1 /*
   2  * Copyright (c) 1994, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.annotation.Annotation;
  29 import java.lang.constant.ClassDesc;
  30 import java.lang.constant.ConstantDescs;
  31 import java.lang.invoke.TypeDescriptor;
  32 import java.lang.invoke.MethodHandles;
  33 import java.lang.ref.SoftReference;
  34 import java.io.IOException;
  35 import java.io.InputStream;
  36 import java.io.ObjectStreamField;
  37 import java.lang.reflect.AnnotatedElement;
  38 import java.lang.reflect.AnnotatedType;
  39 import java.lang.reflect.AccessFlag;
  40 import java.lang.reflect.Array;
  41 import java.lang.reflect.ClassFileFormatVersion;
  42 import java.lang.reflect.Constructor;
  43 import java.lang.reflect.Executable;
  44 import java.lang.reflect.Field;
  45 import java.lang.reflect.GenericArrayType;
  46 import java.lang.reflect.GenericDeclaration;
  47 import java.lang.reflect.InvocationTargetException;
  48 import java.lang.reflect.Member;
  49 import java.lang.reflect.Method;
  50 import java.lang.reflect.Modifier;
  51 import java.lang.reflect.Proxy;
  52 import java.lang.reflect.RecordComponent;
  53 import java.lang.reflect.Type;
  54 import java.lang.reflect.TypeVariable;
  55 import java.lang.constant.Constable;
  56 import java.net.URL;
  57 import java.security.AllPermission;
  58 import java.security.Permissions;
  59 import java.security.ProtectionDomain;
  60 import java.util.ArrayList;
  61 import java.util.Arrays;
  62 import java.util.Collection;
  63 import java.util.HashMap;
  64 import java.util.LinkedHashMap;
  65 import java.util.LinkedHashSet;
  66 import java.util.List;
  67 import java.util.Map;
  68 import java.util.Objects;
  69 import java.util.Optional;
  70 import java.util.Set;
  71 import java.util.stream.Collectors;
  72 
  73 import jdk.internal.constant.ConstantUtils;
  74 import jdk.internal.javac.PreviewFeature;
  75 import jdk.internal.loader.BootLoader;
  76 import jdk.internal.loader.BuiltinClassLoader;
  77 import jdk.internal.misc.PreviewFeatures;
  78 import jdk.internal.misc.Unsafe;
  79 import jdk.internal.module.Resources;
  80 import jdk.internal.reflect.CallerSensitive;
  81 import jdk.internal.reflect.CallerSensitiveAdapter;
  82 import jdk.internal.reflect.ConstantPool;
  83 import jdk.internal.reflect.Reflection;
  84 import jdk.internal.reflect.ReflectionFactory;
  85 import jdk.internal.vm.annotation.IntrinsicCandidate;
  86 import jdk.internal.vm.annotation.Stable;
  87 
  88 import sun.invoke.util.Wrapper;
  89 import sun.reflect.generics.factory.CoreReflectionFactory;
  90 import sun.reflect.generics.factory.GenericsFactory;
  91 import sun.reflect.generics.repository.ClassRepository;
  92 import sun.reflect.generics.repository.MethodRepository;
  93 import sun.reflect.generics.repository.ConstructorRepository;
  94 import sun.reflect.generics.scope.ClassScope;
  95 import sun.reflect.annotation.*;
  96 
  97 /**
  98  * Instances of the class {@code Class} represent classes and
  99  * interfaces in a running Java application. An enum class and a record
 100  * class are kinds of class; an annotation interface is a kind of
 101  * interface. Every array also belongs to a class that is reflected as
 102  * a {@code Class} object that is shared by all arrays with the same
 103  * element type and number of dimensions.  The primitive Java types
 104  * ({@code boolean}, {@code byte}, {@code char}, {@code short}, {@code
 105  * int}, {@code long}, {@code float}, and {@code double}), and the
 106  * keyword {@code void} are also represented as {@code Class} objects.
 107  *
 108  * <p> {@code Class} has no public constructor. Instead a {@code Class}
 109  * object is constructed automatically by the Java Virtual Machine when
 110  * a class is derived from the bytes of a {@code class} file through
 111  * the invocation of one of the following methods:
 112  * <ul>
 113  * <li> {@link ClassLoader#defineClass(String, byte[], int, int) ClassLoader::defineClass}
 114  * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineClass(byte[])
 115  *      java.lang.invoke.MethodHandles.Lookup::defineClass}
 116  * <li> {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
 117  *      java.lang.invoke.MethodHandles.Lookup::defineHiddenClass}
 118  * </ul>
 119  *
 120  * <p> The methods of class {@code Class} expose many characteristics of a
 121  * class or interface. Most characteristics are derived from the {@code class}
 122  * file that the class loader passed to the Java Virtual Machine or
 123  * from the {@code class} file passed to {@code Lookup::defineClass}
 124  * or {@code Lookup::defineHiddenClass}.
 125  * A few characteristics are determined by the class loading environment
 126  * at run time, such as the module returned by {@link #getModule() getModule()}.
 127  *
 128  * <p> The following example uses a {@code Class} object to print the
 129  * class name of an object:
 130  *
 131  * {@snippet lang="java" :
 132  * void printClassName(Object obj) {
 133  *     System.out.println("The class of " + obj +
 134  *                        " is " + obj.getClass().getName());
 135  * }}
 136  *
 137  * It is also possible to get the {@code Class} object for a named
 138  * class or interface (or for {@code void}) using a <dfn>class literal</dfn>
 139  * (JLS {@jls 15.8.2}).
 140  * For example:
 141  *
 142  * {@snippet lang="java" :
 143  * System.out.println("The name of class Foo is: " + Foo.class.getName()); // @highlight substring="Foo.class"
 144  * }
 145  *
 146  * <p> Some methods of class {@code Class} expose whether the declaration of
 147  * a class or interface in Java source code was <em>enclosed</em> within
 148  * another declaration. Other methods describe how a class or interface
 149  * is situated in a <dfn>{@index "nest"}</dfn>. A nest is a set of
 150  * classes and interfaces, in the same run-time package, that
 151  * allow mutual access to their {@code private} members.
 152  * The classes and interfaces are known as <dfn>{@index "nestmates"}</dfn>
 153  * (JVMS {@jvms 4.7.29}).
 154  * One nestmate acts as the
 155  * <dfn>nest host</dfn> (JVMS {@jvms 4.7.28}), and enumerates the other nestmates which
 156  * belong to the nest; each of them in turn records it as the nest host.
 157  * The classes and interfaces which belong to a nest, including its host, are
 158  * determined when
 159  * {@code class} files are generated, for example, a Java compiler
 160  * will typically record a top-level class as the host of a nest where the
 161  * other members are the classes and interfaces whose declarations are
 162  * enclosed within the top-level class declaration.
 163  *
 164  * <h2><a id=hiddenClasses>Hidden Classes</a></h2>
 165  * A class or interface created by the invocation of
 166  * {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
 167  * Lookup::defineHiddenClass} is a {@linkplain Class#isHidden() <dfn>hidden</dfn>}
 168  * class or interface.
 169  * All kinds of class, including enum classes and record classes, may be
 170  * hidden classes; all kinds of interface, including annotation interfaces,
 171  * may be hidden interfaces.
 172  *
 173  * The {@linkplain #getName() name of a hidden class or interface} is
 174  * not a {@linkplain ClassLoader##binary-name binary name},
 175  * which means the following:
 176  * <ul>
 177  * <li>A hidden class or interface cannot be referenced by the constant pools
 178  *     of other classes and interfaces.
 179  * <li>A hidden class or interface cannot be described in
 180  *     {@linkplain java.lang.constant.ConstantDesc <em>nominal form</em>} by
 181  *     {@link #describeConstable() Class::describeConstable},
 182  *     {@link ClassDesc#of(String) ClassDesc::of}, or
 183  *     {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}.
 184  * <li>A hidden class or interface cannot be discovered by {@link #forName Class::forName}
 185  *     or {@link ClassLoader#loadClass(String, boolean) ClassLoader::loadClass}.
 186  * </ul>
 187  *
 188  * A hidden class or interface is never an array class, but may be
 189  * the element type of an array. In all other respects, the fact that
 190  * a class or interface is hidden has no bearing on the characteristics
 191  * exposed by the methods of class {@code Class}.
 192  *
 193  * <h2><a id=implicitClasses>Implicitly Declared Classes</a></h2>
 194  *
 195  * Conventionally, a Java compiler, starting from a source file for an
 196  * implicitly declared class, say {@code HelloWorld.java}, creates a
 197  * similarly-named {@code class} file, {@code HelloWorld.class}, where
 198  * the class stored in that {@code class} file is named {@code
 199  * "HelloWorld"}, matching the base names of the source and {@code
 200  * class} files.
 201  *
 202  * For the {@code Class} object of an implicitly declared class {@code
 203  * HelloWorld}, the methods to get the {@linkplain #getName name} and
 204  * {@linkplain #getTypeName type name} return results
 205  * equal to {@code "HelloWorld"}. The {@linkplain #getSimpleName
 206  * simple name} of such an implicitly declared class is {@code "HelloWorld"} and
 207  * the {@linkplain #getCanonicalName canonical name} is {@code "HelloWorld"}.
 208  *
 209  * @param <T> the type of the class modeled by this {@code Class}
 210  * object.  For example, the type of {@code String.class} is {@code
 211  * Class<String>}.  Use {@code Class<?>} if the class being modeled is
 212  * unknown.
 213  *
 214  * @see     java.lang.ClassLoader#defineClass(byte[], int, int)
 215  * @since   1.0
 216  */
 217 public final class Class<T> implements java.io.Serializable,
 218                               GenericDeclaration,
 219                               Type,
 220                               AnnotatedElement,
 221                               TypeDescriptor.OfField<Class<?>>,
 222                               Constable {
 223     private static final int ANNOTATION = 0x00002000;
 224     private static final int ENUM       = 0x00004000;
 225     private static final int SYNTHETIC  = 0x00001000;
 226 
 227     private static native void registerNatives();
 228     static {
 229         runtimeSetup();
 230     }
 231 
 232     // Called from JVM when loading an AOT cache
 233     private static void runtimeSetup() {
 234         registerNatives();
 235     }
 236 
 237     /*
 238      * Private constructor. Only the Java Virtual Machine creates Class objects.
 239      * This constructor is not used and prevents the default constructor being
 240      * generated.
 241      */
 242     private Class(ClassLoader loader, Class<?> arrayComponentType, char mods, ProtectionDomain pd, boolean isPrim) {
 243         // Initialize final field for classLoader.  The initialization value of non-null
 244         // prevents future JIT optimizations from assuming this final field is null.
 245         // The following assignments are done directly by the VM without calling this constructor.
 246         classLoader = loader;
 247         componentType = arrayComponentType;
 248         modifiers = mods;
 249         protectionDomain = pd;
 250         primitive = isPrim;
 251     }
 252 
 253     /**
 254      * Converts the object to a string. The string representation is the
 255      * string "class" or "interface", followed by a space, and then by the
 256      * name of the class in the format returned by {@code getName}.
 257      * If this {@code Class} object represents a primitive type,
 258      * this method returns the name of the primitive type.  If
 259      * this {@code Class} object represents void this method returns
 260      * "void". If this {@code Class} object represents an array type,
 261      * this method returns "class " followed by {@code getName}.
 262      *
 263      * @return a string representation of this {@code Class} object.
 264      */
 265     public String toString() {
 266         String kind = isInterface() ? "interface " : isPrimitive() ? "" : "class ";
 267         return kind.concat(getName());
 268     }
 269 
 270     /**
 271      * Returns a string describing this {@code Class}, including
 272      * information about modifiers, {@link #isSealed() sealed}/{@code
 273      * non-sealed} status, and type parameters.
 274      *
 275      * The string is formatted as a list of type modifiers, if any,
 276      * followed by the kind of type (empty string for primitive types
 277      * and {@code class}, {@code enum}, {@code interface},
 278      * {@code @interface}, or {@code record} as appropriate), followed
 279      * by the type's name, followed by an angle-bracketed
 280      * comma-separated list of the type's type parameters, if any,
 281      * including informative bounds on the type parameters, if any.
 282      *
 283      * A space is used to separate modifiers from one another and to
 284      * separate any modifiers from the kind of type. The modifiers
 285      * occur in canonical order. If there are no type parameters, the
 286      * type parameter list is elided.
 287      *
 288      * For an array type, the string starts with the type name,
 289      * followed by an angle-bracketed comma-separated list of the
 290      * type's type parameters, if any, followed by a sequence of
 291      * {@code []} characters, one set of brackets per dimension of
 292      * the array.
 293      *
 294      * <p>Note that since information about the runtime representation
 295      * of a type is being generated, modifiers not present on the
 296      * originating source code or illegal on the originating source
 297      * code may be present.
 298      *
 299      * @return a string describing this {@code Class}, including
 300      * information about modifiers and type parameters
 301      *
 302      * @since 1.8
 303      */
 304     public String toGenericString() {
 305         if (isPrimitive()) {
 306             return toString();
 307         } else {
 308             StringBuilder sb = new StringBuilder();
 309             Class<?> component = this;
 310             int arrayDepth = 0;
 311 
 312             if (isArray()) {
 313                 do {
 314                     arrayDepth++;
 315                     component = component.getComponentType();
 316                 } while (component.isArray());
 317                 sb.append(component.getName());
 318             } else {
 319                 // Class modifiers are a superset of interface modifiers
 320                 int modifiers = getModifiers() & Modifier.classModifiers();
 321                 // Modifier.toString() below mis-interprets SYNCHRONIZED, STRICT, and VOLATILE bits
 322                 modifiers &= ~(Modifier.SYNCHRONIZED | Modifier.STRICT | Modifier.VOLATILE);
 323                 if (modifiers != 0) {
 324                     sb.append(Modifier.toString(modifiers));
 325                     sb.append(' ');
 326                 }
 327 
 328                 // A class cannot be strictfp and sealed/non-sealed so
 329                 // it is sufficient to check for sealed-ness after all
 330                 // modifiers are printed.
 331                 addSealingInfo(modifiers, sb);
 332 
 333                 if (isAnnotation()) {
 334                     sb.append('@');
 335                 }
 336                 if (isValue()) {
 337                     sb.append("value ");
 338                 }
 339                 if (isInterface()) { // Note: all annotation interfaces are interfaces
 340                     sb.append("interface");
 341                 } else {
 342                     if (isEnum())
 343                         sb.append("enum");
 344                     else if (isRecord())
 345                         sb.append("record");
 346                     else
 347                         sb.append("class");
 348                 }
 349                 sb.append(' ');
 350                 sb.append(getName());
 351             }
 352 
 353             TypeVariable<?>[] typeparms = component.getTypeParameters();
 354             if (typeparms.length > 0) {
 355                 sb.append(Arrays.stream(typeparms)
 356                           .map(Class::typeVarBounds)
 357                           .collect(Collectors.joining(",", "<", ">")));
 358             }
 359 
 360             if (arrayDepth > 0) sb.append("[]".repeat(arrayDepth));
 361 
 362             return sb.toString();
 363         }
 364     }
 365 
 366     private void addSealingInfo(int modifiers, StringBuilder sb) {
 367         // A class can be final XOR sealed XOR non-sealed.
 368         if (Modifier.isFinal(modifiers)) {
 369             return; // no-op
 370         } else {
 371             if (isSealed()) {
 372                 sb.append("sealed ");
 373                 return;
 374             } else {
 375                 // Check for sealed ancestor, which implies this class
 376                 // is non-sealed.
 377                 if (hasSealedAncestor(this)) {
 378                     sb.append("non-sealed ");
 379                 }
 380             }
 381         }
 382     }
 383 
 384     private boolean hasSealedAncestor(Class<?> clazz) {
 385         // From JLS 8.1.1.2:
 386         // "It is a compile-time error if a class has a sealed direct
 387         // superclass or a sealed direct superinterface, and is not
 388         // declared final, sealed, or non-sealed either explicitly or
 389         // implicitly.
 390         // Thus, an effect of the sealed keyword is to force all
 391         // direct subclasses to explicitly declare whether they are
 392         // final, sealed, or non-sealed. This avoids accidentally
 393         // exposing a sealed class hierarchy to unwanted subclassing."
 394 
 395         // Therefore, will just check direct superclass and
 396         // superinterfaces.
 397         var superclass = clazz.getSuperclass();
 398         if (superclass != null && superclass.isSealed()) {
 399             return true;
 400         }
 401         for (var superinterface : clazz.getInterfaces()) {
 402             if (superinterface.isSealed()) {
 403                 return true;
 404             }
 405         }
 406         return false;
 407     }
 408 
 409     static String typeVarBounds(TypeVariable<?> typeVar) {
 410         Type[] bounds = typeVar.getBounds();
 411         if (bounds.length == 1 && bounds[0].equals(Object.class)) {
 412             return typeVar.getName();
 413         } else {
 414             return typeVar.getName() + " extends " +
 415                 Arrays.stream(bounds)
 416                 .map(Type::getTypeName)
 417                 .collect(Collectors.joining(" & "));
 418         }
 419     }
 420 
 421     /**
 422      * Returns the {@code Class} object associated with the class or
 423      * interface with the given string name.  Invoking this method is
 424      * equivalent to:
 425      *
 426      * {@snippet lang="java" :
 427      * Class.forName(className, true, currentLoader)
 428      * }
 429      *
 430      * where {@code currentLoader} denotes the defining class loader of
 431      * the current class.
 432      *
 433      * <p> For example, the following code fragment returns the
 434      * runtime {@code Class} object for the class named
 435      * {@code java.lang.Thread}:
 436      *
 437      * {@snippet lang="java" :
 438      * Class<?> t = Class.forName("java.lang.Thread");
 439      * }
 440      * <p>
 441      * A call to {@code forName("X")} causes the class named
 442      * {@code X} to be initialized.
 443      *
 444      * <p>
 445      * In cases where this method is called from a context where there is no
 446      * caller frame on the stack (e.g. when called directly from a JNI
 447      * attached thread), the system class loader is used.
 448      *
 449      * @param     className the {@linkplain ClassLoader##binary-name binary name}
 450      *                      of the class or the string representing an array type
 451      * @return    the {@code Class} object for the class with the
 452      *            specified name.
 453      * @throws    LinkageError if the linkage fails
 454      * @throws    ExceptionInInitializerError if the initialization provoked
 455      *            by this method fails
 456      * @throws    ClassNotFoundException if the class cannot be located
 457      *
 458      * @jls 12.2 Loading of Classes and Interfaces
 459      * @jls 12.3 Linking of Classes and Interfaces
 460      * @jls 12.4 Initialization of Classes and Interfaces
 461      */
 462     @CallerSensitive
 463     public static Class<?> forName(String className)
 464                 throws ClassNotFoundException {
 465         Class<?> caller = Reflection.getCallerClass();
 466         return forName(className, caller);
 467     }
 468 
 469     // Caller-sensitive adapter method for reflective invocation
 470     @CallerSensitiveAdapter
 471     private static Class<?> forName(String className, Class<?> caller)
 472             throws ClassNotFoundException {
 473         ClassLoader loader = (caller == null) ? ClassLoader.getSystemClassLoader()
 474                                               : ClassLoader.getClassLoader(caller);
 475         return forName0(className, true, loader, caller);
 476     }
 477 
 478     /**
 479      * Returns the {@code Class} object associated with the class or
 480      * interface with the given string name, using the given class loader.
 481      * Given the {@linkplain ClassLoader##binary-name binary name} for a class or interface,
 482      * this method attempts to locate and load the class or interface. The specified
 483      * class loader is used to load the class or interface.  If the parameter
 484      * {@code loader} is {@code null}, the class is loaded through the bootstrap
 485      * class loader.  The class is initialized only if the
 486      * {@code initialize} parameter is {@code true} and if it has
 487      * not been initialized earlier.
 488      *
 489      * <p> This method cannot be used to obtain any of the {@code Class} objects
 490      * representing primitive types or void, hidden classes or interfaces,
 491      * or array classes whose element type is a hidden class or interface.
 492      * If {@code name} denotes a primitive type or void, for example {@code I},
 493      * an attempt will be made to locate a user-defined class in the unnamed package
 494      * whose name is {@code I} instead.
 495      * To obtain a {@code Class} object for a named primitive type
 496      * such as {@code int} or {@code long} use {@link
 497      * #forPrimitiveName(String)}.
 498      *
 499      * <p> To obtain the {@code Class} object associated with an array class,
 500      * the name consists of one or more {@code '['} representing the depth
 501      * of the array nesting, followed by the element type as encoded in
 502      * {@linkplain ##nameFormat the table} specified in {@code Class.getName()}.
 503      *
 504      * <p> Examples:
 505      * {@snippet lang="java" :
 506      * Class<?> threadClass = Class.forName("java.lang.Thread", false, currentLoader);
 507      * Class<?> stringArrayClass = Class.forName("[Ljava.lang.String;", false, currentLoader);
 508      * Class<?> intArrayClass = Class.forName("[[[I", false, currentLoader);   // Class of int[][][]
 509      * Class<?> nestedClass = Class.forName("java.lang.Character$UnicodeBlock", false, currentLoader);
 510      * Class<?> fooClass = Class.forName("Foo", true, currentLoader);
 511      * }
 512      *
 513      * <p> A call to {@code getName()} on the {@code Class} object returned
 514      * from {@code forName(}<i>N</i>{@code )} returns <i>N</i>.
 515      *
 516      * <p> A call to {@code forName("[L}<i>N</i>{@code ;")} causes the element type
 517      * named <i>N</i> to be loaded but not initialized regardless of the value
 518      * of the {@code initialize} parameter.
 519      *
 520      * @apiNote
 521      * This method throws errors related to loading, linking or initializing
 522      * as specified in Sections {@jls 12.2}, {@jls 12.3}, and {@jls 12.4} of
 523      * <cite>The Java Language Specification</cite>.
 524      * In addition, this method does not check whether the requested class
 525      * is accessible to its caller.
 526      *
 527      * @param name       the {@linkplain ClassLoader##binary-name binary name}
 528      *                   of the class or the string representing an array class
 529      *
 530      * @param initialize if {@code true} the class will be initialized
 531      *                   (which implies linking). See Section {@jls
 532      *                   12.4} of <cite>The Java Language
 533      *                   Specification</cite>.
 534      * @param loader     class loader from which the class must be loaded
 535      * @return           class object representing the desired class
 536      *
 537      * @throws    LinkageError if the linkage fails
 538      * @throws    ExceptionInInitializerError if the initialization provoked
 539      *            by this method fails
 540      * @throws    ClassNotFoundException if the class cannot be located by
 541      *            the specified class loader
 542      *
 543      * @see       java.lang.Class#forName(String)
 544      * @see       java.lang.ClassLoader
 545      *
 546      * @jls 12.2 Loading of Classes and Interfaces
 547      * @jls 12.3 Linking of Classes and Interfaces
 548      * @jls 12.4 Initialization of Classes and Interfaces
 549      * @jls 13.1 The Form of a Binary
 550      * @since     1.2
 551      */
 552     public static Class<?> forName(String name, boolean initialize, ClassLoader loader)
 553         throws ClassNotFoundException
 554     {
 555         return forName0(name, initialize, loader, null);
 556     }
 557 
 558     /** Called after security check for system loader access checks have been made. */
 559     private static native Class<?> forName0(String name, boolean initialize,
 560                                             ClassLoader loader,
 561                                             Class<?> caller)
 562         throws ClassNotFoundException;
 563 
 564 
 565     /**
 566      * Returns the {@code Class} with the given {@linkplain ClassLoader##binary-name
 567      * binary name} in the given module.
 568      *
 569      * <p> This method attempts to locate and load the class or interface.
 570      * It does not link the class, and does not run the class initializer.
 571      * If the class is not found, this method returns {@code null}. </p>
 572      *
 573      * <p> If the class loader of the given module defines other modules and
 574      * the given name is a class defined in a different module, this method
 575      * returns {@code null} after the class is loaded. </p>
 576      *
 577      * <p> This method does not check whether the requested class is
 578      * accessible to its caller. </p>
 579      *
 580      * @apiNote
 581      * This method does not support loading of array types, unlike
 582      * {@link #forName(String, boolean, ClassLoader)}. The class name must be
 583      * a binary name.  This method returns {@code null} on failure rather than
 584      * throwing a {@link ClassNotFoundException}, as is done by
 585      * the {@link #forName(String, boolean, ClassLoader)} method.
 586      *
 587      * @param  module   A module
 588      * @param  name     The {@linkplain ClassLoader##binary-name binary name}
 589      *                  of the class
 590      * @return {@code Class} object of the given name defined in the given module;
 591      *         {@code null} if not found.
 592      *
 593      * @throws NullPointerException if the given module or name is {@code null}
 594      *
 595      * @throws LinkageError if the linkage fails
 596      *
 597      * @jls 12.2 Loading of Classes and Interfaces
 598      * @jls 12.3 Linking of Classes and Interfaces
 599      * @since 9
 600      */
 601     public static Class<?> forName(Module module, String name) {
 602         Objects.requireNonNull(module);
 603         Objects.requireNonNull(name);
 604 
 605         ClassLoader cl = module.getClassLoader();
 606         if (cl != null) {
 607             return cl.loadClass(module, name);
 608         } else {
 609             return BootLoader.loadClass(module, name);
 610         }
 611     }
 612 
 613     /**
 614      * {@return {@code true} if this {@code Class} object represents an identity
 615      * class or interface; otherwise {@code false}}
 616      *
 617      * If this {@code Class} object represents an array type, then this method
 618      * returns {@code true}.
 619      * If this {@code Class} object represents a primitive type, or {@code void},
 620      * then this method returns {@code false}.
 621      *
 622      * @since Valhalla
 623      */
 624     @PreviewFeature(feature = PreviewFeature.Feature.VALUE_OBJECTS, reflective=true)
 625     public native boolean isIdentity();
 626 
 627     /**
 628      * {@return {@code true} if this {@code Class} object represents a value
 629      * class; otherwise {@code false}}
 630      *
 631      * If this {@code Class} object represents an array type, an interface,
 632      * a primitive type, or {@code void}, then this method returns {@code false}.
 633      *
 634      * @since Valhalla
 635      */
 636     @PreviewFeature(feature = PreviewFeature.Feature.VALUE_OBJECTS, reflective=true)
 637     public boolean isValue() {
 638         if (!PreviewFeatures.isEnabled()) {
 639             return false;
 640         }
 641          if (isPrimitive() || isArray() || isInterface())
 642              return false;
 643         return ((getModifiers() & Modifier.IDENTITY) == 0);
 644     }
 645 
 646     /**
 647      * {@return the {@code Class} object associated with the
 648      * {@linkplain #isPrimitive() primitive type} of the given name}
 649      * If the argument is not the name of a primitive type, {@code
 650      * null} is returned.
 651      *
 652      * @param primitiveName the name of the primitive type to find
 653      *
 654      * @throws NullPointerException if the argument is {@code null}
 655      *
 656      * @jls 4.2 Primitive Types and Values
 657      * @jls 15.8.2 Class Literals
 658      * @since 22
 659      */
 660     public static Class<?> forPrimitiveName(String primitiveName) {
 661         return switch(primitiveName) {
 662         // Integral types
 663         case "int"     -> int.class;
 664         case "long"    -> long.class;
 665         case "short"   -> short.class;
 666         case "char"    -> char.class;
 667         case "byte"    -> byte.class;
 668 
 669         // Floating-point types
 670         case "float"   -> float.class;
 671         case "double"  -> double.class;
 672 
 673         // Other types
 674         case "boolean" -> boolean.class;
 675         case "void"    -> void.class;
 676 
 677         default        -> null;
 678         };
 679     }
 680 
 681     /**
 682      * Creates a new instance of the class represented by this {@code Class}
 683      * object.  The class is instantiated as if by a {@code new}
 684      * expression with an empty argument list.  The class is initialized if it
 685      * has not already been initialized.
 686      *
 687      * @deprecated This method propagates any exception thrown by the
 688      * nullary constructor, including a checked exception.  Use of
 689      * this method effectively bypasses the compile-time exception
 690      * checking that would otherwise be performed by the compiler.
 691      * The {@link
 692      * java.lang.reflect.Constructor#newInstance(java.lang.Object...)
 693      * Constructor.newInstance} method avoids this problem by wrapping
 694      * any exception thrown by the constructor in a (checked) {@link
 695      * java.lang.reflect.InvocationTargetException}.
 696      *
 697      * <p>The call
 698      *
 699      * {@snippet lang="java" :
 700      * clazz.newInstance()
 701      * }
 702      *
 703      * can be replaced by
 704      *
 705      * {@snippet lang="java" :
 706      * clazz.getDeclaredConstructor().newInstance()
 707      * }
 708      *
 709      * The latter sequence of calls is inferred to be able to throw
 710      * the additional exception types {@link
 711      * InvocationTargetException} and {@link
 712      * NoSuchMethodException}. Both of these exception types are
 713      * subclasses of {@link ReflectiveOperationException}.
 714      *
 715      * @return  a newly allocated instance of the class represented by this
 716      *          object.
 717      * @throws  IllegalAccessException  if the class or its nullary
 718      *          constructor is not accessible.
 719      * @throws  InstantiationException
 720      *          if this {@code Class} represents an abstract class,
 721      *          an interface, an array class, a primitive type, or void;
 722      *          or if the class has no nullary constructor;
 723      *          or if the instantiation fails for some other reason.
 724      * @throws  ExceptionInInitializerError if the initialization
 725      *          provoked by this method fails.
 726      */
 727     @CallerSensitive
 728     @Deprecated(since="9")
 729     public T newInstance()
 730         throws InstantiationException, IllegalAccessException
 731     {
 732         // Constructor lookup
 733         Constructor<T> tmpConstructor = cachedConstructor;
 734         if (tmpConstructor == null) {
 735             if (this == Class.class) {
 736                 throw new IllegalAccessException(
 737                     "Can not call newInstance() on the Class for java.lang.Class"
 738                 );
 739             }
 740             try {
 741                 Class<?>[] empty = {};
 742                 final Constructor<T> c = getReflectionFactory().copyConstructor(
 743                     getConstructor0(empty, Member.DECLARED));
 744                 // Disable accessibility checks on the constructor
 745                 // access check is done with the true caller
 746                 c.setAccessible(true);
 747                 cachedConstructor = tmpConstructor = c;
 748             } catch (NoSuchMethodException e) {
 749                 throw (InstantiationException)
 750                     new InstantiationException(getName()).initCause(e);
 751             }
 752         }
 753 
 754         try {
 755             Class<?> caller = Reflection.getCallerClass();
 756             return getReflectionFactory().newInstance(tmpConstructor, null, caller);
 757         } catch (InvocationTargetException e) {
 758             Unsafe.getUnsafe().throwException(e.getTargetException());
 759             // Not reached
 760             return null;
 761         }
 762     }
 763 
 764     private transient volatile Constructor<T> cachedConstructor;
 765 
 766     /**
 767      * Determines if the specified {@code Object} is assignment-compatible
 768      * with the object represented by this {@code Class}.  This method is
 769      * the dynamic equivalent of the Java language {@code instanceof}
 770      * operator. The method returns {@code true} if the specified
 771      * {@code Object} argument is non-null and can be cast to the
 772      * reference type represented by this {@code Class} object without
 773      * raising a {@code ClassCastException.} It returns {@code false}
 774      * otherwise.
 775      *
 776      * <p> Specifically, if this {@code Class} object represents a
 777      * declared class, this method returns {@code true} if the specified
 778      * {@code Object} argument is an instance of the represented class (or
 779      * of any of its subclasses); it returns {@code false} otherwise. If
 780      * this {@code Class} object represents an array class, this method
 781      * returns {@code true} if the specified {@code Object} argument
 782      * can be converted to an object of the array class by an identity
 783      * conversion or by a widening reference conversion; it returns
 784      * {@code false} otherwise. If this {@code Class} object
 785      * represents an interface, this method returns {@code true} if the
 786      * class or any superclass of the specified {@code Object} argument
 787      * implements this interface; it returns {@code false} otherwise. If
 788      * this {@code Class} object represents a primitive type, this method
 789      * returns {@code false}.
 790      *
 791      * @param   obj the object to check
 792      * @return  true if {@code obj} is an instance of this class
 793      *
 794      * @since 1.1
 795      */
 796     @IntrinsicCandidate
 797     public native boolean isInstance(Object obj);
 798 
 799 
 800     /**
 801      * Determines if the class or interface represented by this
 802      * {@code Class} object is either the same as, or is a superclass or
 803      * superinterface of, the class or interface represented by the specified
 804      * {@code Class} parameter. It returns {@code true} if so;
 805      * otherwise it returns {@code false}. If this {@code Class}
 806      * object represents a primitive type, this method returns
 807      * {@code true} if the specified {@code Class} parameter is
 808      * exactly this {@code Class} object; otherwise it returns
 809      * {@code false}.
 810      *
 811      * <p> Specifically, this method tests whether the type represented by the
 812      * specified {@code Class} parameter can be converted to the type
 813      * represented by this {@code Class} object via an identity conversion
 814      * or via a widening reference conversion. See <cite>The Java Language
 815      * Specification</cite>, sections {@jls 5.1.1} and {@jls 5.1.4},
 816      * for details.
 817      *
 818      * @param     cls the {@code Class} object to be checked
 819      * @return    the {@code boolean} value indicating whether objects of the
 820      *            type {@code cls} can be assigned to objects of this class
 821      * @throws    NullPointerException if the specified Class parameter is
 822      *            null.
 823      * @since     1.1
 824      */
 825     @IntrinsicCandidate
 826     public native boolean isAssignableFrom(Class<?> cls);
 827 
 828 
 829     /**
 830      * Determines if this {@code Class} object represents an
 831      * interface type.
 832      *
 833      * @return  {@code true} if this {@code Class} object represents an interface;
 834      *          {@code false} otherwise.
 835      */
 836     public boolean isInterface() {
 837         return Modifier.isInterface(modifiers);
 838     }
 839 
 840 
 841     /**
 842      * Determines if this {@code Class} object represents an array class.
 843      *
 844      * @return  {@code true} if this {@code Class} object represents an array class;
 845      *          {@code false} otherwise.
 846      * @since   1.1
 847      */
 848     public boolean isArray() {
 849         return componentType != null;
 850     }
 851 
 852 
 853     /**
 854      * Determines if this {@code Class} object represents a primitive
 855      * type or void.
 856      *
 857      * <p> There are nine predefined {@code Class} objects to
 858      * represent the eight primitive types and void.  These are
 859      * created by the Java Virtual Machine, and have the same
 860      * {@linkplain #getName() names} as the primitive types that they
 861      * represent, namely {@code boolean}, {@code byte}, {@code char},
 862      * {@code short}, {@code int}, {@code long}, {@code float}, and
 863      * {@code double}.
 864      *
 865      * <p>No other class objects are considered primitive.
 866      *
 867      * @apiNote
 868      * A {@code Class} object represented by a primitive type can be
 869      * accessed via the {@code TYPE} public static final variables
 870      * defined in the primitive wrapper classes such as {@link
 871      * java.lang.Integer#TYPE Integer.TYPE}. In the Java programming
 872      * language, the objects may be referred to by a class literal
 873      * expression such as {@code int.class}.  The {@code Class} object
 874      * for void can be expressed as {@code void.class} or {@link
 875      * java.lang.Void#TYPE Void.TYPE}.
 876      *
 877      * @return true if and only if this class represents a primitive type
 878      *
 879      * @see     java.lang.Boolean#TYPE
 880      * @see     java.lang.Character#TYPE
 881      * @see     java.lang.Byte#TYPE
 882      * @see     java.lang.Short#TYPE
 883      * @see     java.lang.Integer#TYPE
 884      * @see     java.lang.Long#TYPE
 885      * @see     java.lang.Float#TYPE
 886      * @see     java.lang.Double#TYPE
 887      * @see     java.lang.Void#TYPE
 888      * @since 1.1
 889      * @jls 15.8.2 Class Literals
 890      */
 891     public boolean isPrimitive() {
 892         return primitive;
 893     }
 894 
 895     /**
 896      * Returns true if this {@code Class} object represents an annotation
 897      * interface.  Note that if this method returns true, {@link #isInterface()}
 898      * would also return true, as all annotation interfaces are also interfaces.
 899      *
 900      * @return {@code true} if this {@code Class} object represents an annotation
 901      *      interface; {@code false} otherwise
 902      * @since 1.5
 903      */
 904     public boolean isAnnotation() {
 905         return (getModifiers() & ANNOTATION) != 0;
 906     }
 907 
 908     /**
 909      *{@return {@code true} if and only if this class has the synthetic modifier
 910      * bit set}
 911      *
 912      * @jls 13.1 The Form of a Binary
 913      * @jvms 4.1 The {@code ClassFile} Structure
 914      * @see <a
 915      * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java
 916      * programming language and JVM modeling in core reflection</a>
 917      * @since 1.5
 918      */
 919     public boolean isSynthetic() {
 920         return (getModifiers() & SYNTHETIC) != 0;
 921     }
 922 
 923     /**
 924      * Returns the  name of the entity (class, interface, array class,
 925      * primitive type, or void) represented by this {@code Class} object.
 926      *
 927      * <p> If this {@code Class} object represents a class or interface,
 928      * not an array class, then:
 929      * <ul>
 930      * <li> If the class or interface is not {@linkplain #isHidden() hidden},
 931      *      then the {@linkplain ClassLoader##binary-name binary name}
 932      *      of the class or interface is returned.
 933      * <li> If the class or interface is hidden, then the result is a string
 934      *      of the form: {@code N + '/' + <suffix>}
 935      *      where {@code N} is the {@linkplain ClassLoader##binary-name binary name}
 936      *      indicated by the {@code class} file passed to
 937      *      {@link java.lang.invoke.MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
 938      *      Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name.
 939      * </ul>
 940      *
 941      * <p> If this {@code Class} object represents an array class, then
 942      * the result is a string consisting of one or more '{@code [}' characters
 943      * representing the depth of the array nesting, followed by the element
 944      * type as encoded using the following table:
 945      *
 946      * <blockquote><table class="striped" id="nameFormat">
 947      * <caption style="display:none">Element types and encodings</caption>
 948      * <thead>
 949      * <tr><th scope="col"> Element Type <th scope="col"> Encoding
 950      * </thead>
 951      * <tbody style="text-align:left">
 952      * <tr><th scope="row"> {@code boolean} <td style="text-align:center"> {@code Z}
 953      * <tr><th scope="row"> {@code byte}    <td style="text-align:center"> {@code B}
 954      * <tr><th scope="row"> {@code char}    <td style="text-align:center"> {@code C}
 955      * <tr><th scope="row"> class or interface with {@linkplain ClassLoader##binary-name binary name} <i>N</i>
 956      *                                      <td style="text-align:center"> {@code L}<em>N</em>{@code ;}
 957      * <tr><th scope="row"> {@code double}  <td style="text-align:center"> {@code D}
 958      * <tr><th scope="row"> {@code float}   <td style="text-align:center"> {@code F}
 959      * <tr><th scope="row"> {@code int}     <td style="text-align:center"> {@code I}
 960      * <tr><th scope="row"> {@code long}    <td style="text-align:center"> {@code J}
 961      * <tr><th scope="row"> {@code short}   <td style="text-align:center"> {@code S}
 962      * </tbody>
 963      * </table></blockquote>
 964      *
 965      * <p> If this {@code Class} object represents a primitive type or {@code void},
 966      * then the result is a string with the same spelling as the Java language
 967      * keyword which corresponds to the primitive type or {@code void}.
 968      *
 969      * <p> Examples:
 970      * <blockquote><pre>
 971      * String.class.getName()
 972      *     returns "java.lang.String"
 973      * Character.UnicodeBlock.class.getName()
 974      *     returns "java.lang.Character$UnicodeBlock"
 975      * byte.class.getName()
 976      *     returns "byte"
 977      * (new Object[3]).getClass().getName()
 978      *     returns "[Ljava.lang.Object;"
 979      * (new int[3][4][5][6][7][8][9]).getClass().getName()
 980      *     returns "[[[[[[[I"
 981      * </pre></blockquote>
 982      *
 983      * @apiNote
 984      * Distinct class objects can have the same name but different class loaders.
 985      *
 986      * @return  the name of the class, interface, or other entity
 987      *          represented by this {@code Class} object.
 988      * @jls 13.1 The Form of a Binary
 989      */
 990     public String getName() {
 991         String name = this.name;
 992         return name != null ? name : initClassName();
 993     }
 994 
 995     // Cache the name to reduce the number of calls into the VM.
 996     // This field would be set by VM itself during initClassName call.
 997     private transient String name;
 998     private native String initClassName();
 999 
1000     /**
1001      * Returns the class loader for the class.  Some implementations may use
1002      * null to represent the bootstrap class loader. This method will return
1003      * null in such implementations if this class was loaded by the bootstrap
1004      * class loader.
1005      *
1006      * <p>If this {@code Class} object
1007      * represents a primitive type or void, null is returned.
1008      *
1009      * @return  the class loader that loaded the class or interface
1010      *          represented by this {@code Class} object.
1011      * @see java.lang.ClassLoader
1012      */
1013     public ClassLoader getClassLoader() {
1014         return classLoader;
1015     }
1016 
1017     // Package-private to allow ClassLoader access
1018     ClassLoader getClassLoader0() { return classLoader; }
1019 
1020     /**
1021      * Returns the module that this class or interface is a member of.
1022      *
1023      * If this class represents an array type then this method returns the
1024      * {@code Module} for the element type. If this class represents a
1025      * primitive type or void, then the {@code Module} object for the
1026      * {@code java.base} module is returned.
1027      *
1028      * If this class is in an unnamed module then the {@linkplain
1029      * ClassLoader#getUnnamedModule() unnamed} {@code Module} of the class
1030      * loader for this class is returned.
1031      *
1032      * @return the module that this class or interface is a member of
1033      *
1034      * @since 9
1035      */
1036     public Module getModule() {
1037         return module;
1038     }
1039 
1040     // set by VM
1041     @Stable
1042     private transient Module module;
1043 
1044     // Initialized in JVM not by private constructor
1045     // This field is filtered from reflection access, i.e. getDeclaredField
1046     // will throw NoSuchFieldException
1047     private final ClassLoader classLoader;
1048 
1049     private transient Object classData; // Set by VM
1050     private transient Object[] signers; // Read by VM, mutable
1051     private final transient char modifiers;  // Set by the VM
1052     private final transient boolean primitive;  // Set by the VM if the Class is a primitive type.
1053 
1054     // package-private
1055     Object getClassData() {
1056         return classData;
1057     }
1058 
1059     /**
1060      * Returns an array of {@code TypeVariable} objects that represent the
1061      * type variables declared by the generic declaration represented by this
1062      * {@code GenericDeclaration} object, in declaration order.  Returns an
1063      * array of length 0 if the underlying generic declaration declares no type
1064      * variables.
1065      *
1066      * @return an array of {@code TypeVariable} objects that represent
1067      *     the type variables declared by this generic declaration
1068      * @throws java.lang.reflect.GenericSignatureFormatError if the generic
1069      *     signature of this generic declaration does not conform to
1070      *     the format specified in section {@jvms 4.7.9} of
1071      *     <cite>The Java Virtual Machine Specification</cite>
1072      * @since 1.5
1073      */
1074     @SuppressWarnings("unchecked")
1075     public TypeVariable<Class<T>>[] getTypeParameters() {
1076         ClassRepository info = getGenericInfo();
1077         if (info != null)
1078             return (TypeVariable<Class<T>>[])info.getTypeParameters();
1079         else
1080             return (TypeVariable<Class<T>>[])new TypeVariable<?>[0];
1081     }
1082 
1083 
1084     /**
1085      * Returns the {@code Class} representing the direct superclass of the
1086      * entity (class, interface, primitive type or void) represented by
1087      * this {@code Class}.  If this {@code Class} represents either the
1088      * {@code Object} class, an interface, a primitive type, or void, then
1089      * null is returned.  If this {@code Class} object represents an array class
1090      * then the {@code Class} object representing the {@code Object} class is
1091      * returned.
1092      *
1093      * @return the direct superclass of the class represented by this {@code Class} object
1094      */
1095     @IntrinsicCandidate
1096     public native Class<? super T> getSuperclass();
1097 
1098 
1099     /**
1100      * Returns the {@code Type} representing the direct superclass of
1101      * the entity (class, interface, primitive type or void) represented by
1102      * this {@code Class} object.
1103      *
1104      * <p>If the superclass is a parameterized type, the {@code Type}
1105      * object returned must accurately reflect the actual type
1106      * arguments used in the source code. The parameterized type
1107      * representing the superclass is created if it had not been
1108      * created before. See the declaration of {@link
1109      * java.lang.reflect.ParameterizedType ParameterizedType} for the
1110      * semantics of the creation process for parameterized types.  If
1111      * this {@code Class} object represents either the {@code Object}
1112      * class, an interface, a primitive type, or void, then null is
1113      * returned.  If this {@code Class} object represents an array class
1114      * then the {@code Class} object representing the {@code Object} class is
1115      * returned.
1116      *
1117      * @throws java.lang.reflect.GenericSignatureFormatError if the generic
1118      *     class signature does not conform to the format specified in
1119      *     section {@jvms 4.7.9} of <cite>The Java Virtual
1120      *     Machine Specification</cite>
1121      * @throws TypeNotPresentException if the generic superclass
1122      *     refers to a non-existent type declaration
1123      * @throws java.lang.reflect.MalformedParameterizedTypeException if the
1124      *     generic superclass refers to a parameterized type that cannot be
1125      *     instantiated  for any reason
1126      * @return the direct superclass of the class represented by this {@code Class} object
1127      * @since 1.5
1128      */
1129     public Type getGenericSuperclass() {
1130         ClassRepository info = getGenericInfo();
1131         if (info == null) {
1132             return getSuperclass();
1133         }
1134 
1135         // Historical irregularity:
1136         // Generic signature marks interfaces with superclass = Object
1137         // but this API returns null for interfaces
1138         if (isInterface()) {
1139             return null;
1140         }
1141 
1142         return info.getSuperclass();
1143     }
1144 
1145     /**
1146      * Gets the package of this class.
1147      *
1148      * <p>If this class represents an array type, a primitive type or void,
1149      * this method returns {@code null}.
1150      *
1151      * @return the package of this class.
1152      */
1153     public Package getPackage() {
1154         if (isPrimitive() || isArray()) {
1155             return null;
1156         }
1157         ClassLoader cl = classLoader;
1158         return cl != null ? cl.definePackage(this)
1159                           : BootLoader.definePackage(this);
1160     }
1161 
1162     /**
1163      * Returns the fully qualified package name.
1164      *
1165      * <p> If this class is a top level class, then this method returns the fully
1166      * qualified name of the package that the class is a member of, or the
1167      * empty string if the class is in an unnamed package.
1168      *
1169      * <p> If this class is a member class, then this method is equivalent to
1170      * invoking {@code getPackageName()} on the {@linkplain #getEnclosingClass
1171      * enclosing class}.
1172      *
1173      * <p> If this class is a {@linkplain #isLocalClass local class} or an {@linkplain
1174      * #isAnonymousClass() anonymous class}, then this method is equivalent to
1175      * invoking {@code getPackageName()} on the {@linkplain #getDeclaringClass
1176      * declaring class} of the {@linkplain #getEnclosingMethod enclosing method} or
1177      * {@linkplain #getEnclosingConstructor enclosing constructor}.
1178      *
1179      * <p> If this class represents an array type then this method returns the
1180      * package name of the element type. If this class represents a primitive
1181      * type or void then the package name "{@code java.lang}" is returned.
1182      *
1183      * @return the fully qualified package name
1184      *
1185      * @since 9
1186      * @jls 6.7 Fully Qualified Names and Canonical Names
1187      */
1188     public String getPackageName() {
1189         String pn = this.packageName;
1190         if (pn == null) {
1191             Class<?> c = isArray() ? elementType() : this;
1192             if (c.isPrimitive()) {
1193                 pn = "java.lang";
1194             } else {
1195                 String cn = c.getName();
1196                 int dot = cn.lastIndexOf('.');
1197                 pn = (dot != -1) ? cn.substring(0, dot).intern() : "";
1198             }
1199             this.packageName = pn;
1200         }
1201         return pn;
1202     }
1203 
1204     // cached package name
1205     private transient String packageName;
1206 
1207     /**
1208      * Returns the interfaces directly implemented by the class or interface
1209      * represented by this {@code Class} object.
1210      *
1211      * <p>If this {@code Class} object represents a class, the return value is an array
1212      * containing objects representing all interfaces directly implemented by
1213      * the class.  The order of the interface objects in the array corresponds
1214      * to the order of the interface names in the {@code implements} clause of
1215      * the declaration of the class represented by this {@code Class} object.  For example,
1216      * given the declaration:
1217      * <blockquote>
1218      * {@code class Shimmer implements FloorWax, DessertTopping { ... }}
1219      * </blockquote>
1220      * suppose the value of {@code s} is an instance of
1221      * {@code Shimmer}; the value of the expression:
1222      * <blockquote>
1223      * {@code s.getClass().getInterfaces()[0]}
1224      * </blockquote>
1225      * is the {@code Class} object that represents interface
1226      * {@code FloorWax}; and the value of:
1227      * <blockquote>
1228      * {@code s.getClass().getInterfaces()[1]}
1229      * </blockquote>
1230      * is the {@code Class} object that represents interface
1231      * {@code DessertTopping}.
1232      *
1233      * <p>If this {@code Class} object represents an interface, the array contains objects
1234      * representing all interfaces directly extended by the interface.  The
1235      * order of the interface objects in the array corresponds to the order of
1236      * the interface names in the {@code extends} clause of the declaration of
1237      * the interface represented by this {@code Class} object.
1238      *
1239      * <p>If this {@code Class} object represents a class or interface that implements no
1240      * interfaces, the method returns an array of length 0.
1241      *
1242      * <p>If this {@code Class} object represents a primitive type or void, the method
1243      * returns an array of length 0.
1244      *
1245      * <p>If this {@code Class} object represents an array type, the
1246      * interfaces {@code Cloneable} and {@code java.io.Serializable} are
1247      * returned in that order.
1248      *
1249      * @return an array of interfaces directly implemented by this class
1250      */
1251     public Class<?>[] getInterfaces() {
1252         // defensively copy before handing over to user code
1253         return getInterfaces(true);
1254     }
1255 
1256     private Class<?>[] getInterfaces(boolean cloneArray) {
1257         ReflectionData<T> rd = reflectionData();
1258         Class<?>[] interfaces = rd.interfaces;
1259         if (interfaces == null) {
1260             interfaces = getInterfaces0();
1261             rd.interfaces = interfaces;
1262         }
1263         // defensively copy if requested
1264         return cloneArray ? interfaces.clone() : interfaces;
1265     }
1266 
1267     private native Class<?>[] getInterfaces0();
1268 
1269     /**
1270      * Returns the {@code Type}s representing the interfaces
1271      * directly implemented by the class or interface represented by
1272      * this {@code Class} object.
1273      *
1274      * <p>If a superinterface is a parameterized type, the
1275      * {@code Type} object returned for it must accurately reflect
1276      * the actual type arguments used in the source code. The
1277      * parameterized type representing each superinterface is created
1278      * if it had not been created before. See the declaration of
1279      * {@link java.lang.reflect.ParameterizedType ParameterizedType}
1280      * for the semantics of the creation process for parameterized
1281      * types.
1282      *
1283      * <p>If this {@code Class} object represents a class, the return value is an array
1284      * containing objects representing all interfaces directly implemented by
1285      * the class.  The order of the interface objects in the array corresponds
1286      * to the order of the interface names in the {@code implements} clause of
1287      * the declaration of the class represented by this {@code Class} object.
1288      *
1289      * <p>If this {@code Class} object represents an interface, the array contains objects
1290      * representing all interfaces directly extended by the interface.  The
1291      * order of the interface objects in the array corresponds to the order of
1292      * the interface names in the {@code extends} clause of the declaration of
1293      * the interface represented by this {@code Class} object.
1294      *
1295      * <p>If this {@code Class} object represents a class or interface that implements no
1296      * interfaces, the method returns an array of length 0.
1297      *
1298      * <p>If this {@code Class} object represents a primitive type or void, the method
1299      * returns an array of length 0.
1300      *
1301      * <p>If this {@code Class} object represents an array type, the
1302      * interfaces {@code Cloneable} and {@code java.io.Serializable} are
1303      * returned in that order.
1304      *
1305      * @throws java.lang.reflect.GenericSignatureFormatError
1306      *     if the generic class signature does not conform to the
1307      *     format specified in section {@jvms 4.7.9} of <cite>The
1308      *     Java Virtual Machine Specification</cite>
1309      * @throws TypeNotPresentException if any of the generic
1310      *     superinterfaces refers to a non-existent type declaration
1311      * @throws java.lang.reflect.MalformedParameterizedTypeException
1312      *     if any of the generic superinterfaces refer to a parameterized
1313      *     type that cannot be instantiated for any reason
1314      * @return an array of interfaces directly implemented by this class
1315      * @since 1.5
1316      */
1317     public Type[] getGenericInterfaces() {
1318         ClassRepository info = getGenericInfo();
1319         return (info == null) ?  getInterfaces() : info.getSuperInterfaces();
1320     }
1321 
1322 
1323     /**
1324      * Returns the {@code Class} representing the component type of an
1325      * array.  If this class does not represent an array class this method
1326      * returns null.
1327      *
1328      * @return the {@code Class} representing the component type of this
1329      * class if this class is an array
1330      * @see     java.lang.reflect.Array
1331      * @since 1.1
1332      */
1333     public Class<?> getComponentType() {
1334         return componentType;
1335     }
1336 
1337     // The componentType field's null value is the sole indication that the class
1338     // is an array - see isArray().
1339     private transient final Class<?> componentType;
1340 
1341     /*
1342      * Returns the {@code Class} representing the element type of an array class.
1343      * If this class does not represent an array class, then this method returns
1344      * {@code null}.
1345      */
1346     private Class<?> elementType() {
1347         if (!isArray()) return null;
1348 
1349         Class<?> c = this;
1350         while (c.isArray()) {
1351             c = c.getComponentType();
1352         }
1353         return c;
1354     }
1355 
1356     /**
1357      * Returns the Java language modifiers for this class or interface, encoded
1358      * in an integer. The modifiers consist of the Java Virtual Machine's
1359      * constants for {@code public}, {@code protected},
1360      * {@code private}, {@code final}, {@code static},
1361      * {@code abstract} and {@code interface}; they should be decoded
1362      * using the methods of class {@code Modifier}.
1363      *
1364      * <p> If the underlying class is an array class:
1365      * <ul>
1366      * <li> its {@code public}, {@code private} and {@code protected}
1367      *      modifiers are the same as those of its component type
1368      * <li> its {@code abstract} and {@code final} modifiers are always
1369      *      {@code true}
1370      * <li> its interface modifier is always {@code false}, even when
1371      *      the component type is an interface
1372      * <li> its {@code identity} modifier is always true
1373      * </ul>
1374      * If this {@code Class} object represents a primitive type or
1375      * void, its {@code public}, {@code abstract}, and {@code final}
1376      * modifiers are always {@code true}.
1377      * For {@code Class} objects representing void, primitive types, and
1378      * arrays, the values of other modifiers are {@code false} other
1379      * than as specified above.
1380      *
1381      * <p> The modifier encodings are defined in section {@jvms 4.1}
1382      * of <cite>The Java Virtual Machine Specification</cite>.
1383      *
1384      * @return the {@code int} representing the modifiers for this class
1385      * @see     java.lang.reflect.Modifier
1386      * @see #accessFlags()
1387      * @see <a
1388      * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java
1389      * programming language and JVM modeling in core reflection</a>
1390      * @since 1.1
1391      * @jls 8.1.1 Class Modifiers
1392      * @jls 9.1.1 Interface Modifiers
1393      * @jvms 4.1 The {@code ClassFile} Structure
1394      */
1395     public int getModifiers() { return modifiers; }
1396 
1397    /**
1398      * {@return an unmodifiable set of the {@linkplain AccessFlag access
1399      * flags} for this class, possibly empty}
1400      * The {@code AccessFlags} may depend on the class file format version of the class.
1401      *
1402      * <p> If the underlying class is an array class:
1403      * <ul>
1404      * <li> its {@code PUBLIC}, {@code PRIVATE} and {@code PROTECTED}
1405      *      access flags are the same as those of its component type
1406      * <li> its {@code ABSTRACT} and {@code FINAL} flags are present
1407      * <li> its {@code INTERFACE} flag is absent, even when the
1408      *      component type is an interface
1409     * <li> its {@code identity} modifier is always true
1410      * </ul>
1411      * If this {@code Class} object represents a primitive type or
1412      * void, the flags are {@code PUBLIC}, {@code ABSTRACT}, and
1413      * {@code FINAL}.
1414      * For {@code Class} objects representing void, primitive types, and
1415      * arrays, access flags are absent other than as specified above.
1416      *
1417      * @see #getModifiers()
1418      * @jvms 4.1 The ClassFile Structure
1419      * @jvms 4.7.6 The InnerClasses Attribute
1420      * @since 20
1421      */
1422     public Set<AccessFlag> accessFlags() {
1423         // Location.CLASS allows SUPER and AccessFlag.MODULE which
1424         // INNER_CLASS forbids. INNER_CLASS allows PRIVATE, PROTECTED,
1425         // and STATIC, which are not allowed on Location.CLASS.
1426         // Use getClassAccessFlagsRaw to expose SUPER status.
1427         var location = (isMemberClass() || isLocalClass() ||
1428                         isAnonymousClass() || isArray()) ?
1429             AccessFlag.Location.INNER_CLASS :
1430             AccessFlag.Location.CLASS;
1431         int accessFlags = (location == AccessFlag.Location.CLASS) ?
1432                 getClassAccessFlagsRaw() : getModifiers();
1433         if (isArray() && PreviewFeatures.isEnabled()) {
1434             accessFlags |= Modifier.IDENTITY;
1435         }
1436         var cffv = ClassFileFormatVersion.fromMajor(getClassFileVersion() & 0xffff);
1437         if (cffv.compareTo(ClassFileFormatVersion.latest()) >= 0) {
1438             // Ignore unspecified (0x0800) access flag for current version
1439             accessFlags &= ~0x0800;
1440         }
1441         return AccessFlag.maskToAccessFlags(accessFlags, location, cffv);
1442     }
1443 
1444    /**
1445      * Gets the signers of this class.
1446      *
1447      * @return  the signers of this class, or null if there are no signers.  In
1448      *          particular, this method returns null if this {@code Class} object represents
1449      *          a primitive type or void.
1450      * @since   1.1
1451      */
1452 
1453     public Object[] getSigners() {
1454         var signers = this.signers;
1455         return signers == null ? null : signers.clone();
1456     }
1457 
1458     /**
1459      * Set the signers of this class.
1460      */
1461     void setSigners(Object[] signers) {
1462         if (!isPrimitive() && !isArray()) {
1463             this.signers = signers;
1464         }
1465     }
1466 
1467     /**
1468      * If this {@code Class} object represents a local or anonymous
1469      * class within a method, returns a {@link
1470      * java.lang.reflect.Method Method} object representing the
1471      * immediately enclosing method of the underlying class. Returns
1472      * {@code null} otherwise.
1473      *
1474      * In particular, this method returns {@code null} if the underlying
1475      * class is a local or anonymous class immediately enclosed by a class or
1476      * interface declaration, instance initializer or static initializer.
1477      *
1478      * @return the immediately enclosing method of the underlying class, if
1479      *     that class is a local or anonymous class; otherwise {@code null}.
1480      *
1481      * @since 1.5
1482      */
1483     public Method getEnclosingMethod() {
1484         EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
1485 
1486         if (enclosingInfo == null)
1487             return null;
1488         else {
1489             if (!enclosingInfo.isMethod())
1490                 return null;
1491 
1492             MethodRepository typeInfo = MethodRepository.make(enclosingInfo.getDescriptor(),
1493                                                               getFactory());
1494             Class<?>   returnType       = toClass(typeInfo.getReturnType());
1495             Type []    parameterTypes   = typeInfo.getParameterTypes();
1496             Class<?>[] parameterClasses = new Class<?>[parameterTypes.length];
1497 
1498             // Convert Types to Classes; returned types *should*
1499             // be class objects since the methodDescriptor's used
1500             // don't have generics information
1501             for(int i = 0; i < parameterClasses.length; i++)
1502                 parameterClasses[i] = toClass(parameterTypes[i]);
1503 
1504             final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass();
1505             Method[] candidates = enclosingCandidate.privateGetDeclaredMethods(false);
1506 
1507             /*
1508              * Loop over all declared methods; match method name,
1509              * number of and type of parameters, *and* return
1510              * type.  Matching return type is also necessary
1511              * because of covariant returns, etc.
1512              */
1513             ReflectionFactory fact = getReflectionFactory();
1514             for (Method m : candidates) {
1515                 if (m.getName().equals(enclosingInfo.getName()) &&
1516                     arrayContentsEq(parameterClasses,
1517                                     fact.getExecutableSharedParameterTypes(m))) {
1518                     // finally, check return type
1519                     if (m.getReturnType().equals(returnType)) {
1520                         return fact.copyMethod(m);
1521                     }
1522                 }
1523             }
1524 
1525             throw new InternalError("Enclosing method not found");
1526         }
1527     }
1528 
1529     private native Object[] getEnclosingMethod0();
1530 
1531     private EnclosingMethodInfo getEnclosingMethodInfo() {
1532         Object[] enclosingInfo = getEnclosingMethod0();
1533         if (enclosingInfo == null)
1534             return null;
1535         else {
1536             return new EnclosingMethodInfo(enclosingInfo);
1537         }
1538     }
1539 
1540     private static final class EnclosingMethodInfo {
1541         private final Class<?> enclosingClass;
1542         private final String name;
1543         private final String descriptor;
1544 
1545         static void validate(Object[] enclosingInfo) {
1546             if (enclosingInfo.length != 3)
1547                 throw new InternalError("Malformed enclosing method information");
1548             try {
1549                 // The array is expected to have three elements:
1550 
1551                 // the immediately enclosing class
1552                 Class<?> enclosingClass = (Class<?>)enclosingInfo[0];
1553                 assert(enclosingClass != null);
1554 
1555                 // the immediately enclosing method or constructor's
1556                 // name (can be null).
1557                 String name = (String)enclosingInfo[1];
1558 
1559                 // the immediately enclosing method or constructor's
1560                 // descriptor (null iff name is).
1561                 String descriptor = (String)enclosingInfo[2];
1562                 assert((name != null && descriptor != null) || name == descriptor);
1563             } catch (ClassCastException cce) {
1564                 throw new InternalError("Invalid type in enclosing method information", cce);
1565             }
1566         }
1567 
1568         EnclosingMethodInfo(Object[] enclosingInfo) {
1569             validate(enclosingInfo);
1570             this.enclosingClass = (Class<?>)enclosingInfo[0];
1571             this.name = (String)enclosingInfo[1];
1572             this.descriptor = (String)enclosingInfo[2];
1573         }
1574 
1575         boolean isPartial() {
1576             return enclosingClass == null || name == null || descriptor == null;
1577         }
1578 
1579         boolean isConstructor() { return !isPartial() && ConstantDescs.INIT_NAME.equals(name); }
1580 
1581         boolean isMethod() { return !isPartial() && !isConstructor() && !ConstantDescs.CLASS_INIT_NAME.equals(name); }
1582 
1583         Class<?> getEnclosingClass() { return enclosingClass; }
1584 
1585         String getName() { return name; }
1586 
1587         String getDescriptor() { return descriptor; }
1588 
1589     }
1590 
1591     private static Class<?> toClass(Type o) {
1592         if (o instanceof GenericArrayType gat)
1593             return toClass(gat.getGenericComponentType()).arrayType();
1594         return (Class<?>)o;
1595      }
1596 
1597     /**
1598      * If this {@code Class} object represents a local or anonymous
1599      * class within a constructor, returns a {@link
1600      * java.lang.reflect.Constructor Constructor} object representing
1601      * the immediately enclosing constructor of the underlying
1602      * class. Returns {@code null} otherwise.  In particular, this
1603      * method returns {@code null} if the underlying class is a local
1604      * or anonymous class immediately enclosed by a class or
1605      * interface declaration, instance initializer or static initializer.
1606      *
1607      * @return the immediately enclosing constructor of the underlying class, if
1608      *     that class is a local or anonymous class; otherwise {@code null}.
1609      *
1610      * @since 1.5
1611      */
1612     public Constructor<?> getEnclosingConstructor() {
1613         EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
1614 
1615         if (enclosingInfo == null)
1616             return null;
1617         else {
1618             if (!enclosingInfo.isConstructor())
1619                 return null;
1620 
1621             ConstructorRepository typeInfo = ConstructorRepository.make(enclosingInfo.getDescriptor(),
1622                                                                         getFactory());
1623             Type []    parameterTypes   = typeInfo.getParameterTypes();
1624             Class<?>[] parameterClasses = new Class<?>[parameterTypes.length];
1625 
1626             // Convert Types to Classes; returned types *should*
1627             // be class objects since the methodDescriptor's used
1628             // don't have generics information
1629             for (int i = 0; i < parameterClasses.length; i++)
1630                 parameterClasses[i] = toClass(parameterTypes[i]);
1631 
1632 
1633             final Class<?> enclosingCandidate = enclosingInfo.getEnclosingClass();
1634             Constructor<?>[] candidates = enclosingCandidate
1635                     .privateGetDeclaredConstructors(false);
1636             /*
1637              * Loop over all declared constructors; match number
1638              * of and type of parameters.
1639              */
1640             ReflectionFactory fact = getReflectionFactory();
1641             for (Constructor<?> c : candidates) {
1642                 if (arrayContentsEq(parameterClasses,
1643                                     fact.getExecutableSharedParameterTypes(c))) {
1644                     return fact.copyConstructor(c);
1645                 }
1646             }
1647 
1648             throw new InternalError("Enclosing constructor not found");
1649         }
1650     }
1651 
1652 
1653     /**
1654      * If the class or interface represented by this {@code Class} object
1655      * is a member of another class, returns the {@code Class} object
1656      * representing the class in which it was declared.  This method returns
1657      * null if this class or interface is not a member of any other class.  If
1658      * this {@code Class} object represents an array class, a primitive
1659      * type, or void, then this method returns null.
1660      *
1661      * @return the declaring class for this class
1662      * @since 1.1
1663      */
1664     public Class<?> getDeclaringClass() {
1665         return getDeclaringClass0();
1666     }
1667 
1668     private native Class<?> getDeclaringClass0();
1669 
1670 
1671     /**
1672      * Returns the immediately enclosing class of the underlying
1673      * class.  If the underlying class is a top level class this
1674      * method returns {@code null}.
1675      * @return the immediately enclosing class of the underlying class
1676      * @since 1.5
1677      */
1678     public Class<?> getEnclosingClass() {
1679         // There are five kinds of classes (or interfaces):
1680         // a) Top level classes
1681         // b) Nested classes (static member classes)
1682         // c) Inner classes (non-static member classes)
1683         // d) Local classes (named classes declared within a method)
1684         // e) Anonymous classes
1685 
1686 
1687         // JVM Spec 4.7.7: A class must have an EnclosingMethod
1688         // attribute if and only if it is a local class or an
1689         // anonymous class.
1690         EnclosingMethodInfo enclosingInfo = getEnclosingMethodInfo();
1691         Class<?> enclosingCandidate;
1692 
1693         if (enclosingInfo == null) {
1694             // This is a top level or a nested class or an inner class (a, b, or c)
1695             enclosingCandidate = getDeclaringClass0();
1696         } else {
1697             Class<?> enclosingClass = enclosingInfo.getEnclosingClass();
1698             // This is a local class or an anonymous class (d or e)
1699             if (enclosingClass == this || enclosingClass == null)
1700                 throw new InternalError("Malformed enclosing method information");
1701             else
1702                 enclosingCandidate = enclosingClass;
1703         }
1704         return enclosingCandidate;
1705     }
1706 
1707     /**
1708      * Returns the simple name of the underlying class as given in the
1709      * source code. An empty string is returned if the underlying class is
1710      * {@linkplain #isAnonymousClass() anonymous}.
1711      * A {@linkplain #isSynthetic() synthetic class}, one not present
1712      * in source code, can have a non-empty name including special
1713      * characters, such as "{@code $}".
1714      *
1715      * <p>The simple name of an {@linkplain #isArray() array class} is the simple name of the
1716      * component type with "[]" appended.  In particular the simple
1717      * name of an array class whose component type is anonymous is "[]".
1718      *
1719      * @return the simple name of the underlying class
1720      * @since 1.5
1721      */
1722     public String getSimpleName() {
1723         ReflectionData<T> rd = reflectionData();
1724         String simpleName = rd.simpleName;
1725         if (simpleName == null) {
1726             rd.simpleName = simpleName = getSimpleName0();
1727         }
1728         return simpleName;
1729     }
1730 
1731     private String getSimpleName0() {
1732         if (isArray()) {
1733             return getComponentType().getSimpleName().concat("[]");
1734         }
1735         String simpleName = getSimpleBinaryName();
1736         if (simpleName == null) { // top level class
1737             simpleName = getName();
1738             simpleName = simpleName.substring(simpleName.lastIndexOf('.') + 1); // strip the package name
1739         }
1740         return simpleName;
1741     }
1742 
1743     /**
1744      * Return an informative string for the name of this class or interface.
1745      *
1746      * @return an informative string for the name of this class or interface
1747      * @since 1.8
1748      */
1749     public String getTypeName() {
1750         if (isArray()) {
1751             try {
1752                 Class<?> cl = this;
1753                 int dimensions = 0;
1754                 do {
1755                     dimensions++;
1756                     cl = cl.getComponentType();
1757                 } while (cl.isArray());
1758                 return cl.getName().concat("[]".repeat(dimensions));
1759             } catch (Throwable e) { /*FALLTHRU*/ }
1760         }
1761         return getName();
1762     }
1763 
1764     /**
1765      * Returns the canonical name of the underlying class as
1766      * defined by <cite>The Java Language Specification</cite>.
1767      * Returns {@code null} if the underlying class does not have a canonical
1768      * name. Classes without canonical names include:
1769      * <ul>
1770      * <li>a {@linkplain #isLocalClass() local class}
1771      * <li>a {@linkplain #isAnonymousClass() anonymous class}
1772      * <li>a {@linkplain #isHidden() hidden class}
1773      * <li>an array whose component type does not have a canonical name</li>
1774      * </ul>
1775      *
1776      * The canonical name for a primitive class is the keyword for the
1777      * corresponding primitive type ({@code byte}, {@code short},
1778      * {@code char}, {@code int}, and so on).
1779      *
1780      * <p>An array type has a canonical name if and only if its
1781      * component type has a canonical name. When an array type has a
1782      * canonical name, it is equal to the canonical name of the
1783      * component type followed by "{@code []}".
1784      *
1785      * @return the canonical name of the underlying class if it exists, and
1786      * {@code null} otherwise.
1787      * @jls 6.7 Fully Qualified Names and Canonical Names
1788      * @since 1.5
1789      */
1790     public String getCanonicalName() {
1791         ReflectionData<T> rd = reflectionData();
1792         String canonicalName = rd.canonicalName;
1793         if (canonicalName == null) {
1794             rd.canonicalName = canonicalName = getCanonicalName0();
1795         }
1796         return canonicalName == ReflectionData.NULL_SENTINEL? null : canonicalName;
1797     }
1798 
1799     private String getCanonicalName0() {
1800         if (isArray()) {
1801             String canonicalName = getComponentType().getCanonicalName();
1802             if (canonicalName != null)
1803                 return canonicalName.concat("[]");
1804             else
1805                 return ReflectionData.NULL_SENTINEL;
1806         }
1807         if (isHidden() || isLocalOrAnonymousClass())
1808             return ReflectionData.NULL_SENTINEL;
1809         Class<?> enclosingClass = getEnclosingClass();
1810         if (enclosingClass == null) { // top level class
1811             return getName();
1812         } else {
1813             String enclosingName = enclosingClass.getCanonicalName();
1814             if (enclosingName == null)
1815                 return ReflectionData.NULL_SENTINEL;
1816             String simpleName = getSimpleName();
1817             return new StringBuilder(enclosingName.length() + simpleName.length() + 1)
1818                     .append(enclosingName)
1819                     .append('.')
1820                     .append(simpleName)
1821                     .toString();
1822         }
1823     }
1824 
1825     /**
1826      * Returns {@code true} if and only if the underlying class
1827      * is an anonymous class.
1828      *
1829      * @apiNote
1830      * An anonymous class is not a {@linkplain #isHidden() hidden class}.
1831      *
1832      * @return {@code true} if and only if this class is an anonymous class.
1833      * @since 1.5
1834      * @jls 15.9.5 Anonymous Class Declarations
1835      */
1836     public boolean isAnonymousClass() {
1837         return !isArray() && isLocalOrAnonymousClass() &&
1838                 getSimpleBinaryName0() == null;
1839     }
1840 
1841     /**
1842      * Returns {@code true} if and only if the underlying class
1843      * is a local class.
1844      *
1845      * @return {@code true} if and only if this class is a local class.
1846      * @since 1.5
1847      * @jls 14.3 Local Class and Interface Declarations
1848      */
1849     public boolean isLocalClass() {
1850         return isLocalOrAnonymousClass() &&
1851                 (isArray() || getSimpleBinaryName0() != null);
1852     }
1853 
1854     /**
1855      * Returns {@code true} if and only if the underlying class
1856      * is a member class.
1857      *
1858      * @return {@code true} if and only if this class is a member class.
1859      * @since 1.5
1860      * @jls 8.5 Member Class and Interface Declarations
1861      */
1862     public boolean isMemberClass() {
1863         return !isLocalOrAnonymousClass() && getDeclaringClass0() != null;
1864     }
1865 
1866     /**
1867      * Returns the "simple binary name" of the underlying class, i.e.,
1868      * the binary name without the leading enclosing class name.
1869      * Returns {@code null} if the underlying class is a top level
1870      * class.
1871      */
1872     private String getSimpleBinaryName() {
1873         if (isTopLevelClass())
1874             return null;
1875         String name = getSimpleBinaryName0();
1876         if (name == null) // anonymous class
1877             return "";
1878         return name;
1879     }
1880 
1881     private native String getSimpleBinaryName0();
1882 
1883     /**
1884      * Returns {@code true} if this is a top level class.  Returns {@code false}
1885      * otherwise.
1886      */
1887     private boolean isTopLevelClass() {
1888         return !isLocalOrAnonymousClass() && getDeclaringClass0() == null;
1889     }
1890 
1891     /**
1892      * Returns {@code true} if this is a local class or an anonymous
1893      * class.  Returns {@code false} otherwise.
1894      */
1895     private boolean isLocalOrAnonymousClass() {
1896         // JVM Spec 4.7.7: A class must have an EnclosingMethod
1897         // attribute if and only if it is a local class or an
1898         // anonymous class.
1899         return hasEnclosingMethodInfo();
1900     }
1901 
1902     private boolean hasEnclosingMethodInfo() {
1903         Object[] enclosingInfo = getEnclosingMethod0();
1904         if (enclosingInfo != null) {
1905             EnclosingMethodInfo.validate(enclosingInfo);
1906             return true;
1907         }
1908         return false;
1909     }
1910 
1911     /**
1912      * Returns an array containing {@code Class} objects representing all
1913      * the public classes and interfaces that are members of the class
1914      * represented by this {@code Class} object.  This includes public
1915      * class and interface members inherited from superclasses and public class
1916      * and interface members declared by the class.  This method returns an
1917      * array of length 0 if this {@code Class} object has no public member
1918      * classes or interfaces.  This method also returns an array of length 0 if
1919      * this {@code Class} object represents a primitive type, an array
1920      * class, or void.
1921      *
1922      * @return the array of {@code Class} objects representing the public
1923      *         members of this class
1924      * @since 1.1
1925      */
1926     public Class<?>[] getClasses() {
1927         List<Class<?>> list = new ArrayList<>();
1928         Class<?> currentClass = Class.this;
1929         while (currentClass != null) {
1930             for (Class<?> m : currentClass.getDeclaredClasses()) {
1931                 if (Modifier.isPublic(m.getModifiers())) {
1932                     list.add(m);
1933                 }
1934             }
1935             currentClass = currentClass.getSuperclass();
1936         }
1937         return list.toArray(new Class<?>[0]);
1938     }
1939 
1940 
1941     /**
1942      * Returns an array containing {@code Field} objects reflecting all
1943      * the accessible public fields of the class or interface represented by
1944      * this {@code Class} object.
1945      *
1946      * <p> If this {@code Class} object represents a class or interface with
1947      * no accessible public fields, then this method returns an array of length
1948      * 0.
1949      *
1950      * <p> If this {@code Class} object represents a class, then this method
1951      * returns the public fields of the class and of all its superclasses and
1952      * superinterfaces.
1953      *
1954      * <p> If this {@code Class} object represents an interface, then this
1955      * method returns the fields of the interface and of all its
1956      * superinterfaces.
1957      *
1958      * <p> If this {@code Class} object represents an array type, a primitive
1959      * type, or void, then this method returns an array of length 0.
1960      *
1961      * <p> The elements in the returned array are not sorted and are not in any
1962      * particular order.
1963      *
1964      * @return the array of {@code Field} objects representing the
1965      *         public fields
1966      *
1967      * @since 1.1
1968      * @jls 8.2 Class Members
1969      * @jls 8.3 Field Declarations
1970      */
1971     public Field[] getFields() {
1972         return copyFields(privateGetPublicFields());
1973     }
1974 
1975 
1976     /**
1977      * Returns an array containing {@code Method} objects reflecting all the
1978      * public methods of the class or interface represented by this {@code
1979      * Class} object, including those declared by the class or interface and
1980      * those inherited from superclasses and superinterfaces.
1981      *
1982      * <p> If this {@code Class} object represents an array type, then the
1983      * returned array has a {@code Method} object for each of the public
1984      * methods inherited by the array type from {@code Object}. It does not
1985      * contain a {@code Method} object for {@code clone()}.
1986      *
1987      * <p> If this {@code Class} object represents an interface then the
1988      * returned array does not contain any implicitly declared methods from
1989      * {@code Object}. Therefore, if no methods are explicitly declared in
1990      * this interface or any of its superinterfaces then the returned array
1991      * has length 0. (Note that a {@code Class} object which represents a class
1992      * always has public methods, inherited from {@code Object}.)
1993      *
1994      * <p> The returned array never contains methods with names {@value
1995      * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}.
1996      *
1997      * <p> The elements in the returned array are not sorted and are not in any
1998      * particular order.
1999      *
2000      * <p> Generally, the result is computed as with the following 4 step algorithm.
2001      * Let C be the class or interface represented by this {@code Class} object:
2002      * <ol>
2003      * <li> A union of methods is composed of:
2004      *   <ol type="a">
2005      *   <li> C's declared public instance and static methods as returned by
2006      *        {@link #getDeclaredMethods()} and filtered to include only public
2007      *        methods.</li>
2008      *   <li> If C is a class other than {@code Object}, then include the result
2009      *        of invoking this algorithm recursively on the superclass of C.</li>
2010      *   <li> Include the results of invoking this algorithm recursively on all
2011      *        direct superinterfaces of C, but include only instance methods.</li>
2012      *   </ol></li>
2013      * <li> Union from step 1 is partitioned into subsets of methods with same
2014      *      signature (name, parameter types) and return type.</li>
2015      * <li> Within each such subset only the most specific methods are selected.
2016      *      Let method M be a method from a set of methods with same signature
2017      *      and return type. M is most specific if there is no such method
2018      *      N != M from the same set, such that N is more specific than M.
2019      *      N is more specific than M if:
2020      *   <ol type="a">
2021      *   <li> N is declared by a class and M is declared by an interface; or</li>
2022      *   <li> N and M are both declared by classes or both by interfaces and
2023      *        N's declaring type is the same as or a subtype of M's declaring type
2024      *        (clearly, if M's and N's declaring types are the same type, then
2025      *        M and N are the same method).</li>
2026      *   </ol></li>
2027      * <li> The result of this algorithm is the union of all selected methods from
2028      *      step 3.</li>
2029      * </ol>
2030      *
2031      * @apiNote There may be more than one method with a particular name
2032      * and parameter types in a class because while the Java language forbids a
2033      * class to declare multiple methods with the same signature but different
2034      * return types, the Java virtual machine does not.  This
2035      * increased flexibility in the virtual machine can be used to
2036      * implement various language features.  For example, covariant
2037      * returns can be implemented with {@linkplain
2038      * java.lang.reflect.Method#isBridge bridge methods}; the bridge
2039      * method and the overriding method would have the same
2040      * signature but different return types.
2041      *
2042      * @return the array of {@code Method} objects representing the
2043      *         public methods of this class
2044      *
2045      * @jls 8.2 Class Members
2046      * @jls 8.4 Method Declarations
2047      * @since 1.1
2048      */
2049     public Method[] getMethods() {
2050         return copyMethods(privateGetPublicMethods());
2051     }
2052 
2053 
2054     /**
2055      * Returns an array containing {@code Constructor} objects reflecting
2056      * all the public constructors of the class represented by this
2057      * {@code Class} object.  An array of length 0 is returned if the
2058      * class has no public constructors, or if the class is an array class, or
2059      * if the class reflects a primitive type or void.
2060      *
2061      * @apiNote
2062      * While this method returns an array of {@code
2063      * Constructor<T>} objects (that is an array of constructors from
2064      * this class), the return type of this method is {@code
2065      * Constructor<?>[]} and <em>not</em> {@code Constructor<T>[]} as
2066      * might be expected.  This less informative return type is
2067      * necessary since after being returned from this method, the
2068      * array could be modified to hold {@code Constructor} objects for
2069      * different classes, which would violate the type guarantees of
2070      * {@code Constructor<T>[]}.
2071      *
2072      * @return the array of {@code Constructor} objects representing the
2073      *         public constructors of this class
2074      *
2075      * @see #getDeclaredConstructors()
2076      * @since 1.1
2077      */
2078     public Constructor<?>[] getConstructors() {
2079         return copyConstructors(privateGetDeclaredConstructors(true));
2080     }
2081 
2082 
2083     /**
2084      * Returns a {@code Field} object that reflects the specified public member
2085      * field of the class or interface represented by this {@code Class}
2086      * object. The {@code name} parameter is a {@code String} specifying the
2087      * simple name of the desired field.
2088      *
2089      * <p> The field to be reflected is determined by the algorithm that
2090      * follows.  Let C be the class or interface represented by this {@code Class} object:
2091      *
2092      * <OL>
2093      * <LI> If C declares a public field with the name specified, that is the
2094      *      field to be reflected.</LI>
2095      * <LI> If no field was found in step 1 above, this algorithm is applied
2096      *      recursively to each direct superinterface of C. The direct
2097      *      superinterfaces are searched in the order they were declared.</LI>
2098      * <LI> If no field was found in steps 1 and 2 above, and C has a
2099      *      superclass S, then this algorithm is invoked recursively upon S.
2100      *      If C has no superclass, then a {@code NoSuchFieldException}
2101      *      is thrown.</LI>
2102      * </OL>
2103      *
2104      * <p> If this {@code Class} object represents an array type, then this
2105      * method does not find the {@code length} field of the array type.
2106      *
2107      * @param name the field name
2108      * @return the {@code Field} object of this class specified by
2109      *         {@code name}
2110      * @throws NoSuchFieldException if a field with the specified name is
2111      *         not found.
2112      * @throws NullPointerException if {@code name} is {@code null}
2113      *
2114      * @since 1.1
2115      * @jls 8.2 Class Members
2116      * @jls 8.3 Field Declarations
2117      */
2118     public Field getField(String name) throws NoSuchFieldException {
2119         Objects.requireNonNull(name);
2120         Field field = getField0(name);
2121         if (field == null) {
2122             throw new NoSuchFieldException(name);
2123         }
2124         return getReflectionFactory().copyField(field);
2125     }
2126 
2127 
2128     /**
2129      * Returns a {@code Method} object that reflects the specified public
2130      * member method of the class or interface represented by this
2131      * {@code Class} object. The {@code name} parameter is a
2132      * {@code String} specifying the simple name of the desired method. The
2133      * {@code parameterTypes} parameter is an array of {@code Class}
2134      * objects that identify the method's formal parameter types, in declared
2135      * order. If {@code parameterTypes} is {@code null}, it is
2136      * treated as if it were an empty array.
2137      *
2138      * <p> If this {@code Class} object represents an array type, then this
2139      * method finds any public method inherited by the array type from
2140      * {@code Object} except method {@code clone()}.
2141      *
2142      * <p> If this {@code Class} object represents an interface then this
2143      * method does not find any implicitly declared method from
2144      * {@code Object}. Therefore, if no methods are explicitly declared in
2145      * this interface or any of its superinterfaces, then this method does not
2146      * find any method.
2147      *
2148      * <p> This method does not find any method with name {@value
2149      * ConstantDescs#INIT_NAME} or {@value ConstantDescs#CLASS_INIT_NAME}.
2150      *
2151      * <p> Generally, the method to be reflected is determined by the 4 step
2152      * algorithm that follows.
2153      * Let C be the class or interface represented by this {@code Class} object:
2154      * <ol>
2155      * <li> A union of methods is composed of:
2156      *   <ol type="a">
2157      *   <li> C's declared public instance and static methods as returned by
2158      *        {@link #getDeclaredMethods()} and filtered to include only public
2159      *        methods that match given {@code name} and {@code parameterTypes}</li>
2160      *   <li> If C is a class other than {@code Object}, then include the result
2161      *        of invoking this algorithm recursively on the superclass of C.</li>
2162      *   <li> Include the results of invoking this algorithm recursively on all
2163      *        direct superinterfaces of C, but include only instance methods.</li>
2164      *   </ol></li>
2165      * <li> This union is partitioned into subsets of methods with same
2166      *      return type (the selection of methods from step 1 also guarantees that
2167      *      they have the same method name and parameter types).</li>
2168      * <li> Within each such subset only the most specific methods are selected.
2169      *      Let method M be a method from a set of methods with same VM
2170      *      signature (return type, name, parameter types).
2171      *      M is most specific if there is no such method N != M from the same
2172      *      set, such that N is more specific than M. N is more specific than M
2173      *      if:
2174      *   <ol type="a">
2175      *   <li> N is declared by a class and M is declared by an interface; or</li>
2176      *   <li> N and M are both declared by classes or both by interfaces and
2177      *        N's declaring type is the same as or a subtype of M's declaring type
2178      *        (clearly, if M's and N's declaring types are the same type, then
2179      *        M and N are the same method).</li>
2180      *   </ol></li>
2181      * <li> The result of this algorithm is chosen arbitrarily from the methods
2182      *      with most specific return type among all selected methods from step 3.
2183      *      Let R be a return type of a method M from the set of all selected methods
2184      *      from step 3. M is a method with most specific return type if there is
2185      *      no such method N != M from the same set, having return type S != R,
2186      *      such that S is a subtype of R as determined by
2187      *      R.class.{@link #isAssignableFrom}(S.class).
2188      * </ol>
2189      *
2190      * @apiNote There may be more than one method with matching name and
2191      * parameter types in a class because while the Java language forbids a
2192      * class to declare multiple methods with the same signature but different
2193      * return types, the Java virtual machine does not.  This
2194      * increased flexibility in the virtual machine can be used to
2195      * implement various language features.  For example, covariant
2196      * returns can be implemented with {@linkplain
2197      * java.lang.reflect.Method#isBridge bridge methods}; the bridge
2198      * method and the overriding method would have the same
2199      * signature but different return types. This method would return the
2200      * overriding method as it would have a more specific return type.
2201      *
2202      * @param name the name of the method
2203      * @param parameterTypes the list of parameters
2204      * @return the {@code Method} object that matches the specified
2205      *         {@code name} and {@code parameterTypes}
2206      * @throws NoSuchMethodException if a matching method is not found
2207      *         or if the name is {@value ConstantDescs#INIT_NAME} or
2208      *         {@value ConstantDescs#CLASS_INIT_NAME}.
2209      * @throws NullPointerException if {@code name} is {@code null}
2210      *
2211      * @jls 8.2 Class Members
2212      * @jls 8.4 Method Declarations
2213      * @since 1.1
2214      */
2215     public Method getMethod(String name, Class<?>... parameterTypes)
2216             throws NoSuchMethodException {
2217         Objects.requireNonNull(name);
2218         Method method = getMethod0(name, parameterTypes);
2219         if (method == null) {
2220             throw new NoSuchMethodException(methodToString(name, parameterTypes));
2221         }
2222         return getReflectionFactory().copyMethod(method);
2223     }
2224 
2225     /**
2226      * Returns a {@code Constructor} object that reflects the specified
2227      * public constructor of the class represented by this {@code Class}
2228      * object. The {@code parameterTypes} parameter is an array of
2229      * {@code Class} objects that identify the constructor's formal
2230      * parameter types, in declared order.
2231      *
2232      * If this {@code Class} object represents an inner class
2233      * declared in a non-static context, the formal parameter types
2234      * include the explicit enclosing instance as the first parameter.
2235      *
2236      * <p> The constructor to reflect is the public constructor of the class
2237      * represented by this {@code Class} object whose formal parameter
2238      * types match those specified by {@code parameterTypes}.
2239      *
2240      * @param parameterTypes the parameter array
2241      * @return the {@code Constructor} object of the public constructor that
2242      *         matches the specified {@code parameterTypes}
2243      * @throws NoSuchMethodException if a matching constructor is not found,
2244      *         including when this {@code Class} object represents
2245      *         an interface, a primitive type, an array class, or void.
2246      *
2247      * @see #getDeclaredConstructor(Class[])
2248      * @since 1.1
2249      */
2250     public Constructor<T> getConstructor(Class<?>... parameterTypes)
2251             throws NoSuchMethodException {
2252         return getReflectionFactory().copyConstructor(
2253             getConstructor0(parameterTypes, Member.PUBLIC));
2254     }
2255 
2256 
2257     /**
2258      * Returns an array of {@code Class} objects reflecting all the
2259      * classes and interfaces declared as members of the class represented by
2260      * this {@code Class} object. This includes public, protected, default
2261      * (package) access, and private classes and interfaces declared by the
2262      * class, but excludes inherited classes and interfaces.  This method
2263      * returns an array of length 0 if the class declares no classes or
2264      * interfaces as members, or if this {@code Class} object represents a
2265      * primitive type, an array class, or void.
2266      *
2267      * @return the array of {@code Class} objects representing all the
2268      *         declared members of this class
2269      *
2270      * @since 1.1
2271      * @jls 8.5 Member Class and Interface Declarations
2272      */
2273     public Class<?>[] getDeclaredClasses() {
2274         return getDeclaredClasses0();
2275     }
2276 
2277 
2278     /**
2279      * Returns an array of {@code Field} objects reflecting all the fields
2280      * declared by the class or interface represented by this
2281      * {@code Class} object. This includes public, protected, default
2282      * (package) access, and private fields, but excludes inherited fields.
2283      *
2284      * <p> If this {@code Class} object represents a class or interface with no
2285      * declared fields, then this method returns an array of length 0.
2286      *
2287      * <p> If this {@code Class} object represents an array type, a primitive
2288      * type, or void, then this method returns an array of length 0.
2289      *
2290      * <p> The elements in the returned array are not sorted and are not in any
2291      * particular order.
2292      *
2293      * @return  the array of {@code Field} objects representing all the
2294      *          declared fields of this class
2295      *
2296      * @since 1.1
2297      * @jls 8.2 Class Members
2298      * @jls 8.3 Field Declarations
2299      */
2300     public Field[] getDeclaredFields() {
2301         return copyFields(privateGetDeclaredFields(false));
2302     }
2303 
2304     /**
2305      * Returns an array of {@code RecordComponent} objects representing all the
2306      * record components of this record class, or {@code null} if this class is
2307      * not a record class.
2308      *
2309      * <p> The components are returned in the same order that they are declared
2310      * in the record header. The array is empty if this record class has no
2311      * components. If the class is not a record class, that is {@link
2312      * #isRecord()} returns {@code false}, then this method returns {@code null}.
2313      * Conversely, if {@link #isRecord()} returns {@code true}, then this method
2314      * returns a non-null value.
2315      *
2316      * @apiNote
2317      * <p> The following method can be used to find the record canonical constructor:
2318      *
2319      * {@snippet lang="java" :
2320      * static <T extends Record> Constructor<T> getCanonicalConstructor(Class<T> cls)
2321      *     throws NoSuchMethodException {
2322      *   Class<?>[] paramTypes =
2323      *     Arrays.stream(cls.getRecordComponents())
2324      *           .map(RecordComponent::getType)
2325      *           .toArray(Class<?>[]::new);
2326      *   return cls.getDeclaredConstructor(paramTypes);
2327      * }}
2328      *
2329      * @return  An array of {@code RecordComponent} objects representing all the
2330      *          record components of this record class, or {@code null} if this
2331      *          class is not a record class
2332      *
2333      * @jls 8.10 Record Classes
2334      * @since 16
2335      */
2336     public RecordComponent[] getRecordComponents() {
2337         if (!isRecord()) {
2338             return null;
2339         }
2340         return getRecordComponents0();
2341     }
2342 
2343     /**
2344      * Returns an array containing {@code Method} objects reflecting all the
2345      * declared methods of the class or interface represented by this {@code
2346      * Class} object, including public, protected, default (package)
2347      * access, and private methods, but excluding inherited methods.
2348      * The declared methods may include methods <em>not</em> in the
2349      * source of the class or interface, including {@linkplain
2350      * Method#isBridge bridge methods} and other {@linkplain
2351      * Executable#isSynthetic synthetic} methods added by compilers.
2352      *
2353      * <p> If this {@code Class} object represents a class or interface that
2354      * has multiple declared methods with the same name and parameter types,
2355      * but different return types, then the returned array has a {@code Method}
2356      * object for each such method.
2357      *
2358      * <p> If this {@code Class} object represents a class or interface that
2359      * has a class initialization method {@value ConstantDescs#CLASS_INIT_NAME},
2360      * then the returned array does <em>not</em> have a corresponding {@code
2361      * Method} object.
2362      *
2363      * <p> If this {@code Class} object represents a class or interface with no
2364      * declared methods, then the returned array has length 0.
2365      *
2366      * <p> If this {@code Class} object represents an array type, a primitive
2367      * type, or void, then the returned array has length 0.
2368      *
2369      * <p> The elements in the returned array are not sorted and are not in any
2370      * particular order.
2371      *
2372      * @return  the array of {@code Method} objects representing all the
2373      *          declared methods of this class
2374      *
2375      * @jls 8.2 Class Members
2376      * @jls 8.4 Method Declarations
2377      * @see <a
2378      * href="{@docRoot}/java.base/java/lang/reflect/package-summary.html#LanguageJvmModel">Java
2379      * programming language and JVM modeling in core reflection</a>
2380      * @since 1.1
2381      */
2382     public Method[] getDeclaredMethods() {
2383         return copyMethods(privateGetDeclaredMethods(false));
2384     }
2385 
2386     /**
2387      * Returns an array of {@code Constructor} objects reflecting all the
2388      * constructors implicitly or explicitly declared by the class represented by this
2389      * {@code Class} object. These are public, protected, default
2390      * (package) access, and private constructors.  The elements in the array
2391      * returned are not sorted and are not in any particular order.  If the
2392      * class has a default constructor (JLS {@jls 8.8.9}), it is included in the returned array.
2393      * If a record class has a canonical constructor (JLS {@jls
2394      * 8.10.4.1}, {@jls 8.10.4.2}), it is included in the returned array.
2395      *
2396      * This method returns an array of length 0 if this {@code Class}
2397      * object represents an interface, a primitive type, an array class, or
2398      * void.
2399      *
2400      * @return  the array of {@code Constructor} objects representing all the
2401      *          declared constructors of this class
2402      *
2403      * @since 1.1
2404      * @see #getConstructors()
2405      * @jls 8.8 Constructor Declarations
2406      */
2407     public Constructor<?>[] getDeclaredConstructors() {
2408         return copyConstructors(privateGetDeclaredConstructors(false));
2409     }
2410 
2411 
2412     /**
2413      * Returns a {@code Field} object that reflects the specified declared
2414      * field of the class or interface represented by this {@code Class}
2415      * object. The {@code name} parameter is a {@code String} that specifies
2416      * the simple name of the desired field.
2417      *
2418      * <p> If this {@code Class} object represents an array type, then this
2419      * method does not find the {@code length} field of the array type.
2420      *
2421      * @param name the name of the field
2422      * @return  the {@code Field} object for the specified field in this
2423      *          class
2424      * @throws  NoSuchFieldException if a field with the specified name is
2425      *          not found.
2426      * @throws  NullPointerException if {@code name} is {@code null}
2427      *
2428      * @since 1.1
2429      * @jls 8.2 Class Members
2430      * @jls 8.3 Field Declarations
2431      */
2432     public Field getDeclaredField(String name) throws NoSuchFieldException {
2433         Objects.requireNonNull(name);
2434         Field field = searchFields(privateGetDeclaredFields(false), name);
2435         if (field == null) {
2436             throw new NoSuchFieldException(name);
2437         }
2438         return getReflectionFactory().copyField(field);
2439     }
2440 
2441 
2442     /**
2443      * Returns a {@code Method} object that reflects the specified
2444      * declared method of the class or interface represented by this
2445      * {@code Class} object. The {@code name} parameter is a
2446      * {@code String} that specifies the simple name of the desired
2447      * method, and the {@code parameterTypes} parameter is an array of
2448      * {@code Class} objects that identify the method's formal parameter
2449      * types, in declared order.  If more than one method with the same
2450      * parameter types is declared in a class, and one of these methods has a
2451      * return type that is more specific than any of the others, that method is
2452      * returned; otherwise one of the methods is chosen arbitrarily.  If the
2453      * name is {@value ConstantDescs#INIT_NAME} or {@value
2454      * ConstantDescs#CLASS_INIT_NAME} a {@code NoSuchMethodException}
2455      * is raised.
2456      *
2457      * <p> If this {@code Class} object represents an array type, then this
2458      * method does not find the {@code clone()} method.
2459      *
2460      * @param name the name of the method
2461      * @param parameterTypes the parameter array
2462      * @return  the {@code Method} object for the method of this class
2463      *          matching the specified name and parameters
2464      * @throws  NoSuchMethodException if a matching method is not found.
2465      * @throws  NullPointerException if {@code name} is {@code null}
2466      *
2467      * @jls 8.2 Class Members
2468      * @jls 8.4 Method Declarations
2469      * @since 1.1
2470      */
2471     public Method getDeclaredMethod(String name, Class<?>... parameterTypes)
2472             throws NoSuchMethodException {
2473         Objects.requireNonNull(name);
2474         Method method = searchMethods(privateGetDeclaredMethods(false), name, parameterTypes);
2475         if (method == null) {
2476             throw new NoSuchMethodException(methodToString(name, parameterTypes));
2477         }
2478         return getReflectionFactory().copyMethod(method);
2479     }
2480 
2481     /**
2482      * Returns the list of {@code Method} objects for the declared public
2483      * methods of this class or interface that have the specified method name
2484      * and parameter types.
2485      *
2486      * @param name the name of the method
2487      * @param parameterTypes the parameter array
2488      * @return the list of {@code Method} objects for the public methods of
2489      *         this class matching the specified name and parameters
2490      */
2491     List<Method> getDeclaredPublicMethods(String name, Class<?>... parameterTypes) {
2492         Method[] methods = privateGetDeclaredMethods(/* publicOnly */ true);
2493         ReflectionFactory factory = getReflectionFactory();
2494         List<Method> result = new ArrayList<>();
2495         for (Method method : methods) {
2496             if (method.getName().equals(name)
2497                 && Arrays.equals(
2498                     factory.getExecutableSharedParameterTypes(method),
2499                     parameterTypes)) {
2500                 result.add(factory.copyMethod(method));
2501             }
2502         }
2503         return result;
2504     }
2505 
2506     /**
2507      * Returns the most specific {@code Method} object of this class, super class or
2508      * interface that have the specified method name and parameter types.
2509      *
2510      * @param publicOnly true if only public methods are examined, otherwise all methods
2511      * @param name the name of the method
2512      * @param parameterTypes the parameter array
2513      * @return the {@code Method} object for the method found from this class matching
2514      * the specified name and parameters, or null if not found
2515      */
2516     Method findMethod(boolean publicOnly, String name, Class<?>... parameterTypes) {
2517         PublicMethods.MethodList res = getMethodsRecursive(name, parameterTypes, true, publicOnly);
2518         return res == null ? null : getReflectionFactory().copyMethod(res.getMostSpecific());
2519     }
2520 
2521     /**
2522      * Returns a {@code Constructor} object that reflects the specified
2523      * constructor of the class represented by this
2524      * {@code Class} object.  The {@code parameterTypes} parameter is
2525      * an array of {@code Class} objects that identify the constructor's
2526      * formal parameter types, in declared order.
2527      *
2528      * If this {@code Class} object represents an inner class
2529      * declared in a non-static context, the formal parameter types
2530      * include the explicit enclosing instance as the first parameter.
2531      *
2532      * @param parameterTypes the parameter array
2533      * @return  The {@code Constructor} object for the constructor with the
2534      *          specified parameter list
2535      * @throws  NoSuchMethodException if a matching constructor is not found,
2536      *          including when this {@code Class} object represents
2537      *          an interface, a primitive type, an array class, or void.
2538      *
2539      * @see #getConstructor(Class[])
2540      * @since 1.1
2541      */
2542     public Constructor<T> getDeclaredConstructor(Class<?>... parameterTypes)
2543             throws NoSuchMethodException {
2544         return getReflectionFactory().copyConstructor(
2545             getConstructor0(parameterTypes, Member.DECLARED));
2546     }
2547 
2548     /**
2549      * Finds a resource with a given name.
2550      *
2551      * <p> If this class is in a named {@link Module Module} then this method
2552      * will attempt to find the resource in the module. This is done by
2553      * delegating to the module's class loader {@link
2554      * ClassLoader#findResource(String,String) findResource(String,String)}
2555      * method, invoking it with the module name and the absolute name of the
2556      * resource. Resources in named modules are subject to the rules for
2557      * encapsulation specified in the {@code Module} {@link
2558      * Module#getResourceAsStream getResourceAsStream} method and so this
2559      * method returns {@code null} when the resource is a
2560      * non-"{@code .class}" resource in a package that is not open to the
2561      * caller's module.
2562      *
2563      * <p> Otherwise, if this class is not in a named module then the rules for
2564      * searching resources associated with a given class are implemented by the
2565      * defining {@linkplain ClassLoader class loader} of the class.  This method
2566      * delegates to this {@code Class} object's class loader.
2567      * If this {@code Class} object was loaded by the bootstrap class loader,
2568      * the method delegates to {@link ClassLoader#getSystemResourceAsStream}.
2569      *
2570      * <p> Before delegation, an absolute resource name is constructed from the
2571      * given resource name using this algorithm:
2572      *
2573      * <ul>
2574      *
2575      * <li> If the {@code name} begins with a {@code '/'}
2576      * (<code>'&#92;u002f'</code>), then the absolute name of the resource is the
2577      * portion of the {@code name} following the {@code '/'}.
2578      *
2579      * <li> Otherwise, the absolute name is of the following form:
2580      *
2581      * <blockquote>
2582      *   {@code modified_package_name/name}
2583      * </blockquote>
2584      *
2585      * <p> Where the {@code modified_package_name} is the package name of this
2586      * object with {@code '/'} substituted for {@code '.'}
2587      * (<code>'&#92;u002e'</code>).
2588      *
2589      * </ul>
2590      *
2591      * @param  name name of the desired resource
2592      * @return  A {@link java.io.InputStream} object; {@code null} if no
2593      *          resource with this name is found, or the resource is in a package
2594      *          that is not {@linkplain Module#isOpen(String, Module) open} to at
2595      *          least the caller module.
2596      * @throws  NullPointerException If {@code name} is {@code null}
2597      *
2598      * @see Module#getResourceAsStream(String)
2599      * @since  1.1
2600      */
2601     @CallerSensitive
2602     public InputStream getResourceAsStream(String name) {
2603         name = resolveName(name);
2604 
2605         Module thisModule = getModule();
2606         if (thisModule.isNamed()) {
2607             // check if resource can be located by caller
2608             if (Resources.canEncapsulate(name)
2609                 && !isOpenToCaller(name, Reflection.getCallerClass())) {
2610                 return null;
2611             }
2612 
2613             // resource not encapsulated or in package open to caller
2614             String mn = thisModule.getName();
2615             ClassLoader cl = classLoader;
2616             try {
2617 
2618                 // special-case built-in class loaders to avoid the
2619                 // need for a URL connection
2620                 if (cl == null) {
2621                     return BootLoader.findResourceAsStream(mn, name);
2622                 } else if (cl instanceof BuiltinClassLoader bcl) {
2623                     return bcl.findResourceAsStream(mn, name);
2624                 } else {
2625                     URL url = cl.findResource(mn, name);
2626                     return (url != null) ? url.openStream() : null;
2627                 }
2628 
2629             } catch (IOException | SecurityException e) {
2630                 return null;
2631             }
2632         }
2633 
2634         // unnamed module
2635         ClassLoader cl = classLoader;
2636         if (cl == null) {
2637             return ClassLoader.getSystemResourceAsStream(name);
2638         } else {
2639             return cl.getResourceAsStream(name);
2640         }
2641     }
2642 
2643     /**
2644      * Finds a resource with a given name.
2645      *
2646      * <p> If this class is in a named {@link Module Module} then this method
2647      * will attempt to find the resource in the module. This is done by
2648      * delegating to the module's class loader {@link
2649      * ClassLoader#findResource(String,String) findResource(String,String)}
2650      * method, invoking it with the module name and the absolute name of the
2651      * resource. Resources in named modules are subject to the rules for
2652      * encapsulation specified in the {@code Module} {@link
2653      * Module#getResourceAsStream getResourceAsStream} method and so this
2654      * method returns {@code null} when the resource is a
2655      * non-"{@code .class}" resource in a package that is not open to the
2656      * caller's module.
2657      *
2658      * <p> Otherwise, if this class is not in a named module then the rules for
2659      * searching resources associated with a given class are implemented by the
2660      * defining {@linkplain ClassLoader class loader} of the class.  This method
2661      * delegates to this {@code Class} object's class loader.
2662      * If this {@code Class} object was loaded by the bootstrap class loader,
2663      * the method delegates to {@link ClassLoader#getSystemResource}.
2664      *
2665      * <p> Before delegation, an absolute resource name is constructed from the
2666      * given resource name using this algorithm:
2667      *
2668      * <ul>
2669      *
2670      * <li> If the {@code name} begins with a {@code '/'}
2671      * (<code>'&#92;u002f'</code>), then the absolute name of the resource is the
2672      * portion of the {@code name} following the {@code '/'}.
2673      *
2674      * <li> Otherwise, the absolute name is of the following form:
2675      *
2676      * <blockquote>
2677      *   {@code modified_package_name/name}
2678      * </blockquote>
2679      *
2680      * <p> Where the {@code modified_package_name} is the package name of this
2681      * object with {@code '/'} substituted for {@code '.'}
2682      * (<code>'&#92;u002e'</code>).
2683      *
2684      * </ul>
2685      *
2686      * @param  name name of the desired resource
2687      * @return A {@link java.net.URL} object; {@code null} if no resource with
2688      *         this name is found, the resource cannot be located by a URL, or the
2689      *         resource is in a package that is not
2690      *         {@linkplain Module#isOpen(String, Module) open} to at least the caller
2691      *         module.
2692      * @throws NullPointerException If {@code name} is {@code null}
2693      * @since  1.1
2694      */
2695     @CallerSensitive
2696     public URL getResource(String name) {
2697         name = resolveName(name);
2698 
2699         Module thisModule = getModule();
2700         if (thisModule.isNamed()) {
2701             // check if resource can be located by caller
2702             if (Resources.canEncapsulate(name)
2703                 && !isOpenToCaller(name, Reflection.getCallerClass())) {
2704                 return null;
2705             }
2706 
2707             // resource not encapsulated or in package open to caller
2708             String mn = thisModule.getName();
2709             ClassLoader cl = classLoader;
2710             try {
2711                 if (cl == null) {
2712                     return BootLoader.findResource(mn, name);
2713                 } else {
2714                     return cl.findResource(mn, name);
2715                 }
2716             } catch (IOException ioe) {
2717                 return null;
2718             }
2719         }
2720 
2721         // unnamed module
2722         ClassLoader cl = classLoader;
2723         if (cl == null) {
2724             return ClassLoader.getSystemResource(name);
2725         } else {
2726             return cl.getResource(name);
2727         }
2728     }
2729 
2730     /**
2731      * Returns true if a resource with the given name can be located by the
2732      * given caller. All resources in a module can be located by code in
2733      * the module. For other callers, then the package needs to be open to
2734      * the caller.
2735      */
2736     private boolean isOpenToCaller(String name, Class<?> caller) {
2737         // assert getModule().isNamed();
2738         Module thisModule = getModule();
2739         Module callerModule = (caller != null) ? caller.getModule() : null;
2740         if (callerModule != thisModule) {
2741             String pn = Resources.toPackageName(name);
2742             if (thisModule.getDescriptor().packages().contains(pn)) {
2743                 if (callerModule == null) {
2744                     // no caller, return true if the package is open to all modules
2745                     return thisModule.isOpen(pn);
2746                 }
2747                 if (!thisModule.isOpen(pn, callerModule)) {
2748                     // package not open to caller
2749                     return false;
2750                 }
2751             }
2752         }
2753         return true;
2754     }
2755 
2756     private transient final ProtectionDomain protectionDomain;
2757 
2758     /** Holder for the protection domain returned when the internal domain is null */
2759     private static class Holder {
2760         private static final ProtectionDomain allPermDomain;
2761         static {
2762             Permissions perms = new Permissions();
2763             perms.add(new AllPermission());
2764             allPermDomain = new ProtectionDomain(null, perms);
2765         }
2766     }
2767 
2768     /**
2769      * Returns the {@code ProtectionDomain} of this class.
2770      *
2771      * @return the ProtectionDomain of this class
2772      *
2773      * @see java.security.ProtectionDomain
2774      * @since 1.2
2775      */
2776     public ProtectionDomain getProtectionDomain() {
2777         if (protectionDomain == null) {
2778             return Holder.allPermDomain;
2779         } else {
2780             return protectionDomain;
2781         }
2782     }
2783 
2784     /*
2785      * Returns the Class object for the named primitive type. Type parameter T
2786      * avoids redundant casts for trusted code.
2787      */
2788     static native <T> Class<T> getPrimitiveClass(String name);
2789 
2790     /**
2791      * Add a package name prefix if the name is not absolute. Remove leading "/"
2792      * if name is absolute
2793      */
2794     private String resolveName(String name) {
2795         if (!name.startsWith("/")) {
2796             String baseName = getPackageName();
2797             if (!baseName.isEmpty()) {
2798                 int len = baseName.length() + 1 + name.length();
2799                 StringBuilder sb = new StringBuilder(len);
2800                 name = sb.append(baseName.replace('.', '/'))
2801                     .append('/')
2802                     .append(name)
2803                     .toString();
2804             }
2805         } else {
2806             name = name.substring(1);
2807         }
2808         return name;
2809     }
2810 
2811     /**
2812      * Atomic operations support.
2813      */
2814     private static class Atomic {
2815         // initialize Unsafe machinery here, since we need to call Class.class instance method
2816         // and have to avoid calling it in the static initializer of the Class class...
2817         private static final Unsafe unsafe = Unsafe.getUnsafe();
2818         // offset of Class.reflectionData instance field
2819         private static final long reflectionDataOffset
2820                 = unsafe.objectFieldOffset(Class.class, "reflectionData");
2821         // offset of Class.annotationType instance field
2822         private static final long annotationTypeOffset
2823                 = unsafe.objectFieldOffset(Class.class, "annotationType");
2824         // offset of Class.annotationData instance field
2825         private static final long annotationDataOffset
2826                 = unsafe.objectFieldOffset(Class.class, "annotationData");
2827 
2828         static <T> boolean casReflectionData(Class<?> clazz,
2829                                              SoftReference<ReflectionData<T>> oldData,
2830                                              SoftReference<ReflectionData<T>> newData) {
2831             return unsafe.compareAndSetReference(clazz, reflectionDataOffset, oldData, newData);
2832         }
2833 
2834         static boolean casAnnotationType(Class<?> clazz,
2835                                          AnnotationType oldType,
2836                                          AnnotationType newType) {
2837             return unsafe.compareAndSetReference(clazz, annotationTypeOffset, oldType, newType);
2838         }
2839 
2840         static boolean casAnnotationData(Class<?> clazz,
2841                                          AnnotationData oldData,
2842                                          AnnotationData newData) {
2843             return unsafe.compareAndSetReference(clazz, annotationDataOffset, oldData, newData);
2844         }
2845     }
2846 
2847     /**
2848      * Reflection support.
2849      */
2850 
2851     // Reflection data caches various derived names and reflective members. Cached
2852     // values may be invalidated when JVM TI RedefineClasses() is called
2853     private static class ReflectionData<T> {
2854         volatile Field[] declaredFields;
2855         volatile Field[] publicFields;
2856         volatile Method[] declaredMethods;
2857         volatile Method[] publicMethods;
2858         volatile Constructor<T>[] declaredConstructors;
2859         volatile Constructor<T>[] publicConstructors;
2860         // Intermediate results for getFields and getMethods
2861         volatile Field[] declaredPublicFields;
2862         volatile Method[] declaredPublicMethods;
2863         volatile Class<?>[] interfaces;
2864 
2865         // Cached names
2866         String simpleName;
2867         String canonicalName;
2868         static final String NULL_SENTINEL = new String();
2869 
2870         // Value of classRedefinedCount when we created this ReflectionData instance
2871         final int redefinedCount;
2872 
2873         ReflectionData(int redefinedCount) {
2874             this.redefinedCount = redefinedCount;
2875         }
2876     }
2877 
2878     private transient volatile SoftReference<ReflectionData<T>> reflectionData;
2879 
2880     // Incremented by the VM on each call to JVM TI RedefineClasses()
2881     // that redefines this class or a superclass.
2882     private transient volatile int classRedefinedCount;
2883 
2884     // Lazily create and cache ReflectionData
2885     private ReflectionData<T> reflectionData() {
2886         SoftReference<ReflectionData<T>> reflectionData = this.reflectionData;
2887         int classRedefinedCount = this.classRedefinedCount;
2888         ReflectionData<T> rd;
2889         if (reflectionData != null &&
2890             (rd = reflectionData.get()) != null &&
2891             rd.redefinedCount == classRedefinedCount) {
2892             return rd;
2893         }
2894         // else no SoftReference or cleared SoftReference or stale ReflectionData
2895         // -> create and replace new instance
2896         return newReflectionData(reflectionData, classRedefinedCount);
2897     }
2898 
2899     private ReflectionData<T> newReflectionData(SoftReference<ReflectionData<T>> oldReflectionData,
2900                                                 int classRedefinedCount) {
2901         while (true) {
2902             ReflectionData<T> rd = new ReflectionData<>(classRedefinedCount);
2903             // try to CAS it...
2904             if (Atomic.casReflectionData(this, oldReflectionData, new SoftReference<>(rd))) {
2905                 return rd;
2906             }
2907             // else retry
2908             oldReflectionData = this.reflectionData;
2909             classRedefinedCount = this.classRedefinedCount;
2910             if (oldReflectionData != null &&
2911                 (rd = oldReflectionData.get()) != null &&
2912                 rd.redefinedCount == classRedefinedCount) {
2913                 return rd;
2914             }
2915         }
2916     }
2917 
2918     // Generic signature handling
2919     private native String getGenericSignature0();
2920 
2921     // Generic info repository; lazily initialized
2922     private transient volatile ClassRepository genericInfo;
2923 
2924     // accessor for factory
2925     private GenericsFactory getFactory() {
2926         // create scope and factory
2927         return CoreReflectionFactory.make(this, ClassScope.make(this));
2928     }
2929 
2930     // accessor for generic info repository;
2931     // generic info is lazily initialized
2932     private ClassRepository getGenericInfo() {
2933         ClassRepository genericInfo = this.genericInfo;
2934         if (genericInfo == null) {
2935             String signature = getGenericSignature0();
2936             if (signature == null) {
2937                 genericInfo = ClassRepository.NONE;
2938             } else {
2939                 genericInfo = ClassRepository.make(signature, getFactory());
2940             }
2941             this.genericInfo = genericInfo;
2942         }
2943         return (genericInfo != ClassRepository.NONE) ? genericInfo : null;
2944     }
2945 
2946     // Annotations handling
2947     native byte[] getRawAnnotations();
2948     // Since 1.8
2949     native byte[] getRawTypeAnnotations();
2950     static byte[] getExecutableTypeAnnotationBytes(Executable ex) {
2951         return getReflectionFactory().getExecutableTypeAnnotationBytes(ex);
2952     }
2953 
2954     native ConstantPool getConstantPool();
2955 
2956     //
2957     //
2958     // java.lang.reflect.Field handling
2959     //
2960     //
2961 
2962     // Returns an array of "root" fields. These Field objects must NOT
2963     // be propagated to the outside world, but must instead be copied
2964     // via ReflectionFactory.copyField.
2965     private Field[] privateGetDeclaredFields(boolean publicOnly) {
2966         Field[] res;
2967         ReflectionData<T> rd = reflectionData();
2968         res = publicOnly ? rd.declaredPublicFields : rd.declaredFields;
2969         if (res != null) return res;
2970         // No cached value available; request value from VM
2971         res = Reflection.filterFields(this, getDeclaredFields0(publicOnly));
2972         if (publicOnly) {
2973             rd.declaredPublicFields = res;
2974         } else {
2975             rd.declaredFields = res;
2976         }
2977         return res;
2978     }
2979 
2980     // Returns an array of "root" fields. These Field objects must NOT
2981     // be propagated to the outside world, but must instead be copied
2982     // via ReflectionFactory.copyField.
2983     private Field[] privateGetPublicFields() {
2984         Field[] res;
2985         ReflectionData<T> rd = reflectionData();
2986         res = rd.publicFields;
2987         if (res != null) return res;
2988 
2989         // Use a linked hash set to ensure order is preserved and
2990         // fields from common super interfaces are not duplicated
2991         LinkedHashSet<Field> fields = new LinkedHashSet<>();
2992 
2993         // Local fields
2994         addAll(fields, privateGetDeclaredFields(true));
2995 
2996         // Direct superinterfaces, recursively
2997         for (Class<?> si : getInterfaces(/* cloneArray */ false)) {
2998             addAll(fields, si.privateGetPublicFields());
2999         }
3000 
3001         // Direct superclass, recursively
3002         Class<?> sc = getSuperclass();
3003         if (sc != null) {
3004             addAll(fields, sc.privateGetPublicFields());
3005         }
3006 
3007         res = fields.toArray(new Field[0]);
3008         rd.publicFields = res;
3009         return res;
3010     }
3011 
3012     private static void addAll(Collection<Field> c, Field[] o) {
3013         for (Field f : o) {
3014             c.add(f);
3015         }
3016     }
3017 
3018 
3019     //
3020     //
3021     // java.lang.reflect.Constructor handling
3022     //
3023     //
3024 
3025     // Returns an array of "root" constructors. These Constructor
3026     // objects must NOT be propagated to the outside world, but must
3027     // instead be copied via ReflectionFactory.copyConstructor.
3028     private Constructor<T>[] privateGetDeclaredConstructors(boolean publicOnly) {
3029         Constructor<T>[] res;
3030         ReflectionData<T> rd = reflectionData();
3031         res = publicOnly ? rd.publicConstructors : rd.declaredConstructors;
3032         if (res != null) return res;
3033         // No cached value available; request value from VM
3034         if (isInterface()) {
3035             @SuppressWarnings("unchecked")
3036             Constructor<T>[] temporaryRes = (Constructor<T>[]) new Constructor<?>[0];
3037             res = temporaryRes;
3038         } else {
3039             res = getDeclaredConstructors0(publicOnly);
3040         }
3041         if (publicOnly) {
3042             rd.publicConstructors = res;
3043         } else {
3044             rd.declaredConstructors = res;
3045         }
3046         return res;
3047     }
3048 
3049     //
3050     //
3051     // java.lang.reflect.Method handling
3052     //
3053     //
3054 
3055     // Returns an array of "root" methods. These Method objects must NOT
3056     // be propagated to the outside world, but must instead be copied
3057     // via ReflectionFactory.copyMethod.
3058     private Method[] privateGetDeclaredMethods(boolean publicOnly) {
3059         Method[] res;
3060         ReflectionData<T> rd = reflectionData();
3061         res = publicOnly ? rd.declaredPublicMethods : rd.declaredMethods;
3062         if (res != null) return res;
3063         // No cached value available; request value from VM
3064         res = Reflection.filterMethods(this, getDeclaredMethods0(publicOnly));
3065         if (publicOnly) {
3066             rd.declaredPublicMethods = res;
3067         } else {
3068             rd.declaredMethods = res;
3069         }
3070         return res;
3071     }
3072 
3073     // Returns an array of "root" methods. These Method objects must NOT
3074     // be propagated to the outside world, but must instead be copied
3075     // via ReflectionFactory.copyMethod.
3076     private Method[] privateGetPublicMethods() {
3077         Method[] res;
3078         ReflectionData<T> rd = reflectionData();
3079         res = rd.publicMethods;
3080         if (res != null) return res;
3081 
3082         // No cached value available; compute value recursively.
3083         // Start by fetching public declared methods...
3084         PublicMethods pms = new PublicMethods();
3085         for (Method m : privateGetDeclaredMethods(/* publicOnly */ true)) {
3086             pms.merge(m);
3087         }
3088         // ...then recur over superclass methods...
3089         Class<?> sc = getSuperclass();
3090         if (sc != null) {
3091             for (Method m : sc.privateGetPublicMethods()) {
3092                 pms.merge(m);
3093             }
3094         }
3095         // ...and finally over direct superinterfaces.
3096         for (Class<?> intf : getInterfaces(/* cloneArray */ false)) {
3097             for (Method m : intf.privateGetPublicMethods()) {
3098                 // static interface methods are not inherited
3099                 if (!Modifier.isStatic(m.getModifiers())) {
3100                     pms.merge(m);
3101                 }
3102             }
3103         }
3104 
3105         res = pms.toArray();
3106         rd.publicMethods = res;
3107         return res;
3108     }
3109 
3110 
3111     //
3112     // Helpers for fetchers of one field, method, or constructor
3113     //
3114 
3115     // This method does not copy the returned Field object!
3116     private static Field searchFields(Field[] fields, String name) {
3117         for (Field field : fields) {
3118             if (field.getName().equals(name)) {
3119                 return field;
3120             }
3121         }
3122         return null;
3123     }
3124 
3125     // Returns a "root" Field object. This Field object must NOT
3126     // be propagated to the outside world, but must instead be copied
3127     // via ReflectionFactory.copyField.
3128     private Field getField0(String name) {
3129         // Note: the intent is that the search algorithm this routine
3130         // uses be equivalent to the ordering imposed by
3131         // privateGetPublicFields(). It fetches only the declared
3132         // public fields for each class, however, to reduce the number
3133         // of Field objects which have to be created for the common
3134         // case where the field being requested is declared in the
3135         // class which is being queried.
3136         Field res;
3137         // Search declared public fields
3138         if ((res = searchFields(privateGetDeclaredFields(true), name)) != null) {
3139             return res;
3140         }
3141         // Direct superinterfaces, recursively
3142         Class<?>[] interfaces = getInterfaces(/* cloneArray */ false);
3143         for (Class<?> c : interfaces) {
3144             if ((res = c.getField0(name)) != null) {
3145                 return res;
3146             }
3147         }
3148         // Direct superclass, recursively
3149         if (!isInterface()) {
3150             Class<?> c = getSuperclass();
3151             if (c != null) {
3152                 if ((res = c.getField0(name)) != null) {
3153                     return res;
3154                 }
3155             }
3156         }
3157         return null;
3158     }
3159 
3160     // This method does not copy the returned Method object!
3161     private static Method searchMethods(Method[] methods,
3162                                         String name,
3163                                         Class<?>[] parameterTypes)
3164     {
3165         ReflectionFactory fact = getReflectionFactory();
3166         Method res = null;
3167         for (Method m : methods) {
3168             if (m.getName().equals(name)
3169                 && arrayContentsEq(parameterTypes,
3170                                    fact.getExecutableSharedParameterTypes(m))
3171                 && (res == null
3172                     || (res.getReturnType() != m.getReturnType()
3173                         && res.getReturnType().isAssignableFrom(m.getReturnType()))))
3174                 res = m;
3175         }
3176         return res;
3177     }
3178 
3179     private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[0];
3180 
3181     // Returns a "root" Method object. This Method object must NOT
3182     // be propagated to the outside world, but must instead be copied
3183     // via ReflectionFactory.copyMethod.
3184     private Method getMethod0(String name, Class<?>[] parameterTypes) {
3185         PublicMethods.MethodList res = getMethodsRecursive(
3186             name,
3187             parameterTypes == null ? EMPTY_CLASS_ARRAY : parameterTypes,
3188             /* includeStatic */ true, /* publicOnly */ true);
3189         return res == null ? null : res.getMostSpecific();
3190     }
3191 
3192     // Returns a list of "root" Method objects. These Method objects must NOT
3193     // be propagated to the outside world, but must instead be copied
3194     // via ReflectionFactory.copyMethod.
3195     private PublicMethods.MethodList getMethodsRecursive(String name,
3196                                                          Class<?>[] parameterTypes,
3197                                                          boolean includeStatic,
3198                                                          boolean publicOnly) {
3199         // 1st check declared methods
3200         Method[] methods = privateGetDeclaredMethods(publicOnly);
3201         PublicMethods.MethodList res = PublicMethods.MethodList
3202             .filter(methods, name, parameterTypes, includeStatic);
3203         // if there is at least one match among declared methods, we need not
3204         // search any further as such match surely overrides matching methods
3205         // declared in superclass(es) or interface(s).
3206         if (res != null) {
3207             return res;
3208         }
3209 
3210         // if there was no match among declared methods,
3211         // we must consult the superclass (if any) recursively...
3212         Class<?> sc = getSuperclass();
3213         if (sc != null) {
3214             res = sc.getMethodsRecursive(name, parameterTypes, includeStatic, publicOnly);
3215         }
3216 
3217         // ...and coalesce the superclass methods with methods obtained
3218         // from directly implemented interfaces excluding static methods...
3219         for (Class<?> intf : getInterfaces(/* cloneArray */ false)) {
3220             res = PublicMethods.MethodList.merge(
3221                 res, intf.getMethodsRecursive(name, parameterTypes, /* includeStatic */ false, publicOnly));
3222         }
3223 
3224         return res;
3225     }
3226 
3227     // Returns a "root" Constructor object. This Constructor object must NOT
3228     // be propagated to the outside world, but must instead be copied
3229     // via ReflectionFactory.copyConstructor.
3230     private Constructor<T> getConstructor0(Class<?>[] parameterTypes,
3231                                         int which) throws NoSuchMethodException
3232     {
3233         ReflectionFactory fact = getReflectionFactory();
3234         Constructor<T>[] constructors = privateGetDeclaredConstructors((which == Member.PUBLIC));
3235         for (Constructor<T> constructor : constructors) {
3236             if (arrayContentsEq(parameterTypes,
3237                                 fact.getExecutableSharedParameterTypes(constructor))) {
3238                 return constructor;
3239             }
3240         }
3241         throw new NoSuchMethodException(methodToString("<init>", parameterTypes));
3242     }
3243 
3244     //
3245     // Other helpers and base implementation
3246     //
3247 
3248     private static boolean arrayContentsEq(Object[] a1, Object[] a2) {
3249         if (a1 == null) {
3250             return a2 == null || a2.length == 0;
3251         }
3252 
3253         if (a2 == null) {
3254             return a1.length == 0;
3255         }
3256 
3257         if (a1.length != a2.length) {
3258             return false;
3259         }
3260 
3261         for (int i = 0; i < a1.length; i++) {
3262             if (a1[i] != a2[i]) {
3263                 return false;
3264             }
3265         }
3266 
3267         return true;
3268     }
3269 
3270     private static Field[] copyFields(Field[] arg) {
3271         Field[] out = new Field[arg.length];
3272         ReflectionFactory fact = getReflectionFactory();
3273         for (int i = 0; i < arg.length; i++) {
3274             out[i] = fact.copyField(arg[i]);
3275         }
3276         return out;
3277     }
3278 
3279     private static Method[] copyMethods(Method[] arg) {
3280         Method[] out = new Method[arg.length];
3281         ReflectionFactory fact = getReflectionFactory();
3282         for (int i = 0; i < arg.length; i++) {
3283             out[i] = fact.copyMethod(arg[i]);
3284         }
3285         return out;
3286     }
3287 
3288     private static <U> Constructor<U>[] copyConstructors(Constructor<U>[] arg) {
3289         Constructor<U>[] out = arg.clone();
3290         ReflectionFactory fact = getReflectionFactory();
3291         for (int i = 0; i < out.length; i++) {
3292             out[i] = fact.copyConstructor(out[i]);
3293         }
3294         return out;
3295     }
3296 
3297     private native Field[]       getDeclaredFields0(boolean publicOnly);
3298     private native Method[]      getDeclaredMethods0(boolean publicOnly);
3299     private native Constructor<T>[] getDeclaredConstructors0(boolean publicOnly);
3300     private native Class<?>[]    getDeclaredClasses0();
3301 
3302     /*
3303      * Returns an array containing the components of the Record attribute,
3304      * or null if the attribute is not present.
3305      *
3306      * Note that this method returns non-null array on a class with
3307      * the Record attribute even if this class is not a record.
3308      */
3309     private native RecordComponent[] getRecordComponents0();
3310     private native boolean       isRecord0();
3311 
3312     /**
3313      * Helper method to get the method name from arguments.
3314      */
3315     private String methodToString(String name, Class<?>[] argTypes) {
3316         return getName() + '.' + name +
3317                 ((argTypes == null || argTypes.length == 0) ?
3318                 "()" :
3319                 Arrays.stream(argTypes)
3320                         .map(c -> c == null ? "null" : c.getName())
3321                         .collect(Collectors.joining(",", "(", ")")));
3322     }
3323 
3324     /** use serialVersionUID from JDK 1.1 for interoperability */
3325     @java.io.Serial
3326     private static final long serialVersionUID = 3206093459760846163L;
3327 
3328 
3329     /**
3330      * Class Class is special cased within the Serialization Stream Protocol.
3331      *
3332      * A Class instance is written initially into an ObjectOutputStream in the
3333      * following format:
3334      * <pre>
3335      *      {@code TC_CLASS} ClassDescriptor
3336      *      A ClassDescriptor is a special cased serialization of
3337      *      a {@code java.io.ObjectStreamClass} instance.
3338      * </pre>
3339      * A new handle is generated for the initial time the class descriptor
3340      * is written into the stream. Future references to the class descriptor
3341      * are written as references to the initial class descriptor instance.
3342      *
3343      * @see java.io.ObjectStreamClass
3344      */
3345     @java.io.Serial
3346     private static final ObjectStreamField[] serialPersistentFields =
3347         new ObjectStreamField[0];
3348 
3349 
3350     /**
3351      * Returns the assertion status that would be assigned to this
3352      * class if it were to be initialized at the time this method is invoked.
3353      * If this class has had its assertion status set, the most recent
3354      * setting will be returned; otherwise, if any package default assertion
3355      * status pertains to this class, the most recent setting for the most
3356      * specific pertinent package default assertion status is returned;
3357      * otherwise, if this class is not a system class (i.e., it has a
3358      * class loader) its class loader's default assertion status is returned;
3359      * otherwise, the system class default assertion status is returned.
3360      *
3361      * @apiNote
3362      * Few programmers will have any need for this method; it is provided
3363      * for the benefit of the JDK itself.  (It allows a class to determine at
3364      * the time that it is initialized whether assertions should be enabled.)
3365      * Note that this method is not guaranteed to return the actual
3366      * assertion status that was (or will be) associated with the specified
3367      * class when it was (or will be) initialized.
3368      *
3369      * @return the desired assertion status of the specified class.
3370      * @see    java.lang.ClassLoader#setClassAssertionStatus
3371      * @see    java.lang.ClassLoader#setPackageAssertionStatus
3372      * @see    java.lang.ClassLoader#setDefaultAssertionStatus
3373      * @since  1.4
3374      */
3375     public boolean desiredAssertionStatus() {
3376         ClassLoader loader = classLoader;
3377         // If the loader is null this is a system class, so ask the VM
3378         if (loader == null)
3379             return desiredAssertionStatus0(this);
3380 
3381         // If the classloader has been initialized with the assertion
3382         // directives, ask it. Otherwise, ask the VM.
3383         synchronized(loader.assertionLock) {
3384             if (loader.classAssertionStatus != null) {
3385                 return loader.desiredAssertionStatus(getName());
3386             }
3387         }
3388         return desiredAssertionStatus0(this);
3389     }
3390 
3391     // Retrieves the desired assertion status of this class from the VM
3392     private static native boolean desiredAssertionStatus0(Class<?> clazz);
3393 
3394     /**
3395      * Returns true if and only if this class was declared as an enum in the
3396      * source code.
3397      *
3398      * Note that {@link java.lang.Enum} is not itself an enum class.
3399      *
3400      * Also note that if an enum constant is declared with a class body,
3401      * the class of that enum constant object is an anonymous class
3402      * and <em>not</em> the class of the declaring enum class. The
3403      * {@link Enum#getDeclaringClass} method of an enum constant can
3404      * be used to get the class of the enum class declaring the
3405      * constant.
3406      *
3407      * @return true if and only if this class was declared as an enum in the
3408      *     source code
3409      * @since 1.5
3410      * @jls 8.9.1 Enum Constants
3411      */
3412     public boolean isEnum() {
3413         // An enum must both directly extend java.lang.Enum and have
3414         // the ENUM bit set; classes for specialized enum constants
3415         // don't do the former.
3416         return (this.getModifiers() & ENUM) != 0 &&
3417         this.getSuperclass() == java.lang.Enum.class;
3418     }
3419 
3420     /**
3421      * Returns {@code true} if and only if this class is a record class.
3422      *
3423      * <p> The {@linkplain #getSuperclass() direct superclass} of a record
3424      * class is {@code java.lang.Record}. A record class is {@linkplain
3425      * Modifier#FINAL final}. A record class has (possibly zero) record
3426      * components; {@link #getRecordComponents()} returns a non-null but
3427      * possibly empty value for a record.
3428      *
3429      * <p> Note that class {@link Record} is not a record class and thus
3430      * invoking this method on class {@code Record} returns {@code false}.
3431      *
3432      * @return true if and only if this class is a record class, otherwise false
3433      * @jls 8.10 Record Classes
3434      * @since 16
3435      */
3436     public boolean isRecord() {
3437         // this superclass and final modifier check is not strictly necessary
3438         // they are intrinsified and serve as a fast-path check
3439         return getSuperclass() == java.lang.Record.class &&
3440                 (this.getModifiers() & Modifier.FINAL) != 0 &&
3441                 isRecord0();
3442     }
3443 
3444     // Fetches the factory for reflective objects
3445     private static ReflectionFactory getReflectionFactory() {
3446         var factory = reflectionFactory;
3447         if (factory != null) {
3448             return factory;
3449         }
3450         return reflectionFactory = ReflectionFactory.getReflectionFactory();
3451     }
3452     private static ReflectionFactory reflectionFactory;
3453 
3454     /**
3455      * When CDS is enabled, the Class class may be aot-initialized. However,
3456      * we can't archive reflectionFactory, so we reset it to null, so it
3457      * will be allocated again at runtime.
3458      */
3459     private static void resetArchivedStates() {
3460         reflectionFactory = null;
3461     }
3462 
3463     /**
3464      * Returns the elements of this enum class or null if this
3465      * Class object does not represent an enum class.
3466      *
3467      * @return an array containing the values comprising the enum class
3468      *     represented by this {@code Class} object in the order they're
3469      *     declared, or null if this {@code Class} object does not
3470      *     represent an enum class
3471      * @since 1.5
3472      * @jls 8.9.1 Enum Constants
3473      */
3474     public T[] getEnumConstants() {
3475         T[] values = getEnumConstantsShared();
3476         return (values != null) ? values.clone() : null;
3477     }
3478 
3479     /**
3480      * Returns the elements of this enum class or null if this
3481      * Class object does not represent an enum class;
3482      * identical to getEnumConstants except that the result is
3483      * uncloned, cached, and shared by all callers.
3484      */
3485     T[] getEnumConstantsShared() {
3486         T[] constants = enumConstants;
3487         if (constants == null) {
3488             if (!isEnum()) return null;
3489             try {
3490                 final Method values = getMethod("values");
3491                 values.setAccessible(true);
3492                 @SuppressWarnings("unchecked")
3493                 T[] temporaryConstants = (T[])values.invoke(null);
3494                 enumConstants = constants = temporaryConstants;
3495             }
3496             // These can happen when users concoct enum-like classes
3497             // that don't comply with the enum spec.
3498             catch (InvocationTargetException | NoSuchMethodException |
3499                    IllegalAccessException | NullPointerException |
3500                    ClassCastException ex) { return null; }
3501         }
3502         return constants;
3503     }
3504     private transient volatile T[] enumConstants;
3505 
3506     /**
3507      * Returns a map from simple name to enum constant.  This package-private
3508      * method is used internally by Enum to implement
3509      * {@code public static <T extends Enum<T>> T valueOf(Class<T>, String)}
3510      * efficiently.  Note that the map is returned by this method is
3511      * created lazily on first use.  Typically it won't ever get created.
3512      */
3513     Map<String, T> enumConstantDirectory() {
3514         Map<String, T> directory = enumConstantDirectory;
3515         if (directory == null) {
3516             T[] universe = getEnumConstantsShared();
3517             if (universe == null)
3518                 throw new IllegalArgumentException(
3519                     getName() + " is not an enum class");
3520             directory = HashMap.newHashMap(universe.length);
3521             for (T constant : universe) {
3522                 directory.put(((Enum<?>)constant).name(), constant);
3523             }
3524             enumConstantDirectory = directory;
3525         }
3526         return directory;
3527     }
3528     private transient volatile Map<String, T> enumConstantDirectory;
3529 
3530     /**
3531      * Casts an object to the class or interface represented
3532      * by this {@code Class} object.
3533      *
3534      * @param obj the object to be cast
3535      * @return the object after casting, or null if obj is null
3536      *
3537      * @throws ClassCastException if the object is not
3538      * null and is not assignable to the type T.
3539      *
3540      * @since 1.5
3541      */
3542     @SuppressWarnings("unchecked")
3543     @IntrinsicCandidate
3544     public T cast(Object obj) {
3545         if (obj != null && !isInstance(obj))
3546             throw new ClassCastException(cannotCastMsg(obj));
3547         return (T) obj;
3548     }
3549 
3550     private String cannotCastMsg(Object obj) {
3551         return "Cannot cast " + obj.getClass().getName() + " to " + getName();
3552     }
3553 
3554     /**
3555      * Casts this {@code Class} object to represent a subclass of the class
3556      * represented by the specified class object.  Checks that the cast
3557      * is valid, and throws a {@code ClassCastException} if it is not.  If
3558      * this method succeeds, it always returns a reference to this {@code Class} object.
3559      *
3560      * <p>This method is useful when a client needs to "narrow" the type of
3561      * a {@code Class} object to pass it to an API that restricts the
3562      * {@code Class} objects that it is willing to accept.  A cast would
3563      * generate a compile-time warning, as the correctness of the cast
3564      * could not be checked at runtime (because generic types are implemented
3565      * by erasure).
3566      *
3567      * @param <U> the type to cast this {@code Class} object to
3568      * @param clazz the class of the type to cast this {@code Class} object to
3569      * @return this {@code Class} object, cast to represent a subclass of
3570      *    the specified class object.
3571      * @throws ClassCastException if this {@code Class} object does not
3572      *    represent a subclass of the specified class (here "subclass" includes
3573      *    the class itself).
3574      * @since 1.5
3575      */
3576     @SuppressWarnings("unchecked")
3577     public <U> Class<? extends U> asSubclass(Class<U> clazz) {
3578         if (clazz.isAssignableFrom(this))
3579             return (Class<? extends U>) this;
3580         else
3581             throw new ClassCastException(this.toString());
3582     }
3583 
3584     /**
3585      * {@inheritDoc}
3586      * <p>Note that any annotation returned by this method is a
3587      * declaration annotation.
3588      *
3589      * @throws NullPointerException {@inheritDoc}
3590      * @since 1.5
3591      */
3592     @Override
3593     @SuppressWarnings("unchecked")
3594     public <A extends Annotation> A getAnnotation(Class<A> annotationClass) {
3595         Objects.requireNonNull(annotationClass);
3596 
3597         return (A) annotationData().annotations.get(annotationClass);
3598     }
3599 
3600     /**
3601      * {@inheritDoc}
3602      * @throws NullPointerException {@inheritDoc}
3603      * @since 1.5
3604      */
3605     @Override
3606     public boolean isAnnotationPresent(Class<? extends Annotation> annotationClass) {
3607         return GenericDeclaration.super.isAnnotationPresent(annotationClass);
3608     }
3609 
3610     /**
3611      * {@inheritDoc}
3612      * <p>Note that any annotations returned by this method are
3613      * declaration annotations.
3614      *
3615      * @throws NullPointerException {@inheritDoc}
3616      * @since 1.8
3617      */
3618     @Override
3619     public <A extends Annotation> A[] getAnnotationsByType(Class<A> annotationClass) {
3620         Objects.requireNonNull(annotationClass);
3621 
3622         AnnotationData annotationData = annotationData();
3623         return AnnotationSupport.getAssociatedAnnotations(annotationData.declaredAnnotations,
3624                                                           this,
3625                                                           annotationClass);
3626     }
3627 
3628     /**
3629      * {@inheritDoc}
3630      * <p>Note that any annotations returned by this method are
3631      * declaration annotations.
3632      *
3633      * @since 1.5
3634      */
3635     @Override
3636     public Annotation[] getAnnotations() {
3637         return AnnotationParser.toArray(annotationData().annotations);
3638     }
3639 
3640     /**
3641      * {@inheritDoc}
3642      * <p>Note that any annotation returned by this method is a
3643      * declaration annotation.
3644      *
3645      * @throws NullPointerException {@inheritDoc}
3646      * @since 1.8
3647      */
3648     @Override
3649     @SuppressWarnings("unchecked")
3650     public <A extends Annotation> A getDeclaredAnnotation(Class<A> annotationClass) {
3651         Objects.requireNonNull(annotationClass);
3652 
3653         return (A) annotationData().declaredAnnotations.get(annotationClass);
3654     }
3655 
3656     /**
3657      * {@inheritDoc}
3658      * <p>Note that any annotations returned by this method are
3659      * declaration annotations.
3660      *
3661      * @throws NullPointerException {@inheritDoc}
3662      * @since 1.8
3663      */
3664     @Override
3665     public <A extends Annotation> A[] getDeclaredAnnotationsByType(Class<A> annotationClass) {
3666         Objects.requireNonNull(annotationClass);
3667 
3668         return AnnotationSupport.getDirectlyAndIndirectlyPresent(annotationData().declaredAnnotations,
3669                                                                  annotationClass);
3670     }
3671 
3672     /**
3673      * {@inheritDoc}
3674      * <p>Note that any annotations returned by this method are
3675      * declaration annotations.
3676      *
3677      * @since 1.5
3678      */
3679     @Override
3680     public Annotation[] getDeclaredAnnotations()  {
3681         return AnnotationParser.toArray(annotationData().declaredAnnotations);
3682     }
3683 
3684     // annotation data that might get invalidated when JVM TI RedefineClasses() is called
3685     private static class AnnotationData {
3686         final Map<Class<? extends Annotation>, Annotation> annotations;
3687         final Map<Class<? extends Annotation>, Annotation> declaredAnnotations;
3688 
3689         // Value of classRedefinedCount when we created this AnnotationData instance
3690         final int redefinedCount;
3691 
3692         AnnotationData(Map<Class<? extends Annotation>, Annotation> annotations,
3693                        Map<Class<? extends Annotation>, Annotation> declaredAnnotations,
3694                        int redefinedCount) {
3695             this.annotations = annotations;
3696             this.declaredAnnotations = declaredAnnotations;
3697             this.redefinedCount = redefinedCount;
3698         }
3699     }
3700 
3701     // Annotations cache
3702     @SuppressWarnings("UnusedDeclaration")
3703     private transient volatile AnnotationData annotationData;
3704 
3705     private AnnotationData annotationData() {
3706         while (true) { // retry loop
3707             AnnotationData annotationData = this.annotationData;
3708             int classRedefinedCount = this.classRedefinedCount;
3709             if (annotationData != null &&
3710                 annotationData.redefinedCount == classRedefinedCount) {
3711                 return annotationData;
3712             }
3713             // null or stale annotationData -> optimistically create new instance
3714             AnnotationData newAnnotationData = createAnnotationData(classRedefinedCount);
3715             // try to install it
3716             if (Atomic.casAnnotationData(this, annotationData, newAnnotationData)) {
3717                 // successfully installed new AnnotationData
3718                 return newAnnotationData;
3719             }
3720         }
3721     }
3722 
3723     private AnnotationData createAnnotationData(int classRedefinedCount) {
3724         Map<Class<? extends Annotation>, Annotation> declaredAnnotations =
3725             AnnotationParser.parseAnnotations(getRawAnnotations(), getConstantPool(), this);
3726         Class<?> superClass = getSuperclass();
3727         Map<Class<? extends Annotation>, Annotation> annotations = null;
3728         if (superClass != null) {
3729             Map<Class<? extends Annotation>, Annotation> superAnnotations =
3730                 superClass.annotationData().annotations;
3731             for (Map.Entry<Class<? extends Annotation>, Annotation> e : superAnnotations.entrySet()) {
3732                 Class<? extends Annotation> annotationClass = e.getKey();
3733                 if (AnnotationType.getInstance(annotationClass).isInherited()) {
3734                     if (annotations == null) { // lazy construction
3735                         annotations = LinkedHashMap.newLinkedHashMap(Math.max(
3736                                 declaredAnnotations.size(),
3737                                 Math.min(12, declaredAnnotations.size() + superAnnotations.size())
3738                             )
3739                         );
3740                     }
3741                     annotations.put(annotationClass, e.getValue());
3742                 }
3743             }
3744         }
3745         if (annotations == null) {
3746             // no inherited annotations -> share the Map with declaredAnnotations
3747             annotations = declaredAnnotations;
3748         } else {
3749             // at least one inherited annotation -> declared may override inherited
3750             annotations.putAll(declaredAnnotations);
3751         }
3752         return new AnnotationData(annotations, declaredAnnotations, classRedefinedCount);
3753     }
3754 
3755     // Annotation interfaces cache their internal (AnnotationType) form
3756 
3757     @SuppressWarnings("UnusedDeclaration")
3758     private transient volatile AnnotationType annotationType;
3759 
3760     boolean casAnnotationType(AnnotationType oldType, AnnotationType newType) {
3761         return Atomic.casAnnotationType(this, oldType, newType);
3762     }
3763 
3764     AnnotationType getAnnotationType() {
3765         return annotationType;
3766     }
3767 
3768     Map<Class<? extends Annotation>, Annotation> getDeclaredAnnotationMap() {
3769         return annotationData().declaredAnnotations;
3770     }
3771 
3772     /* Backing store of user-defined values pertaining to this class.
3773      * Maintained by the ClassValue class.
3774      */
3775     transient ClassValue.ClassValueMap classValueMap;
3776 
3777     /**
3778      * Returns an {@code AnnotatedType} object that represents the use of a
3779      * type to specify the superclass of the entity represented by this {@code
3780      * Class} object. (The <em>use</em> of type Foo to specify the superclass
3781      * in '...  extends Foo' is distinct from the <em>declaration</em> of class
3782      * Foo.)
3783      *
3784      * <p> If this {@code Class} object represents a class whose declaration
3785      * does not explicitly indicate an annotated superclass, then the return
3786      * value is an {@code AnnotatedType} object representing an element with no
3787      * annotations.
3788      *
3789      * <p> If this {@code Class} represents either the {@code Object} class, an
3790      * interface type, an array type, a primitive type, or void, the return
3791      * value is {@code null}.
3792      *
3793      * @return an object representing the superclass
3794      * @since 1.8
3795      */
3796     public AnnotatedType getAnnotatedSuperclass() {
3797         if (this == Object.class ||
3798                 isInterface() ||
3799                 isArray() ||
3800                 isPrimitive() ||
3801                 this == Void.TYPE) {
3802             return null;
3803         }
3804 
3805         return TypeAnnotationParser.buildAnnotatedSuperclass(getRawTypeAnnotations(), getConstantPool(), this);
3806     }
3807 
3808     /**
3809      * Returns an array of {@code AnnotatedType} objects that represent the use
3810      * of types to specify superinterfaces of the entity represented by this
3811      * {@code Class} object. (The <em>use</em> of type Foo to specify a
3812      * superinterface in '... implements Foo' is distinct from the
3813      * <em>declaration</em> of interface Foo.)
3814      *
3815      * <p> If this {@code Class} object represents a class, the return value is
3816      * an array containing objects representing the uses of interface types to
3817      * specify interfaces implemented by the class. The order of the objects in
3818      * the array corresponds to the order of the interface types used in the
3819      * 'implements' clause of the declaration of this {@code Class} object.
3820      *
3821      * <p> If this {@code Class} object represents an interface, the return
3822      * value is an array containing objects representing the uses of interface
3823      * types to specify interfaces directly extended by the interface. The
3824      * order of the objects in the array corresponds to the order of the
3825      * interface types used in the 'extends' clause of the declaration of this
3826      * {@code Class} object.
3827      *
3828      * <p> If this {@code Class} object represents a class or interface whose
3829      * declaration does not explicitly indicate any annotated superinterfaces,
3830      * the return value is an array of length 0.
3831      *
3832      * <p> If this {@code Class} object represents either the {@code Object}
3833      * class, an array type, a primitive type, or void, the return value is an
3834      * array of length 0.
3835      *
3836      * @return an array representing the superinterfaces
3837      * @since 1.8
3838      */
3839     public AnnotatedType[] getAnnotatedInterfaces() {
3840         return TypeAnnotationParser.buildAnnotatedInterfaces(getRawTypeAnnotations(), getConstantPool(), this);
3841     }
3842 
3843     private native Class<?> getNestHost0();
3844 
3845     /**
3846      * Returns the nest host of the <a href=#nest>nest</a> to which the class
3847      * or interface represented by this {@code Class} object belongs.
3848      * Every class and interface belongs to exactly one nest.
3849      *
3850      * If the nest host of this class or interface has previously
3851      * been determined, then this method returns the nest host.
3852      * If the nest host of this class or interface has
3853      * not previously been determined, then this method determines the nest
3854      * host using the algorithm of JVMS 5.4.4, and returns it.
3855      *
3856      * Often, a class or interface belongs to a nest consisting only of itself,
3857      * in which case this method returns {@code this} to indicate that the class
3858      * or interface is the nest host.
3859      *
3860      * <p>If this {@code Class} object represents a primitive type, an array type,
3861      * or {@code void}, then this method returns {@code this},
3862      * indicating that the represented entity belongs to the nest consisting only of
3863      * itself, and is the nest host.
3864      *
3865      * @return the nest host of this class or interface
3866      *
3867      * @since 11
3868      * @jvms 4.7.28 The {@code NestHost} Attribute
3869      * @jvms 4.7.29 The {@code NestMembers} Attribute
3870      * @jvms 5.4.4 Access Control
3871      */
3872     public Class<?> getNestHost() {
3873         if (isPrimitive() || isArray()) {
3874             return this;
3875         }
3876         return getNestHost0();
3877     }
3878 
3879     /**
3880      * Determines if the given {@code Class} is a nestmate of the
3881      * class or interface represented by this {@code Class} object.
3882      * Two classes or interfaces are nestmates
3883      * if they have the same {@linkplain #getNestHost() nest host}.
3884      *
3885      * @param c the class to check
3886      * @return {@code true} if this class and {@code c} are members of
3887      * the same nest; and {@code false} otherwise.
3888      *
3889      * @since 11
3890      */
3891     public boolean isNestmateOf(Class<?> c) {
3892         if (this == c) {
3893             return true;
3894         }
3895         if (isPrimitive() || isArray() ||
3896             c.isPrimitive() || c.isArray()) {
3897             return false;
3898         }
3899 
3900         return getNestHost() == c.getNestHost();
3901     }
3902 
3903     private native Class<?>[] getNestMembers0();
3904 
3905     /**
3906      * Returns an array containing {@code Class} objects representing all the
3907      * classes and interfaces that are members of the nest to which the class
3908      * or interface represented by this {@code Class} object belongs.
3909      *
3910      * First, this method obtains the {@linkplain #getNestHost() nest host},
3911      * {@code H}, of the nest to which the class or interface represented by
3912      * this {@code Class} object belongs. The zeroth element of the returned
3913      * array is {@code H}.
3914      *
3915      * Then, for each class or interface {@code C} which is recorded by {@code H}
3916      * as being a member of its nest, this method attempts to obtain the {@code Class}
3917      * object for {@code C} (using {@linkplain #getClassLoader() the defining class
3918      * loader} of the current {@code Class} object), and then obtains the
3919      * {@linkplain #getNestHost() nest host} of the nest to which {@code C} belongs.
3920      * The classes and interfaces which are recorded by {@code H} as being members
3921      * of its nest, and for which {@code H} can be determined as their nest host,
3922      * are indicated by subsequent elements of the returned array. The order of
3923      * such elements is unspecified. Duplicates are permitted.
3924      *
3925      * <p>If this {@code Class} object represents a primitive type, an array type,
3926      * or {@code void}, then this method returns a single-element array containing
3927      * {@code this}.
3928      *
3929      * @apiNote
3930      * The returned array includes only the nest members recorded in the {@code NestMembers}
3931      * attribute, and not any hidden classes that were added to the nest via
3932      * {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
3933      * Lookup::defineHiddenClass}.
3934      *
3935      * @return an array of all classes and interfaces in the same nest as
3936      * this class or interface
3937      *
3938      * @since 11
3939      * @see #getNestHost()
3940      * @jvms 4.7.28 The {@code NestHost} Attribute
3941      * @jvms 4.7.29 The {@code NestMembers} Attribute
3942      */
3943     public Class<?>[] getNestMembers() {
3944         if (isPrimitive() || isArray()) {
3945             return new Class<?>[] { this };
3946         }
3947         Class<?>[] members = getNestMembers0();
3948         // Can't actually enable this due to bootstrapping issues
3949         // assert(members.length != 1 || members[0] == this); // expected invariant from VM
3950         return members;
3951     }
3952 
3953     /**
3954      * Returns the descriptor string of the entity (class, interface, array class,
3955      * primitive type, or {@code void}) represented by this {@code Class} object.
3956      *
3957      * <p> If this {@code Class} object represents a class or interface,
3958      * not an array class, then:
3959      * <ul>
3960      * <li> If the class or interface is not {@linkplain Class#isHidden() hidden},
3961      *      then the result is a field descriptor (JVMS {@jvms 4.3.2})
3962      *      for the class or interface. Calling
3963      *      {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}
3964      *      with the result descriptor string produces a {@link ClassDesc ClassDesc}
3965      *      describing this class or interface.
3966      * <li> If the class or interface is {@linkplain Class#isHidden() hidden},
3967      *      then the result is a string of the form:
3968      *      <blockquote>
3969      *      {@code "L" +} <em>N</em> {@code + "." + <suffix> + ";"}
3970      *      </blockquote>
3971      *      where <em>N</em> is the {@linkplain ClassLoader##binary-name binary name}
3972      *      encoded in internal form indicated by the {@code class} file passed to
3973      *      {@link MethodHandles.Lookup#defineHiddenClass(byte[], boolean, MethodHandles.Lookup.ClassOption...)
3974      *      Lookup::defineHiddenClass}, and {@code <suffix>} is an unqualified name.
3975      *      A hidden class or interface has no {@linkplain ClassDesc nominal descriptor}.
3976      *      The result string is not a type descriptor.
3977      * </ul>
3978      *
3979      * <p> If this {@code Class} object represents an array class, then
3980      * the result is a string consisting of one or more '{@code [}' characters
3981      * representing the depth of the array nesting, followed by the
3982      * descriptor string of the element type.
3983      * <ul>
3984      * <li> If the element type is not a {@linkplain Class#isHidden() hidden} class
3985      * or interface, then this array class can be described nominally.
3986      * Calling {@link ClassDesc#ofDescriptor(String) ClassDesc::ofDescriptor}
3987      * with the result descriptor string produces a {@link ClassDesc ClassDesc}
3988      * describing this array class.
3989      * <li> If the element type is a {@linkplain Class#isHidden() hidden} class or
3990      * interface, then this array class cannot be described nominally.
3991      * The result string is not a type descriptor.
3992      * </ul>
3993      *
3994      * <p> If this {@code Class} object represents a primitive type or
3995      * {@code void}, then the result is a field descriptor string which
3996      * is a one-letter code corresponding to a primitive type or {@code void}
3997      * ({@code "B", "C", "D", "F", "I", "J", "S", "Z", "V"}) (JVMS {@jvms 4.3.2}).
3998      *
3999      * @return the descriptor string for this {@code Class} object
4000      * @jvms 4.3.2 Field Descriptors
4001      * @since 12
4002      */
4003     @Override
4004     public String descriptorString() {
4005         if (isPrimitive())
4006             return Wrapper.forPrimitiveType(this).basicTypeString();
4007 
4008         if (isArray()) {
4009             return "[".concat(componentType.descriptorString());
4010         } else if (isHidden()) {
4011             String name = getName();
4012             int index = name.indexOf('/');
4013             return new StringBuilder(name.length() + 2)
4014                     .append('L')
4015                     .append(name.substring(0, index).replace('.', '/'))
4016                     .append('.')
4017                     .append(name, index + 1, name.length())
4018                     .append(';')
4019                     .toString();
4020         } else {
4021             String name = getName().replace('.', '/');
4022             return StringConcatHelper.concat("L", name, ";");
4023         }
4024     }
4025 
4026     /**
4027      * Returns the component type of this {@code Class}, if it describes
4028      * an array type, or {@code null} otherwise.
4029      *
4030      * @implSpec
4031      * Equivalent to {@link Class#getComponentType()}.
4032      *
4033      * @return a {@code Class} describing the component type, or {@code null}
4034      * if this {@code Class} does not describe an array type
4035      * @since 12
4036      */
4037     @Override
4038     public Class<?> componentType() {
4039         return isArray() ? componentType : null;
4040     }
4041 
4042     /**
4043      * Returns a {@code Class} for an array type whose component type
4044      * is described by this {@linkplain Class}.
4045      *
4046      * @throws UnsupportedOperationException if this component type is {@linkplain
4047      *         Void#TYPE void} or if the number of dimensions of the resulting array
4048      *         type would exceed 255.
4049      * @return a {@code Class} describing the array type
4050      * @jvms 4.3.2 Field Descriptors
4051      * @jvms 4.4.1 The {@code CONSTANT_Class_info} Structure
4052      * @since 12
4053      */
4054     @Override
4055     public Class<?> arrayType() {
4056         try {
4057             return Array.newInstance(this, 0).getClass();
4058         } catch (IllegalArgumentException iae) {
4059             throw new UnsupportedOperationException(iae);
4060         }
4061     }
4062 
4063     /**
4064      * Returns a nominal descriptor for this instance, if one can be
4065      * constructed, or an empty {@link Optional} if one cannot be.
4066      *
4067      * @return An {@link Optional} containing the resulting nominal descriptor,
4068      * or an empty {@link Optional} if one cannot be constructed.
4069      * @since 12
4070      */
4071     @Override
4072     public Optional<ClassDesc> describeConstable() {
4073         Class<?> c = isArray() ? elementType() : this;
4074         return c.isHidden() ? Optional.empty()
4075                             : Optional.of(ConstantUtils.classDesc(this));
4076    }
4077 
4078     /**
4079      * Returns {@code true} if and only if the underlying class is a hidden class.
4080      *
4081      * @return {@code true} if and only if this class is a hidden class.
4082      *
4083      * @since 15
4084      * @see MethodHandles.Lookup#defineHiddenClass
4085      * @see Class##hiddenClasses Hidden Classes
4086      */
4087     @IntrinsicCandidate
4088     public native boolean isHidden();
4089 
4090     /**
4091      * Returns an array containing {@code Class} objects representing the
4092      * direct subinterfaces or subclasses permitted to extend or
4093      * implement this class or interface if it is sealed.  The order of such elements
4094      * is unspecified. The array is empty if this sealed class or interface has no
4095      * permitted subclass. If this {@code Class} object represents a primitive type,
4096      * {@code void}, an array type, or a class or interface that is not sealed,
4097      * that is {@link #isSealed()} returns {@code false}, then this method returns {@code null}.
4098      * Conversely, if {@link #isSealed()} returns {@code true}, then this method
4099      * returns a non-null value.
4100      *
4101      * For each class or interface {@code C} which is recorded as a permitted
4102      * direct subinterface or subclass of this class or interface,
4103      * this method attempts to obtain the {@code Class}
4104      * object for {@code C} (using {@linkplain #getClassLoader() the defining class
4105      * loader} of the current {@code Class} object).
4106      * The {@code Class} objects which can be obtained and which are direct
4107      * subinterfaces or subclasses of this class or interface,
4108      * are indicated by elements of the returned array. If a {@code Class} object
4109      * cannot be obtained, it is silently ignored, and not included in the result
4110      * array.
4111      *
4112      * @return an array of {@code Class} objects of the permitted subclasses of this class
4113      *         or interface, or {@code null} if this class or interface is not sealed.
4114      *
4115      * @jls 8.1 Class Declarations
4116      * @jls 9.1 Interface Declarations
4117      * @since 17
4118      */
4119     public Class<?>[] getPermittedSubclasses() {
4120         Class<?>[] subClasses;
4121         if (isArray() || isPrimitive() || (subClasses = getPermittedSubclasses0()) == null) {
4122             return null;
4123         }
4124         if (subClasses.length > 0) {
4125             if (Arrays.stream(subClasses).anyMatch(c -> !isDirectSubType(c))) {
4126                 subClasses = Arrays.stream(subClasses)
4127                                    .filter(this::isDirectSubType)
4128                                    .toArray(s -> new Class<?>[s]);
4129             }
4130         }
4131         return subClasses;
4132     }
4133 
4134     private boolean isDirectSubType(Class<?> c) {
4135         if (isInterface()) {
4136             for (Class<?> i : c.getInterfaces(/* cloneArray */ false)) {
4137                 if (i == this) {
4138                     return true;
4139                 }
4140             }
4141         } else {
4142             return c.getSuperclass() == this;
4143         }
4144         return false;
4145     }
4146 
4147     /**
4148      * Returns {@code true} if and only if this {@code Class} object represents
4149      * a sealed class or interface. If this {@code Class} object represents a
4150      * primitive type, {@code void}, or an array type, this method returns
4151      * {@code false}. A sealed class or interface has (possibly zero) permitted
4152      * subclasses; {@link #getPermittedSubclasses()} returns a non-null but
4153      * possibly empty value for a sealed class or interface.
4154      *
4155      * @return {@code true} if and only if this {@code Class} object represents
4156      * a sealed class or interface.
4157      *
4158      * @jls 8.1 Class Declarations
4159      * @jls 9.1 Interface Declarations
4160      * @since 17
4161      */
4162     public boolean isSealed() {
4163         if (isArray() || isPrimitive()) {
4164             return false;
4165         }
4166         return getPermittedSubclasses() != null;
4167     }
4168 
4169     private native Class<?>[] getPermittedSubclasses0();
4170 
4171     /*
4172      * Return the class's major and minor class file version packed into an int.
4173      * The high order 16 bits contain the class's minor version.  The low order
4174      * 16 bits contain the class's major version.
4175      *
4176      * If the class is an array type then the class file version of its element
4177      * type is returned.  If the class is a primitive type then the latest class
4178      * file major version is returned and zero is returned for the minor version.
4179      */
4180     /* package-private */
4181     int getClassFileVersion() {
4182         Class<?> c = isArray() ? elementType() : this;
4183         return c.getClassFileVersion0();
4184     }
4185 
4186     private native int getClassFileVersion0();
4187 
4188     /*
4189      * Return the access flags as they were in the class's bytecode, including
4190      * the original setting of ACC_SUPER.
4191      *
4192      * If the class is an array type then the access flags of the element type is
4193      * returned.  If the class is a primitive then ACC_ABSTRACT | ACC_FINAL | ACC_PUBLIC.
4194      */
4195     private int getClassAccessFlagsRaw() {
4196         Class<?> c = isArray() ? elementType() : this;
4197         return c.getClassAccessFlagsRaw0();
4198     }
4199 
4200     private native int getClassAccessFlagsRaw0();
4201 }