIGHTWEIGHT) { 815 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 816 // Not inflated so there can't be any waiters to notify. 817 return; 818 } 819 } else if (LockingMode == LM_LEGACY) { 820 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 821 // Not inflated so there can't be any waiters to notify. 822 return; 823 } 824 } 825 826 ObjectMonitor* monitor; 827 if (LockingMode == LM_LIGHTWEIGHT) { 828 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 829 } else { 830 // The ObjectMonitor* can't be async deflated until ownership is 831 // dropped by the calling thread. 832 monitor = inflate(current, obj(), inflate_cause_notify); 833 } 834 monitor->notifyAll(CHECK); 835 } 836 837 // ----------------------------------------------------------------------------- 838 // Hash Code handling 839 840 struct SharedGlobals { 841 char _pad_prefix[OM_CACHE_LINE_SIZE]; 842 // This is a highly shared mostly-read variable. 843 // To avoid false-sharing it needs to be the sole occupant of a cache line. 844 volatile int stw_random; 845 DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 846 // Hot RW variable -- Sequester to avoid false-sharing 847 volatile int hc_sequence; 848 DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 849 }; 850 851 static SharedGlobals GVars; 852 853 static markWord read_stable_mark(oop obj) { 854 markWord mark = obj->mark_acquire(); 855 if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) { 856 // New lightweight locking does not use the markWord::INFLATING() protocol. 857 return mark; // normal fast-path return 858 } 859 860 int its = 0; 861 for (;;) { 862 markWord mark = obj->mark_acquire(); 863 if (!mark.is_being_inflated()) { 864 return mark; // normal fast-path return 865 } 866 867 // The object is being inflated by some other thread. 868 // The caller of read_stable_mark() must wait for inflation to complete. 869 // Avoid live-lock. 870 871 ++its; 872 if (its > 10000 || !os::is_MP()) { 873 if (its & 1) { 874 os::naked_yield(); 875 } else { 876 // Note that the following code attenuates the livelock problem but is not 877 // a complete remedy. A more complete solution would require that the inflating 878 // thread hold the associated inflation lock. The following code simply restricts 879 // the number of spinners to at most one. We'll have N-2 threads blocked 880 // on the inflationlock, 1 thread holding the inflation lock and using 881 // a yield/park strategy, and 1 thread in the midst of inflation. 882 // A more refined approach would be to change the encoding of INFLATING 883 // to allow encapsulation of a native thread pointer. Threads waiting for 884 // inflation to complete would use CAS to push themselves onto a singly linked 885 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag 886 // and calling park(). When inflation was complete the thread that accomplished inflation 887 // would detach the list and set the markword to inflated with a single CAS and 888 // then for each thread on the list, set the flag and unpark() the thread. 889 890 // Index into the lock array based on the current object address. 891 static_assert(is_power_of_2(inflation_lock_count()), "must be"); 892 size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1); 893 int YieldThenBlock = 0; 894 assert(ix < inflation_lock_count(), "invariant"); 895 inflation_lock(ix)->lock(); 896 while (obj->mark_acquire() == markWord::INFLATING()) { 897 // Beware: naked_yield() is advisory and has almost no effect on some platforms 898 // so we periodically call current->_ParkEvent->park(1). 899 // We use a mixed spin/yield/block mechanism. 900 if ((YieldThenBlock++) >= 16) { 901 Thread::current()->_ParkEvent->park(1); 902 } else { 903 os::naked_yield(); 904 } 905 } 906 inflation_lock(ix)->unlock(); 907 } 908 } else { 909 SpinPause(); // SMP-polite spinning 910 } 911 } 912 } 913 914 // hashCode() generation : 915 // 916 // Possibilities: 917 // * MD5Digest of {obj,stw_random} 918 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. 919 // * A DES- or AES-style SBox[] mechanism 920 // * One of the Phi-based schemes, such as: 921 // 2654435761 = 2^32 * Phi (golden ratio) 922 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; 923 // * A variation of Marsaglia's shift-xor RNG scheme. 924 // * (obj ^ stw_random) is appealing, but can result 925 // in undesirable regularity in the hashCode values of adjacent objects 926 // (objects allocated back-to-back, in particular). This could potentially 927 // result in hashtable collisions and reduced hashtable efficiency. 928 // There are simple ways to "diffuse" the middle address bits over the 929 // generated hashCode values: 930 931 static intptr_t get_next_hash(Thread* current, oop obj) { 932 intptr_t value = 0; 933 if (hashCode == 0) { 934 // This form uses global Park-Miller RNG. 935 // On MP system we'll have lots of RW access to a global, so the 936 // mechanism induces lots of coherency traffic. 937 value = os::random(); 938 } else if (hashCode == 1) { 939 // This variation has the property of being stable (idempotent) 940 // between STW operations. This can be useful in some of the 1-0 941 // synchronization schemes. 942 intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; 943 value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; 944 } else if (hashCode == 2) { 945 value = 1; // for sensitivity testing 946 } else if (hashCode == 3) { 947 value = ++GVars.hc_sequence; 948 } else if (hashCode == 4) { 949 value = cast_from_oop<intptr_t>(obj); 950 } else { 951 // Marsaglia's xor-shift scheme with thread-specific state 952 // This is probably the best overall implementation -- we'll 953 // likely make this the default in future releases. 954 unsigned t = current->_hashStateX; 955 t ^= (t << 11); 956 current->_hashStateX = current->_hashStateY; 957 current->_hashStateY = current->_hashStateZ; 958 current->_hashStateZ = current->_hashStateW; 959 unsigned v = current->_hashStateW; 960 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); 961 current->_hashStateW = v; 962 value = v; 963 } 964 965 value &= markWord::hash_mask; 966 if (value == 0) value = 0xBAD; 967 assert(value != markWord::no_hash, "invariant"); 968 return value; 969 } 970 971 static intptr_t install_hash_code(Thread* current, oop obj) { 972 assert(UseObjectMonitorTable && LockingMode == LM_LIGHTWEIGHT, "must be"); 973 974 markWord mark = obj->mark_acquire(); 975 for (;;) { 976 intptr_t hash = mark.hash(); 977 if (hash != 0) { 978 return hash; 979 } 980 981 hash = get_next_hash(current, obj); 982 const markWord old_mark = mark; 983 const markWord new_mark = old_mark.copy_set_hash(hash); 984 985 mark = obj->cas_set_mark(new_mark, old_mark); 986 if (old_mark == mark) { 987 return hash; 988 } 989 } 990 } 991 992 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) { 993 if (UseObjectMonitorTable) { 994 // Since the monitor isn't in the object header, the hash can simply be 995 // installed in the object header. 996 return install_hash_code(current, obj); 997 } 998 999 while (true) { 1000 ObjectMonitor* monitor = nullptr; 1001 markWord temp, test; 1002 intptr_t hash; 1003 markWord mark = read_stable_mark(obj); 1004 if (VerifyHeavyMonitors) { 1005 assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)"); 1006 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 1007 } 1008 if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) { 1009 hash = mark.hash(); 1010 if (hash != 0) { // if it has a hash, just return it 1011 return hash; 1012 } 1013 hash = get_next_hash(current, obj); // get a new hash 1014 temp = mark.copy_set_hash(hash); // merge the hash into header 1015 // try to install the hash 1016 test = obj->cas_set_mark(temp, mark); 1017 if (test == mark) { // if the hash was installed, return it 1018 return hash; 1019 } 1020 if (LockingMode == LM_LIGHTWEIGHT) { 1021 // CAS failed, retry 1022 continue; 1023 } 1024 // Failed to install the hash. It could be that another thread 1025 // installed the hash just before our attempt or inflation has 1026 // occurred or... so we fall thru to inflate the monitor for 1027 // stability and then install the hash. 1028 } else if (mark.has_monitor()) { 1029 monitor = mark.monitor(); 1030 temp = monitor->header(); 1031 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1032 hash = temp.hash(); 1033 if (hash != 0) { 1034 // It has a hash. 1035 1036 // Separate load of dmw/header above from the loads in 1037 // is_being_async_deflated(). 1038 1039 // dmw/header and _contentions may get written by different threads. 1040 // Make sure to observe them in the same order when having several observers. 1041 OrderAccess::loadload_for_IRIW(); 1042 1043 if (monitor->is_being_async_deflated()) { 1044 // But we can't safely use the hash if we detect that async 1045 // deflation has occurred. So we attempt to restore the 1046 // header/dmw to the object's header so that we only retry 1047 // once if the deflater thread happens to be slow. 1048 monitor->install_displaced_markword_in_object(obj); 1049 continue; 1050 } 1051 return hash; 1052 } 1053 // Fall thru so we only have one place that installs the hash in 1054 // the ObjectMonitor. 1055 } else if (LockingMode == LM_LEGACY && mark.has_locker() 1056 && current->is_Java_thread() 1057 && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) { 1058 // This is a stack-lock owned by the calling thread so fetch the 1059 // displaced markWord from the BasicLock on the stack. 1060 temp = mark.displaced_mark_helper(); 1061 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1062 hash = temp.hash(); 1063 if (hash != 0) { // if it has a hash, just return it 1064 return hash; 1065 } 1066 // WARNING: 1067 // The displaced header in the BasicLock on a thread's stack 1068 // is strictly immutable. It CANNOT be changed in ANY cases. 1069 // So we have to inflate the stack-lock into an ObjectMonitor 1070 // even if the current thread owns the lock. The BasicLock on 1071 // a thread's stack can be asynchronously read by other threads 1072 // during an inflate() call so any change to that stack memory 1073 // may not propagate to other threads correctly. 1074 } 1075 1076 // Inflate the monitor to set the hash. 1077 1078 // There's no need to inflate if the mark has already got a monitor. 1079 // NOTE: an async deflation can race after we get the monitor and 1080 // before we can update the ObjectMonitor's header with the hash 1081 // value below. 1082 monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code); 1083 // Load ObjectMonitor's header/dmw field and see if it has a hash. 1084 mark = monitor->header(); 1085 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1086 hash = mark.hash(); 1087 if (hash == 0) { // if it does not have a hash 1088 hash = get_next_hash(current, obj); // get a new hash 1089 temp = mark.copy_set_hash(hash) ; // merge the hash into header 1090 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1091 uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value()); 1092 test = markWord(v); 1093 if (test != mark) { 1094 // The attempt to update the ObjectMonitor's header/dmw field 1095 // did not work. This can happen if another thread managed to 1096 // merge in the hash just before our cmpxchg(). 1097 // If we add any new usages of the header/dmw field, this code 1098 // will need to be updated. 1099 hash = test.hash(); 1100 assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); 1101 assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); 1102 } 1103 if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) { 1104 // If we detect that async deflation has occurred, then we 1105 // attempt to restore the header/dmw to the object's header 1106 // so that we only retry once if the deflater thread happens 1107 // to be slow. 1108 monitor->install_displaced_markword_in_object(obj); 1109 continue; 1110 } 1111 } 1112 // We finally get the hash. 1113 return hash; 1114 } 1115 } 1116 1117 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current, 1118 Handle h_obj) { 1119 assert(current == JavaThread::current(), "Can only be called on current thread"); 1120 oop obj = h_obj(); 1121 1122 markWord mark = read_stable_mark(obj); 1123 1124 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1125 // stack-locked case, header points into owner's stack 1126 return current->is_lock_owned((address)mark.locker()); 1127 } 1128 1129 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1130 // fast-locking case, see if lock is in current's lock stack 1131 return current->lock_stack().contains(h_obj()); 1132 } 1133 1134 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1135 ObjectMonitor* monitor = read_monitor(current, obj, mark); 1136 if (monitor != nullptr) { 1137 return monitor->is_entered(current) != 0; 1138 } 1139 // Racing with inflation/deflation, retry 1140 mark = obj->mark_acquire(); 1141 1142 if (mark.is_fast_locked()) { 1143 // Some other thread fast_locked, current could not have held the lock 1144 return false; 1145 } 1146 } 1147 1148 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1149 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1150 // The first stage of async deflation does not affect any field 1151 // used by this comparison so the ObjectMonitor* is usable here. 1152 ObjectMonitor* monitor = read_monitor(mark); 1153 return monitor->is_entered(current) != 0; 1154 } 1155 // Unlocked case, header in place 1156 assert(mark.is_unlocked(), "sanity check"); 1157 return false; 1158 } 1159 1160 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { 1161 oop obj = h_obj(); 1162 markWord mark = read_stable_mark(obj); 1163 1164 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1165 // stack-locked so header points into owner's stack. 1166 // owning_thread_from_monitor_owner() may also return null here: 1167 return Threads::owning_thread_from_stacklock(t_list, (address) mark.locker()); 1168 } 1169 1170 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1171 // fast-locked so get owner from the object. 1172 // owning_thread_from_object() may also return null here: 1173 return Threads::owning_thread_from_object(t_list, h_obj()); 1174 } 1175 1176 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1177 ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark); 1178 if (monitor != nullptr) { 1179 return Threads::owning_thread_from_monitor(t_list, monitor); 1180 } 1181 // Racing with inflation/deflation, retry 1182 mark = obj->mark_acquire(); 1183 1184 if (mark.is_fast_locked()) { 1185 // Some other thread fast_locked 1186 return Threads::owning_thread_from_object(t_list, h_obj()); 1187 } 1188 } 1189 1190 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1191 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1192 // The first stage of async deflation does not affect any field 1193 // used by this comparison so the ObjectMonitor* is usable here. 1194 ObjectMonitor* monitor = read_monitor(mark); 1195 assert(monitor != nullptr, "monitor should be non-null"); 1196 // owning_thread_from_monitor() may also return null here: 1197 return Threads::owning_thread_from_monitor(t_list, monitor); 1198 } 1199 1200 // Unlocked case, header in place 1201 // Cannot have assertion since this object may have been 1202 // locked by another thread when reaching here. 1203 // assert(mark.is_unlocked(), "sanity check"); 1204 1205 return nullptr; 1206 } 1207 1208 // Visitors ... 1209 1210 // Iterate over all ObjectMonitors. 1211 template <typename Function> 1212 void ObjectSynchronizer::monitors_iterate(Function function) { 1213 MonitorList::Iterator iter = _in_use_list.iterator(); 1214 while (iter.has_next()) { 1215 ObjectMonitor* monitor = iter.next(); 1216 function(monitor); 1217 } 1218 } 1219 1220 // Iterate ObjectMonitors owned by any thread and where the owner `filter` 1221 // returns true. 1222 template <typename OwnerFilter> 1223 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) { 1224 monitors_iterate([&](ObjectMonitor* monitor) { 1225 // This function is only called at a safepoint or when the 1226 // target thread is suspended or when the target thread is 1227 // operating on itself. The current closures in use today are 1228 // only interested in an owned ObjectMonitor and ownership 1229 // cannot be dropped under the calling contexts so the 1230 // ObjectMonitor cannot be async deflated. 1231 if (monitor->has_owner() && filter(monitor)) { 1232 assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating"); 1233 1234 closure->do_monitor(monitor); 1235 } 1236 }); 1237 } 1238 1239 // Iterate ObjectMonitors where the owner == thread; this does NOT include 1240 // ObjectMonitors where owner is set to a stack-lock address in thread. 1241 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) { 1242 int64_t key = ObjectMonitor::owner_id_from(thread); 1243 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1244 return owned_monitors_iterate_filtered(closure, thread_filter); 1245 } 1246 1247 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, oop vthread) { 1248 int64_t key = ObjectMonitor::owner_id_from(vthread); 1249 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1250 return owned_monitors_iterate_filtered(closure, thread_filter); 1251 } 1252 1253 // Iterate ObjectMonitors owned by any thread. 1254 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) { 1255 auto all_filter = [&](ObjectMonitor* monitor) { return true; }; 1256 return owned_monitors_iterate_filtered(closure, all_filter); 1257 } 1258 1259 static bool monitors_used_above_threshold(MonitorList* list) { 1260 if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy 1261 return false; 1262 } 1263 size_t monitors_used = list->count(); 1264 if (monitors_used == 0) { // empty list is easy 1265 return false; 1266 } 1267 size_t old_ceiling = ObjectSynchronizer::in_use_list_ceiling(); 1268 // Make sure that we use a ceiling value that is not lower than 1269 // previous, not lower than the recorded max used by the system, and 1270 // not lower than the current number of monitors in use (which can 1271 // race ahead of max). The result is guaranteed > 0. 1272 size_t ceiling = MAX3(old_ceiling, list->max(), monitors_used); 1273 1274 // Check if our monitor usage is above the threshold: 1275 size_t monitor_usage = (monitors_used * 100LL) / ceiling; 1276 if (int(monitor_usage) > MonitorUsedDeflationThreshold) { 1277 // Deflate monitors if over the threshold percentage, unless no 1278 // progress on previous deflations. 1279 bool is_above_threshold = true; 1280 1281 // Check if it's time to adjust the in_use_list_ceiling up, due 1282 // to too many async deflation attempts without any progress. 1283 if (NoAsyncDeflationProgressMax != 0 && 1284 _no_progress_cnt >= NoAsyncDeflationProgressMax) { 1285 double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; 1286 size_t delta = (size_t)(ceiling * remainder) + 1; 1287 size_t new_ceiling = (ceiling > SIZE_MAX - delta) 1288 ? SIZE_MAX // Overflow, let's clamp new_ceiling. 1289 : ceiling + delta; 1290 1291 ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); 1292 log_info(monitorinflation)("Too many deflations without progress; " 1293 "bumping in_use_list_ceiling from %zu" 1294 " to %zu", old_ceiling, new_ceiling); 1295 _no_progress_cnt = 0; 1296 ceiling = new_ceiling; 1297 1298 // Check if our monitor usage is still above the threshold: 1299 monitor_usage = (monitors_used * 100LL) / ceiling; 1300 is_above_threshold = int(monitor_usage) > MonitorUsedDeflationThreshold; 1301 } 1302 log_info(monitorinflation)("monitors_used=%zu, ceiling=%zu" 1303 ", monitor_usage=%zu, threshold=%d", 1304 monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold); 1305 return is_above_threshold; 1306 } 1307 1308 return false; 1309 } 1310 1311 size_t ObjectSynchronizer::in_use_list_count() { 1312 return _in_use_list.count(); 1313 } 1314 1315 size_t ObjectSynchronizer::in_use_list_max() { 1316 return _in_use_list.max(); 1317 } 1318 1319 size_t ObjectSynchronizer::in_use_list_ceiling() { 1320 return _in_use_list_ceiling; 1321 } 1322 1323 void ObjectSynchronizer::dec_in_use_list_ceiling() { 1324 Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1325 } 1326 1327 void ObjectSynchronizer::inc_in_use_list_ceiling() { 1328 Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1329 } 1330 1331 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { 1332 _in_use_list_ceiling = new_value; 1333 } 1334 1335 bool ObjectSynchronizer::is_async_deflation_needed() { 1336 if (is_async_deflation_requested()) { 1337 // Async deflation request. 1338 log_info(monitorinflation)("Async deflation needed: explicit request"); 1339 return true; 1340 } 1341 1342 jlong time_since_last = time_since_last_async_deflation_ms(); 1343 1344 if (AsyncDeflationInterval > 0 && 1345 time_since_last > AsyncDeflationInterval && 1346 monitors_used_above_threshold(&_in_use_list)) { 1347 // It's been longer than our specified deflate interval and there 1348 // are too many monitors in use. We don't deflate more frequently 1349 // than AsyncDeflationInterval (unless is_async_deflation_requested) 1350 // in order to not swamp the MonitorDeflationThread. 1351 log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold"); 1352 return true; 1353 } 1354 1355 if (GuaranteedAsyncDeflationInterval > 0 && 1356 time_since_last > GuaranteedAsyncDeflationInterval) { 1357 // It's been longer than our specified guaranteed deflate interval. 1358 // We need to clean up the used monitors even if the threshold is 1359 // not reached, to keep the memory utilization at bay when many threads 1360 // touched many monitors. 1361 log_info(monitorinflation)("Async deflation needed: guaranteed interval (%zd ms) " 1362 "is greater than time since last deflation (" JLONG_FORMAT " ms)", 1363 GuaranteedAsyncDeflationInterval, time_since_last); 1364 1365 // If this deflation has no progress, then it should not affect the no-progress 1366 // tracking, otherwise threshold heuristics would think it was triggered, experienced 1367 // no progress, and needs to backoff more aggressively. In this "no progress" case, 1368 // the generic code would bump the no-progress counter, and we compensate for that 1369 // by telling it to skip the update. 1370 // 1371 // If this deflation has progress, then it should let non-progress tracking 1372 // know about this, otherwise the threshold heuristics would kick in, potentially 1373 // experience no-progress due to aggressive cleanup by this deflation, and think 1374 // it is still in no-progress stride. In this "progress" case, the generic code would 1375 // zero the counter, and we allow it to happen. 1376 _no_progress_skip_increment = true; 1377 1378 return true; 1379 } 1380 1381 return false; 1382 } 1383 1384 void ObjectSynchronizer::request_deflate_idle_monitors() { 1385 MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); 1386 set_is_async_deflation_requested(true); 1387 ml.notify_all(); 1388 } 1389 1390 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() { 1391 JavaThread* current = JavaThread::current(); 1392 bool ret_code = false; 1393 1394 jlong last_time = last_async_deflation_time_ns(); 1395 1396 request_deflate_idle_monitors(); 1397 1398 const int N_CHECKS = 5; 1399 for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds 1400 if (last_async_deflation_time_ns() > last_time) { 1401 log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); 1402 ret_code = true; 1403 break; 1404 } 1405 { 1406 // JavaThread has to honor the blocking protocol. 1407 ThreadBlockInVM tbivm(current); 1408 os::naked_short_sleep(999); // sleep for almost 1 second 1409 } 1410 } 1411 if (!ret_code) { 1412 log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); 1413 } 1414 1415 return ret_code; 1416 } 1417 1418 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { 1419 return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); 1420 } 1421 1422 static void post_monitor_inflate_event(EventJavaMonitorInflate* event, 1423 const oop obj, 1424 ObjectSynchronizer::InflateCause cause) { 1425 assert(event != nullptr, "invariant"); 1426 const Klass* monitor_klass = obj->klass(); 1427 if (ObjectMonitor::is_jfr_excluded(monitor_klass)) { 1428 return; 1429 } 1430 event->set_monitorClass(monitor_klass); 1431 event->set_address((uintptr_t)(void*)obj); 1432 event->set_cause((u1)cause); 1433 event->commit(); 1434 } 1435 1436 // Fast path code shared by multiple functions 1437 void ObjectSynchronizer::inflate_helper(oop obj) { 1438 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1439 markWord mark = obj->mark_acquire(); 1440 if (mark.has_monitor()) { 1441 ObjectMonitor* monitor = read_monitor(mark); 1442 markWord dmw = monitor->header(); 1443 assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); 1444 return; 1445 } 1446 (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); 1447 } 1448 1449 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) { 1450 assert(current == Thread::current(), "must be"); 1451 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1452 return inflate_impl(current->is_Java_thread() ? JavaThread::cast(current) : nullptr, obj, cause); 1453 } 1454 1455 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) { 1456 assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be"); 1457 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for"); 1458 return inflate_impl(thread, obj, cause); 1459 } 1460 1461 ObjectMonitor* ObjectSynchronizer::inflate_impl(JavaThread* locking_thread, oop object, const InflateCause cause) { 1462 // The JavaThread* locking_thread requires that the locking_thread == Thread::current() or 1463 // is suspended throughout the call by some other mechanism. 1464 // The thread might be nullptr when called from a non JavaThread. (As may still be 1465 // the case from FastHashCode). However it is only important for correctness that the 1466 // thread is set when called from ObjectSynchronizer::enter from the owning thread, 1467 // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit. 1468 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl"); 1469 EventJavaMonitorInflate event; 1470 1471 for (;;) { 1472 const markWord mark = object->mark_acquire(); 1473 1474 // The mark can be in one of the following states: 1475 // * inflated - If the ObjectMonitor owner is anonymous and the 1476 // locking_thread owns the object lock, then we 1477 // make the locking_thread the ObjectMonitor owner. 1478 // * stack-locked - Coerce it to inflated from stack-locked. 1479 // * INFLATING - Busy wait for conversion from stack-locked to 1480 // inflated. 1481 // * unlocked - Aggressively inflate the object. 1482 1483 // CASE: inflated 1484 if (mark.has_monitor()) { 1485 ObjectMonitor* inf = mark.monitor(); 1486 markWord dmw = inf->header(); 1487 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1488 if (inf->has_anonymous_owner() && locking_thread != nullptr) { 1489 assert(LockingMode == LM_LEGACY, "invariant"); 1490 if (locking_thread->is_lock_owned((address)inf->stack_locker())) { 1491 inf->set_stack_locker(nullptr); 1492 inf->set_owner_from_anonymous(locking_thread); 1493 } 1494 } 1495 return inf; 1496 } 1497 1498 // CASE: inflation in progress - inflating over a stack-lock. 1499 // Some other thread is converting from stack-locked to inflated. 1500 // Only that thread can complete inflation -- other threads must wait. 1501 // The INFLATING value is transient. 1502 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1503 // We could always eliminate polling by parking the thread on some auxiliary list. 1504 if (mark == markWord::INFLATING()) { 1505 read_stable_mark(object); 1506 continue; 1507 } 1508 1509 // CASE: stack-locked 1510 // Could be stack-locked either by current or by some other thread. 1511 // 1512 // Note that we allocate the ObjectMonitor speculatively, _before_ attempting 1513 // to install INFLATING into the mark word. We originally installed INFLATING, 1514 // allocated the ObjectMonitor, and then finally STed the address of the 1515 // ObjectMonitor into the mark. This was correct, but artificially lengthened 1516 // the interval in which INFLATING appeared in the mark, thus increasing 1517 // the odds of inflation contention. If we lose the race to set INFLATING, 1518 // then we just delete the ObjectMonitor and loop around again. 1519 // 1520 LogStreamHandle(Trace, monitorinflation) lsh; 1521 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1522 ObjectMonitor* m = new ObjectMonitor(object); 1523 // Optimistically prepare the ObjectMonitor - anticipate successful CAS 1524 // We do this before the CAS in order to minimize the length of time 1525 // in which INFLATING appears in the mark. 1526 1527 markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); 1528 if (cmp != mark) { 1529 delete m; 1530 continue; // Interference -- just retry 1531 } 1532 1533 // We've successfully installed INFLATING (0) into the mark-word. 1534 // This is the only case where 0 will appear in a mark-word. 1535 // Only the singular thread that successfully swings the mark-word 1536 // to 0 can perform (or more precisely, complete) inflation. 1537 // 1538 // Why do we CAS a 0 into the mark-word instead of just CASing the 1539 // mark-word from the stack-locked value directly to the new inflated state? 1540 // Consider what happens when a thread unlocks a stack-locked object. 1541 // It attempts to use CAS to swing the displaced header value from the 1542 // on-stack BasicLock back into the object header. Recall also that the 1543 // header value (hash code, etc) can reside in (a) the object header, or 1544 // (b) a displaced header associated with the stack-lock, or (c) a displaced 1545 // header in an ObjectMonitor. The inflate() routine must copy the header 1546 // value from the BasicLock on the owner's stack to the ObjectMonitor, all 1547 // the while preserving the hashCode stability invariants. If the owner 1548 // decides to release the lock while the value is 0, the unlock will fail 1549 // and control will eventually pass from slow_exit() to inflate. The owner 1550 // will then spin, waiting for the 0 value to disappear. Put another way, 1551 // the 0 causes the owner to stall if the owner happens to try to 1552 // drop the lock (restoring the header from the BasicLock to the object) 1553 // while inflation is in-progress. This protocol avoids races that might 1554 // would otherwise permit hashCode values to change or "flicker" for an object. 1555 // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. 1556 // 0 serves as a "BUSY" inflate-in-progress indicator. 1557 1558 1559 // fetch the displaced mark from the owner's stack. 1560 // The owner can't die or unwind past the lock while our INFLATING 1561 // object is in the mark. Furthermore the owner can't complete 1562 // an unlock on the object, either. 1563 markWord dmw = mark.displaced_mark_helper(); 1564 // Catch if the object's header is not neutral (not locked and 1565 // not marked is what we care about here). 1566 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1567 1568 // Setup monitor fields to proper values -- prepare the monitor 1569 m->set_header(dmw); 1570 1571 // Note that a thread can inflate an object 1572 // that it has stack-locked -- as might happen in wait() -- directly 1573 // with CAS. That is, we can avoid the xchg-nullptr .... ST idiom. 1574 if (locking_thread != nullptr && locking_thread->is_lock_owned((address)mark.locker())) { 1575 m->set_owner(locking_thread); 1576 } else { 1577 // Use ANONYMOUS_OWNER to indicate that the owner is the BasicLock on the stack, 1578 // and set the stack locker field in the monitor. 1579 m->set_stack_locker(mark.locker()); 1580 m->set_anonymous_owner(); 1581 } 1582 // TODO-FIXME: assert BasicLock->dhw != 0. 1583 1584 // Must preserve store ordering. The monitor state must 1585 // be stable at the time of publishing the monitor address. 1586 guarantee(object->mark() == markWord::INFLATING(), "invariant"); 1587 // Release semantics so that above set_object() is seen first. 1588 object->release_set_mark(markWord::encode(m)); 1589 1590 // Once ObjectMonitor is configured and the object is associated 1591 // with the ObjectMonitor, it is safe to allow async deflation: 1592 _in_use_list.add(m); 1593 1594 if (log_is_enabled(Trace, monitorinflation)) { 1595 ResourceMark rm; 1596 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1597 INTPTR_FORMAT ", type='%s'", p2i(object), 1598 object->mark().value(), object->klass()->external_name()); 1599 } 1600 if (event.should_commit()) { 1601 post_monitor_inflate_event(&event, object, cause); 1602 } 1603 return m; 1604 } 1605 1606 // CASE: unlocked 1607 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. 1608 // If we know we're inflating for entry it's better to inflate by swinging a 1609 // pre-locked ObjectMonitor pointer into the object header. A successful 1610 // CAS inflates the object *and* confers ownership to the inflating thread. 1611 // In the current implementation we use a 2-step mechanism where we CAS() 1612 // to inflate and then CAS() again to try to swing _owner from null to current. 1613 // An inflateTry() method that we could call from enter() would be useful. 1614 1615 assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1616 ObjectMonitor* m = new ObjectMonitor(object); 1617 // prepare m for installation - set monitor to initial state 1618 m->set_header(mark); 1619 1620 if (object->cas_set_mark(markWord::encode(m), mark) != mark) { 1621 delete m; 1622 m = nullptr; 1623 continue; 1624 // interference - the markword changed - just retry. 1625 // The state-transitions are one-way, so there's no chance of 1626 // live-lock -- "Inflated" is an absorbing state. 1627 } 1628 1629 // Once the ObjectMonitor is configured and object is associated 1630 // with the ObjectMonitor, it is safe to allow async deflation: 1631 _in_use_list.add(m); 1632 1633 if (log_is_enabled(Trace, monitorinflation)) { 1634 ResourceMark rm; 1635 lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark=" 1636 INTPTR_FORMAT ", type='%s'", p2i(object), 1637 object->mark().value(), object->klass()->external_name()); 1638 } 1639 if (event.should_commit()) { 1640 post_monitor_inflate_event(&event, object, cause); 1641 } 1642 return m; 1643 } 1644 } 1645 1646 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle 1647 // ObjectMonitors. Returns the number of deflated ObjectMonitors. 1648 // 1649 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) { 1650 MonitorList::Iterator iter = _in_use_list.iterator(); 1651 size_t deflated_count = 0; 1652 Thread* current = Thread::current(); 1653 1654 while (iter.has_next()) { 1655 if (deflated_count >= (size_t)MonitorDeflationMax) { 1656 break; 1657 } 1658 ObjectMonitor* mid = iter.next(); 1659 if (mid->deflate_monitor(current)) { 1660 deflated_count++; 1661 } 1662 1663 // Must check for a safepoint/handshake and honor it. 1664 safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count); 1665 } 1666 1667 return deflated_count; 1668 } 1669 1670 class HandshakeForDeflation : public HandshakeClosure { 1671 public: 1672 HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {} 1673 1674 void do_thread(Thread* thread) { 1675 log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread=" 1676 INTPTR_FORMAT, p2i(thread)); 1677 if (thread->is_Java_thread()) { 1678 // Clear OM cache 1679 JavaThread* jt = JavaThread::cast(thread); 1680 jt->om_clear_monitor_cache(); 1681 } 1682 } 1683 }; 1684 1685 class VM_RendezvousGCThreads : public VM_Operation { 1686 public: 1687 bool evaluate_at_safepoint() const override { return false; } 1688 VMOp_Type type() const override { return VMOp_RendezvousGCThreads; } 1689 void doit() override { 1690 Universe::heap()->safepoint_synchronize_begin(); 1691 Universe::heap()->safepoint_synchronize_end(); 1692 }; 1693 }; 1694 1695 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list, 1696 ObjectMonitorDeflationSafepointer* safepointer) { 1697 NativeHeapTrimmer::SuspendMark sm("monitor deletion"); 1698 size_t deleted_count = 0; 1699 for (ObjectMonitor* monitor: *delete_list) { 1700 delete monitor; 1701 deleted_count++; 1702 // A JavaThread must check for a safepoint/handshake and honor it. 1703 safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count); 1704 } 1705 return deleted_count; 1706 } 1707 1708 class ObjectMonitorDeflationLogging: public StackObj { 1709 LogStreamHandle(Debug, monitorinflation) _debug; 1710 LogStreamHandle(Info, monitorinflation) _info; 1711 LogStream* _stream; 1712 elapsedTimer _timer; 1713 1714 size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); } 1715 size_t count() const { return ObjectSynchronizer::in_use_list_count(); } 1716 size_t max() const { return ObjectSynchronizer::in_use_list_max(); } 1717 1718 public: 1719 ObjectMonitorDeflationLogging() 1720 : _debug(), _info(), _stream(nullptr) { 1721 if (_debug.is_enabled()) { 1722 _stream = &_debug; 1723 } else if (_info.is_enabled()) { 1724 _stream = &_info; 1725 } 1726 } 1727 1728 void begin() { 1729 if (_stream != nullptr) { 1730 _stream->print_cr("begin deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu", 1731 ceiling(), count(), max()); 1732 _timer.start(); 1733 } 1734 } 1735 1736 void before_handshake(size_t unlinked_count) { 1737 if (_stream != nullptr) { 1738 _timer.stop(); 1739 _stream->print_cr("before handshaking: unlinked_count=%zu" 1740 ", in_use_list stats: ceiling=%zu, count=" 1741 "%zu, max=%zu", 1742 unlinked_count, ceiling(), count(), max()); 1743 } 1744 } 1745 1746 void after_handshake() { 1747 if (_stream != nullptr) { 1748 _stream->print_cr("after handshaking: in_use_list stats: ceiling=" 1749 "%zu, count=%zu, max=%zu", 1750 ceiling(), count(), max()); 1751 _timer.start(); 1752 } 1753 } 1754 1755 void end(size_t deflated_count, size_t unlinked_count) { 1756 if (_stream != nullptr) { 1757 _timer.stop(); 1758 if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) { 1759 _stream->print_cr("deflated_count=%zu, {unlinked,deleted}_count=%zu monitors in %3.7f secs", 1760 deflated_count, unlinked_count, _timer.seconds()); 1761 } 1762 _stream->print_cr("end deflating: in_use_list stats: ceiling=%zu, count=%zu, max=%zu", 1763 ceiling(), count(), max()); 1764 } 1765 } 1766 1767 void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) { 1768 if (_stream != nullptr) { 1769 _timer.stop(); 1770 _stream->print_cr("pausing %s: %s=%zu, in_use_list stats: ceiling=" 1771 "%zu, count=%zu, max=%zu", 1772 op_name, cnt_name, cnt, ceiling(), count(), max()); 1773 } 1774 } 1775 1776 void after_block_for_safepoint(const char* op_name) { 1777 if (_stream != nullptr) { 1778 _stream->print_cr("resuming %s: in_use_list stats: ceiling=%zu" 1779 ", count=%zu, max=%zu", op_name, 1780 ceiling(), count(), max()); 1781 _timer.start(); 1782 } 1783 } 1784 }; 1785 1786 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) { 1787 if (!SafepointMechanism::should_process(_current)) { 1788 return; 1789 } 1790 1791 // A safepoint/handshake has started. 1792 _log->before_block_for_safepoint(op_name, count_name, counter); 1793 1794 { 1795 // Honor block request. 1796 ThreadBlockInVM tbivm(_current); 1797 } 1798 1799 _log->after_block_for_safepoint(op_name); 1800 } 1801 1802 // This function is called by the MonitorDeflationThread to deflate 1803 // ObjectMonitors. 1804 size_t ObjectSynchronizer::deflate_idle_monitors() { 1805 JavaThread* current = JavaThread::current(); 1806 assert(current->is_monitor_deflation_thread(), "The only monitor deflater"); 1807 1808 // The async deflation request has been processed. 1809 _last_async_deflation_time_ns = os::javaTimeNanos(); 1810 set_is_async_deflation_requested(false); 1811 1812 ObjectMonitorDeflationLogging log; 1813 ObjectMonitorDeflationSafepointer safepointer(current, &log); 1814 1815 log.begin(); 1816 1817 // Deflate some idle ObjectMonitors. 1818 size_t deflated_count = deflate_monitor_list(&safepointer); 1819 1820 // Unlink the deflated ObjectMonitors from the in-use list. 1821 size_t unlinked_count = 0; 1822 size_t deleted_count = 0; 1823 if (deflated_count > 0) { 1824 ResourceMark rm(current); 1825 GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); 1826 unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer); 1827 1828 #ifdef ASSERT 1829 if (UseObjectMonitorTable) { 1830 for (ObjectMonitor* monitor : delete_list) { 1831 assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed"); 1832 } 1833 } 1834 #endif 1835 1836 log.before_handshake(unlinked_count); 1837 1838 // A JavaThread needs to handshake in order to safely free the 1839 // ObjectMonitors that were deflated in this cycle. 1840 HandshakeForDeflation hfd_hc; 1841 Handshake::execute(&hfd_hc); 1842 // Also, we sync and desync GC threads around the handshake, so that they can 1843 // safely read the mark-word and look-through to the object-monitor, without 1844 // being afraid that the object-monitor is going away. 1845 VM_RendezvousGCThreads sync_gc; 1846 VMThread::execute(&sync_gc); 1847 1848 log.after_handshake(); 1849 1850 // After the handshake, safely free the ObjectMonitors that were 1851 // deflated and unlinked in this cycle. 1852 1853 // Delete the unlinked ObjectMonitors. 1854 deleted_count = delete_monitors(&delete_list, &safepointer); 1855 assert(unlinked_count == deleted_count, "must be"); 1856 } 1857 1858 log.end(deflated_count, unlinked_count); 1859 1860 GVars.stw_random = os::random(); 1861 1862 if (deflated_count != 0) { 1863 _no_progress_cnt = 0; 1864 } else if (_no_progress_skip_increment) { 1865 _no_progress_skip_increment = false; 1866 } else { 1867 _no_progress_cnt++; 1868 } 1869 1870 return deflated_count; 1871 } 1872 1873 // Monitor cleanup on JavaThread::exit 1874 1875 // Iterate through monitor cache and attempt to release thread's monitors 1876 class ReleaseJavaMonitorsClosure: public MonitorClosure { 1877 private: 1878 JavaThread* _thread; 1879 1880 public: 1881 ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {} 1882 void do_monitor(ObjectMonitor* mid) { 1883 intx rec = mid->complete_exit(_thread); 1884 _thread->dec_held_monitor_count(rec + 1); 1885 } 1886 }; 1887 1888 // Release all inflated monitors owned by current thread. Lightweight monitors are 1889 // ignored. This is meant to be called during JNI thread detach which assumes 1890 // all remaining monitors are heavyweight. All exceptions are swallowed. 1891 // Scanning the extant monitor list can be time consuming. 1892 // A simple optimization is to add a per-thread flag that indicates a thread 1893 // called jni_monitorenter() during its lifetime. 1894 // 1895 // Instead of NoSafepointVerifier it might be cheaper to 1896 // use an idiom of the form: 1897 // auto int tmp = SafepointSynchronize::_safepoint_counter ; 1898 // <code that must not run at safepoint> 1899 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; 1900 // Since the tests are extremely cheap we could leave them enabled 1901 // for normal product builds. 1902 1903 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) { 1904 assert(current == JavaThread::current(), "must be current Java thread"); 1905 NoSafepointVerifier nsv; 1906 ReleaseJavaMonitorsClosure rjmc(current); 1907 ObjectSynchronizer::owned_monitors_iterate(&rjmc, current); 1908 assert(!current->has_pending_exception(), "Should not be possible"); 1909 current->clear_pending_exception(); 1910 assert(current->held_monitor_count() == 0, "Should not be possible"); 1911 // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count. 1912 current->clear_jni_monitor_count(); 1913 } 1914 1915 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { 1916 switch (cause) { 1917 case inflate_cause_vm_internal: return "VM Internal"; 1918 case inflate_cause_monitor_enter: return "Monitor Enter"; 1919 case inflate_cause_wait: return "Monitor Wait"; 1920 case inflate_cause_notify: return "Monitor Notify"; 1921 case inflate_cause_hash_code: return "Monitor Hash Code"; 1922 case inflate_cause_jni_enter: return "JNI Monitor Enter"; 1923 case inflate_cause_jni_exit: return "JNI Monitor Exit"; 1924 default: 1925 ShouldNotReachHere(); 1926 } 1927 return "Unknown"; 1928 } 1929 1930 //------------------------------------------------------------------------------ 1931 // Debugging code 1932 1933 u_char* ObjectSynchronizer::get_gvars_addr() { 1934 return (u_char*)&GVars; 1935 } 1936 1937 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { 1938 return (u_char*)&GVars.hc_sequence; 1939 } 1940 1941 size_t ObjectSynchronizer::get_gvars_size() { 1942 return sizeof(SharedGlobals); 1943 } 1944 1945 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { 1946 return (u_char*)&GVars.stw_random; 1947 } 1948 1949 // Do the final audit and print of ObjectMonitor stats; must be done 1950 // by the VMThread at VM exit time. 1951 void ObjectSynchronizer::do_final_audit_and_print_stats() { 1952 assert(Thread::current()->is_VM_thread(), "sanity check"); 1953 1954 if (is_final_audit()) { // Only do the audit once. 1955 return; 1956 } 1957 set_is_final_audit(); 1958 log_info(monitorinflation)("Starting the final audit."); 1959 1960 if (log_is_enabled(Info, monitorinflation)) { 1961 LogStreamHandle(Info, monitorinflation) ls; 1962 audit_and_print_stats(&ls, true /* on_exit */); 1963 } 1964 } 1965 1966 // This function can be called by the MonitorDeflationThread or it can be called when 1967 // we are trying to exit the VM. The list walker functions can run in parallel with 1968 // the other list operations. 1969 // Calls to this function can be added in various places as a debugging 1970 // aid. 1971 // 1972 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) { 1973 int error_cnt = 0; 1974 1975 ls->print_cr("Checking in_use_list:"); 1976 chk_in_use_list(ls, &error_cnt); 1977 1978 if (error_cnt == 0) { 1979 ls->print_cr("No errors found in in_use_list checks."); 1980 } else { 1981 log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); 1982 } 1983 1984 // When exiting, only log the interesting entries at the Info level. 1985 // When called at intervals by the MonitorDeflationThread, log output 1986 // at the Trace level since there can be a lot of it. 1987 if (!on_exit && log_is_enabled(Trace, monitorinflation)) { 1988 LogStreamHandle(Trace, monitorinflation) ls_tr; 1989 log_in_use_monitor_details(&ls_tr, true /* log_all */); 1990 } else if (on_exit) { 1991 log_in_use_monitor_details(ls, false /* log_all */); 1992 } 1993 1994 ls->flush(); 1995 1996 guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); 1997 } 1998 1999 // Check the in_use_list; log the results of the checks. 2000 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { 2001 size_t l_in_use_count = _in_use_list.count(); 2002 size_t l_in_use_max = _in_use_list.max(); 2003 out->print_cr("count=%zu, max=%zu", l_in_use_count, 2004 l_in_use_max); 2005 2006 size_t ck_in_use_count = 0; 2007 MonitorList::Iterator iter = _in_use_list.iterator(); 2008 while (iter.has_next()) { 2009 ObjectMonitor* mid = iter.next(); 2010 chk_in_use_entry(mid, out, error_cnt_p); 2011 ck_in_use_count++; 2012 } 2013 2014 if (l_in_use_count == ck_in_use_count) { 2015 out->print_cr("in_use_count=%zu equals ck_in_use_count=%zu", 2016 l_in_use_count, ck_in_use_count); 2017 } else { 2018 out->print_cr("WARNING: in_use_count=%zu is not equal to " 2019 "ck_in_use_count=%zu", l_in_use_count, 2020 ck_in_use_count); 2021 } 2022 2023 size_t ck_in_use_max = _in_use_list.max(); 2024 if (l_in_use_max == ck_in_use_max) { 2025 out->print_cr("in_use_max=%zu equals ck_in_use_max=%zu", 2026 l_in_use_max, ck_in_use_max); 2027 } else { 2028 out->print_cr("WARNING: in_use_max=%zu is not equal to " 2029 "ck_in_use_max=%zu", l_in_use_max, ck_in_use_max); 2030 } 2031 } 2032 2033 // Check an in-use monitor entry; log any errors. 2034 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, 2035 int* error_cnt_p) { 2036 if (n->owner_is_DEFLATER_MARKER()) { 2037 // This could happen when monitor deflation blocks for a safepoint. 2038 return; 2039 } 2040 2041 2042 if (n->metadata() == 0) { 2043 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " 2044 "have non-null _metadata (header/hash) field.", p2i(n)); 2045 *error_cnt_p = *error_cnt_p + 1; 2046 } 2047 2048 const oop obj = n->object_peek(); 2049 if (obj == nullptr) { 2050 return; 2051 } 2052 2053 const markWord mark = obj->mark(); 2054 if (!mark.has_monitor()) { 2055 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2056 "object does not think it has a monitor: obj=" 2057 INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), 2058 p2i(obj), mark.value()); 2059 *error_cnt_p = *error_cnt_p + 1; 2060 return; 2061 } 2062 2063 ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark); 2064 if (n != obj_mon) { 2065 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2066 "object does not refer to the same monitor: obj=" 2067 INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" 2068 INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); 2069 *error_cnt_p = *error_cnt_p + 1; 2070 } 2071 } 2072 2073 // Log details about ObjectMonitors on the in_use_list. The 'BHL' 2074 // flags indicate why the entry is in-use, 'object' and 'object type' 2075 // indicate the associated object and its type. 2076 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) { 2077 if (_in_use_list.count() > 0) { 2078 stringStream ss; 2079 out->print_cr("In-use monitor info%s:", log_all ? "" : " (eliding idle monitors)"); 2080 out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); 2081 out->print_cr("%18s %s %18s %18s", 2082 "monitor", "BHL", "object", "object type"); 2083 out->print_cr("================== === ================== =================="); 2084 2085 auto is_interesting = [&](ObjectMonitor* monitor) { 2086 return log_all || monitor->has_owner() || monitor->is_busy(); 2087 }; 2088 2089 monitors_iterate([&](ObjectMonitor* monitor) { 2090 if (is_interesting(monitor)) { 2091 const oop obj = monitor->object_peek(); 2092 const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash(); 2093 ResourceMark rm; 2094 out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(monitor), 2095 monitor->is_busy(), hash != 0, monitor->has_owner(), 2096 p2i(obj), obj == nullptr ? "" : obj->klass()->external_name()); 2097 if (monitor->is_busy()) { 2098 out->print(" (%s)", monitor->is_busy_to_string(&ss)); 2099 ss.reset(); 2100 } 2101 out->cr(); 2102 } 2103 }); 2104 } 2105 2106 out->flush(); 2107 }