1 /* 2 * Copyright (c) 1994, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang; 27 28 import jdk.internal.misc.CDS; 29 import jdk.internal.misc.VM; 30 import jdk.internal.util.DecimalDigits; 31 import jdk.internal.value.DeserializeConstructor; 32 import jdk.internal.vm.annotation.ForceInline; 33 import jdk.internal.vm.annotation.IntrinsicCandidate; 34 import jdk.internal.vm.annotation.Stable; 35 36 import java.lang.annotation.Native; 37 import java.lang.constant.Constable; 38 import java.lang.constant.ConstantDesc; 39 import java.lang.invoke.MethodHandles; 40 import java.util.Objects; 41 import java.util.Optional; 42 43 import static java.lang.Character.digit; 44 import static java.lang.String.COMPACT_STRINGS; 45 import static java.lang.String.LATIN1; 46 import static java.lang.String.UTF16; 47 48 /** 49 * The {@code Integer} class is the {@linkplain 50 * java.lang##wrapperClass wrapper class} for values of the primitive 51 * type {@code int}. An object of type {@code Integer} contains a 52 * single field whose type is {@code int}. 53 * 54 * <p>In addition, this class provides several methods for converting 55 * an {@code int} to a {@code String} and a {@code String} to an 56 * {@code int}, as well as other constants and methods useful when 57 * dealing with an {@code int}. 58 * 59 * <p>This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a> 60 * class; programmers should treat instances that are 61 * {@linkplain #equals(Object) equal} as interchangeable and should not 62 * use instances for synchronization, or unpredictable behavior may 63 * occur. For example, in a future release, synchronization may fail. 64 * 65 * <p>Implementation note: The implementations of the "bit twiddling" 66 * methods (such as {@link #highestOneBit(int) highestOneBit} and 67 * {@link #numberOfTrailingZeros(int) numberOfTrailingZeros}) are 68 * based on material from Henry S. Warren, Jr.'s <cite>Hacker's 69 * Delight</cite>, (Addison Wesley, 2002) and <cite>Hacker's 70 * Delight, Second Edition</cite>, (Pearson Education, 2013). 71 * 72 * @author Lee Boynton 73 * @author Arthur van Hoff 74 * @author Josh Bloch 75 * @author Joseph D. Darcy 76 * @since 1.0 77 */ 78 @jdk.internal.MigratedValueClass 79 @jdk.internal.ValueBased 80 public final class Integer extends Number 81 implements Comparable<Integer>, Constable, ConstantDesc { 82 /** 83 * A constant holding the minimum value an {@code int} can 84 * have, -2<sup>31</sup>. 85 */ 86 @Native public static final int MIN_VALUE = 0x80000000; 87 88 /** 89 * A constant holding the maximum value an {@code int} can 90 * have, 2<sup>31</sup>-1. 91 */ 92 @Native public static final int MAX_VALUE = 0x7fffffff; 93 94 /** 95 * The {@code Class} instance representing the primitive type 96 * {@code int}. 97 * 98 * @since 1.1 99 */ 100 public static final Class<Integer> TYPE = Class.getPrimitiveClass("int"); 101 102 /** 103 * All possible chars for representing a number as a String 104 */ 105 static final char[] digits = { 106 '0' , '1' , '2' , '3' , '4' , '5' , 107 '6' , '7' , '8' , '9' , 'a' , 'b' , 108 'c' , 'd' , 'e' , 'f' , 'g' , 'h' , 109 'i' , 'j' , 'k' , 'l' , 'm' , 'n' , 110 'o' , 'p' , 'q' , 'r' , 's' , 't' , 111 'u' , 'v' , 'w' , 'x' , 'y' , 'z' 112 }; 113 114 /** 115 * Returns a string representation of the first argument in the 116 * radix specified by the second argument. 117 * 118 * <p>If the radix is smaller than {@code Character.MIN_RADIX} 119 * or larger than {@code Character.MAX_RADIX}, then the radix 120 * {@code 10} is used instead. 121 * 122 * <p>If the first argument is negative, the first element of the 123 * result is the ASCII minus character {@code '-'} 124 * ({@code '\u005Cu002D'}). If the first argument is not 125 * negative, no sign character appears in the result. 126 * 127 * <p>The remaining characters of the result represent the magnitude 128 * of the first argument. If the magnitude is zero, it is 129 * represented by a single zero character {@code '0'} 130 * ({@code '\u005Cu0030'}); otherwise, the first character of 131 * the representation of the magnitude will not be the zero 132 * character. The following ASCII characters are used as digits: 133 * 134 * <blockquote> 135 * {@code 0123456789abcdefghijklmnopqrstuvwxyz} 136 * </blockquote> 137 * 138 * These are {@code '\u005Cu0030'} through 139 * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through 140 * {@code '\u005Cu007A'}. If {@code radix} is 141 * <var>N</var>, then the first <var>N</var> of these characters 142 * are used as radix-<var>N</var> digits in the order shown. Thus, 143 * the digits for hexadecimal (radix 16) are 144 * {@code 0123456789abcdef}. If uppercase letters are 145 * desired, the {@link java.lang.String#toUpperCase()} method may 146 * be called on the result: 147 * 148 * <blockquote> 149 * {@code Integer.toString(n, 16).toUpperCase()} 150 * </blockquote> 151 * 152 * @param i an integer to be converted to a string. 153 * @param radix the radix to use in the string representation. 154 * @return a string representation of the argument in the specified radix. 155 * @see java.lang.Character#MAX_RADIX 156 * @see java.lang.Character#MIN_RADIX 157 */ 158 public static String toString(int i, int radix) { 159 if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) 160 radix = 10; 161 162 /* Use the faster version */ 163 if (radix == 10) { 164 return toString(i); 165 } 166 167 if (COMPACT_STRINGS) { 168 byte[] buf = new byte[33]; 169 boolean negative = (i < 0); 170 int charPos = 32; 171 172 if (!negative) { 173 i = -i; 174 } 175 176 while (i <= -radix) { 177 buf[charPos--] = (byte)digits[-(i % radix)]; 178 i = i / radix; 179 } 180 buf[charPos] = (byte)digits[-i]; 181 182 if (negative) { 183 buf[--charPos] = '-'; 184 } 185 186 return StringLatin1.newString(buf, charPos, (33 - charPos)); 187 } 188 return toStringUTF16(i, radix); 189 } 190 191 private static String toStringUTF16(int i, int radix) { 192 byte[] buf = new byte[33 * 2]; 193 boolean negative = (i < 0); 194 int charPos = 32; 195 if (!negative) { 196 i = -i; 197 } 198 while (i <= -radix) { 199 StringUTF16.putChar(buf, charPos--, digits[-(i % radix)]); 200 i = i / radix; 201 } 202 StringUTF16.putChar(buf, charPos, digits[-i]); 203 204 if (negative) { 205 StringUTF16.putChar(buf, --charPos, '-'); 206 } 207 return StringUTF16.newString(buf, charPos, (33 - charPos)); 208 } 209 210 /** 211 * Returns a string representation of the first argument as an 212 * unsigned integer value in the radix specified by the second 213 * argument. 214 * 215 * <p>If the radix is smaller than {@code Character.MIN_RADIX} 216 * or larger than {@code Character.MAX_RADIX}, then the radix 217 * {@code 10} is used instead. 218 * 219 * <p>Note that since the first argument is treated as an unsigned 220 * value, no leading sign character is printed. 221 * 222 * <p>If the magnitude is zero, it is represented by a single zero 223 * character {@code '0'} ({@code '\u005Cu0030'}); otherwise, 224 * the first character of the representation of the magnitude will 225 * not be the zero character. 226 * 227 * <p>The behavior of radixes and the characters used as digits 228 * are the same as {@link #toString(int, int) toString}. 229 * 230 * @param i an integer to be converted to an unsigned string. 231 * @param radix the radix to use in the string representation. 232 * @return an unsigned string representation of the argument in the specified radix. 233 * @see #toString(int, int) 234 * @since 1.8 235 */ 236 public static String toUnsignedString(int i, int radix) { 237 return Long.toUnsignedString(toUnsignedLong(i), radix); 238 } 239 240 /** 241 * Returns a string representation of the integer argument as an 242 * unsigned integer in base 16. 243 * 244 * <p>The unsigned integer value is the argument plus 2<sup>32</sup> 245 * if the argument is negative; otherwise, it is equal to the 246 * argument. This value is converted to a string of ASCII digits 247 * in hexadecimal (base 16) with no extra leading 248 * {@code 0}s. 249 * 250 * <p>The value of the argument can be recovered from the returned 251 * string {@code s} by calling {@link 252 * Integer#parseUnsignedInt(String, int) 253 * Integer.parseUnsignedInt(s, 16)}. 254 * 255 * <p>If the unsigned magnitude is zero, it is represented by a 256 * single zero character {@code '0'} ({@code '\u005Cu0030'}); 257 * otherwise, the first character of the representation of the 258 * unsigned magnitude will not be the zero character. The 259 * following characters are used as hexadecimal digits: 260 * 261 * <blockquote> 262 * {@code 0123456789abcdef} 263 * </blockquote> 264 * 265 * These are the characters {@code '\u005Cu0030'} through 266 * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through 267 * {@code '\u005Cu0066'}. If uppercase letters are 268 * desired, the {@link java.lang.String#toUpperCase()} method may 269 * be called on the result: 270 * 271 * <blockquote> 272 * {@code Integer.toHexString(n).toUpperCase()} 273 * </blockquote> 274 * 275 * @apiNote 276 * The {@link java.util.HexFormat} class provides formatting and parsing 277 * of byte arrays and primitives to return a string or adding to an {@link Appendable}. 278 * {@code HexFormat} formats and parses uppercase or lowercase hexadecimal characters, 279 * with leading zeros and for byte arrays includes for each byte 280 * a delimiter, prefix, and suffix. 281 * 282 * @param i an integer to be converted to a string. 283 * @return the string representation of the unsigned integer value 284 * represented by the argument in hexadecimal (base 16). 285 * @see java.util.HexFormat 286 * @see #parseUnsignedInt(String, int) 287 * @see #toUnsignedString(int, int) 288 * @since 1.0.2 289 */ 290 public static String toHexString(int i) { 291 return toUnsignedString0(i, 4); 292 } 293 294 /** 295 * Returns a string representation of the integer argument as an 296 * unsigned integer in base 8. 297 * 298 * <p>The unsigned integer value is the argument plus 2<sup>32</sup> 299 * if the argument is negative; otherwise, it is equal to the 300 * argument. This value is converted to a string of ASCII digits 301 * in octal (base 8) with no extra leading {@code 0}s. 302 * 303 * <p>The value of the argument can be recovered from the returned 304 * string {@code s} by calling {@link 305 * Integer#parseUnsignedInt(String, int) 306 * Integer.parseUnsignedInt(s, 8)}. 307 * 308 * <p>If the unsigned magnitude is zero, it is represented by a 309 * single zero character {@code '0'} ({@code '\u005Cu0030'}); 310 * otherwise, the first character of the representation of the 311 * unsigned magnitude will not be the zero character. The 312 * following characters are used as octal digits: 313 * 314 * <blockquote> 315 * {@code 01234567} 316 * </blockquote> 317 * 318 * These are the characters {@code '\u005Cu0030'} through 319 * {@code '\u005Cu0037'}. 320 * 321 * @param i an integer to be converted to a string. 322 * @return the string representation of the unsigned integer value 323 * represented by the argument in octal (base 8). 324 * @see #parseUnsignedInt(String, int) 325 * @see #toUnsignedString(int, int) 326 * @since 1.0.2 327 */ 328 public static String toOctalString(int i) { 329 return toUnsignedString0(i, 3); 330 } 331 332 /** 333 * Returns a string representation of the integer argument as an 334 * unsigned integer in base 2. 335 * 336 * <p>The unsigned integer value is the argument plus 2<sup>32</sup> 337 * if the argument is negative; otherwise it is equal to the 338 * argument. This value is converted to a string of ASCII digits 339 * in binary (base 2) with no extra leading {@code 0}s. 340 * 341 * <p>The value of the argument can be recovered from the returned 342 * string {@code s} by calling {@link 343 * Integer#parseUnsignedInt(String, int) 344 * Integer.parseUnsignedInt(s, 2)}. 345 * 346 * <p>If the unsigned magnitude is zero, it is represented by a 347 * single zero character {@code '0'} ({@code '\u005Cu0030'}); 348 * otherwise, the first character of the representation of the 349 * unsigned magnitude will not be the zero character. The 350 * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code 351 * '1'} ({@code '\u005Cu0031'}) are used as binary digits. 352 * 353 * @param i an integer to be converted to a string. 354 * @return the string representation of the unsigned integer value 355 * represented by the argument in binary (base 2). 356 * @see #parseUnsignedInt(String, int) 357 * @see #toUnsignedString(int, int) 358 * @since 1.0.2 359 */ 360 public static String toBinaryString(int i) { 361 return toUnsignedString0(i, 1); 362 } 363 364 /** 365 * Convert the integer to an unsigned number. 366 */ 367 private static String toUnsignedString0(int val, int shift) { 368 // assert shift > 0 && shift <=5 : "Illegal shift value"; 369 int mag = Integer.SIZE - Integer.numberOfLeadingZeros(val); 370 int chars = Math.max(((mag + (shift - 1)) / shift), 1); 371 if (COMPACT_STRINGS) { 372 byte[] buf = new byte[chars]; 373 formatUnsignedInt(val, shift, buf, chars); 374 return new String(buf, LATIN1); 375 } else { 376 byte[] buf = new byte[chars * 2]; 377 formatUnsignedIntUTF16(val, shift, buf, chars); 378 return new String(buf, UTF16); 379 } 380 } 381 382 /** 383 * Format an {@code int} (treated as unsigned) into a byte buffer (LATIN1 version). If 384 * {@code len} exceeds the formatted ASCII representation of {@code val}, 385 * {@code buf} will be padded with leading zeroes. 386 * 387 * @param val the unsigned int to format 388 * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary) 389 * @param buf the byte buffer to write to 390 * @param len the number of characters to write 391 */ 392 private static void formatUnsignedInt(int val, int shift, byte[] buf, int len) { 393 int charPos = len; 394 int radix = 1 << shift; 395 int mask = radix - 1; 396 do { 397 buf[--charPos] = (byte)Integer.digits[val & mask]; 398 val >>>= shift; 399 } while (charPos > 0); 400 } 401 402 /** 403 * Format an {@code int} (treated as unsigned) into a byte buffer (UTF16 version). If 404 * {@code len} exceeds the formatted ASCII representation of {@code val}, 405 * {@code buf} will be padded with leading zeroes. 406 * 407 * @param val the unsigned int to format 408 * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary) 409 * @param buf the byte buffer to write to 410 * @param len the number of characters to write 411 */ 412 private static void formatUnsignedIntUTF16(int val, int shift, byte[] buf, int len) { 413 int charPos = len; 414 int radix = 1 << shift; 415 int mask = radix - 1; 416 do { 417 StringUTF16.putChar(buf, --charPos, Integer.digits[val & mask]); 418 val >>>= shift; 419 } while (charPos > 0); 420 } 421 422 /** 423 * Returns a {@code String} object representing the 424 * specified integer. The argument is converted to signed decimal 425 * representation and returned as a string, exactly as if the 426 * argument and radix 10 were given as arguments to the {@link 427 * #toString(int, int)} method. 428 * 429 * @param i an integer to be converted. 430 * @return a string representation of the argument in base 10. 431 */ 432 @IntrinsicCandidate 433 public static String toString(int i) { 434 int size = DecimalDigits.stringSize(i); 435 if (COMPACT_STRINGS) { 436 byte[] buf = new byte[size]; 437 StringLatin1.getChars(i, size, buf); 438 return new String(buf, LATIN1); 439 } else { 440 byte[] buf = new byte[size * 2]; 441 StringUTF16.getChars(i, size, buf); 442 return new String(buf, UTF16); 443 } 444 } 445 446 /** 447 * Returns a string representation of the argument as an unsigned 448 * decimal value. 449 * 450 * The argument is converted to unsigned decimal representation 451 * and returned as a string exactly as if the argument and radix 452 * 10 were given as arguments to the {@link #toUnsignedString(int, 453 * int)} method. 454 * 455 * @param i an integer to be converted to an unsigned string. 456 * @return an unsigned string representation of the argument. 457 * @see #toUnsignedString(int, int) 458 * @since 1.8 459 */ 460 public static String toUnsignedString(int i) { 461 return Long.toString(toUnsignedLong(i)); 462 } 463 464 /** 465 * Parses the string argument as a signed integer in the radix 466 * specified by the second argument. The characters in the string 467 * must all be digits of the specified radix (as determined by 468 * whether {@link java.lang.Character#digit(char, int)} returns a 469 * nonnegative value), except that the first character may be an 470 * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to 471 * indicate a negative value or an ASCII plus sign {@code '+'} 472 * ({@code '\u005Cu002B'}) to indicate a positive value. The 473 * resulting integer value is returned. 474 * 475 * <p>An exception of type {@code NumberFormatException} is 476 * thrown if any of the following situations occurs: 477 * <ul> 478 * <li>The first argument is {@code null} or is a string of 479 * length zero. 480 * 481 * <li>The radix is either smaller than 482 * {@link java.lang.Character#MIN_RADIX} or 483 * larger than {@link java.lang.Character#MAX_RADIX}. 484 * 485 * <li>Any character of the string is not a digit of the specified 486 * radix, except that the first character may be a minus sign 487 * {@code '-'} ({@code '\u005Cu002D'}) or plus sign 488 * {@code '+'} ({@code '\u005Cu002B'}) provided that the 489 * string is longer than length 1. 490 * 491 * <li>The value represented by the string is not a value of type 492 * {@code int}. 493 * </ul> 494 * 495 * <p>Examples: 496 * <blockquote><pre> 497 * parseInt("0", 10) returns 0 498 * parseInt("473", 10) returns 473 499 * parseInt("+42", 10) returns 42 500 * parseInt("-0", 10) returns 0 501 * parseInt("-FF", 16) returns -255 502 * parseInt("1100110", 2) returns 102 503 * parseInt("2147483647", 10) returns 2147483647 504 * parseInt("-2147483648", 10) returns -2147483648 505 * parseInt("2147483648", 10) throws a NumberFormatException 506 * parseInt("99", 8) throws a NumberFormatException 507 * parseInt("Kona", 10) throws a NumberFormatException 508 * parseInt("Kona", 27) returns 411787 509 * </pre></blockquote> 510 * 511 * @param s the {@code String} containing the integer 512 * representation to be parsed 513 * @param radix the radix to be used while parsing {@code s}. 514 * @return the integer represented by the string argument in the 515 * specified radix. 516 * @throws NumberFormatException if the {@code String} 517 * does not contain a parsable {@code int}. 518 */ 519 public static int parseInt(String s, int radix) 520 throws NumberFormatException { 521 /* 522 * WARNING: This method may be invoked early during VM initialization 523 * before IntegerCache is initialized. Care must be taken to not use 524 * the valueOf method. 525 */ 526 527 if (s == null) { 528 throw new NumberFormatException("Cannot parse null string"); 529 } 530 531 if (radix < Character.MIN_RADIX) { 532 throw new NumberFormatException(String.format( 533 "radix %s less than Character.MIN_RADIX", radix)); 534 } 535 536 if (radix > Character.MAX_RADIX) { 537 throw new NumberFormatException(String.format( 538 "radix %s greater than Character.MAX_RADIX", radix)); 539 } 540 541 int len = s.length(); 542 if (len == 0) { 543 throw NumberFormatException.forInputString("", radix); 544 } 545 int digit = ~0xFF; 546 int i = 0; 547 char firstChar = s.charAt(i++); 548 if (firstChar != '-' && firstChar != '+') { 549 digit = digit(firstChar, radix); 550 } 551 if (digit >= 0 || digit == ~0xFF && len > 1) { 552 int limit = firstChar != '-' ? MIN_VALUE + 1 : MIN_VALUE; 553 int multmin = limit / radix; 554 int result = -(digit & 0xFF); 555 boolean inRange = true; 556 /* Accumulating negatively avoids surprises near MAX_VALUE */ 557 while (i < len && (digit = digit(s.charAt(i++), radix)) >= 0 558 && (inRange = result > multmin 559 || result == multmin && digit <= radix * multmin - limit)) { 560 result = radix * result - digit; 561 } 562 if (inRange && i == len && digit >= 0) { 563 return firstChar != '-' ? -result : result; 564 } 565 } 566 throw NumberFormatException.forInputString(s, radix); 567 } 568 569 /** 570 * Parses the {@link CharSequence} argument as a signed {@code int} in the 571 * specified {@code radix}, beginning at the specified {@code beginIndex} 572 * and extending to {@code endIndex - 1}. 573 * 574 * <p>The method does not take steps to guard against the 575 * {@code CharSequence} being mutated while parsing. 576 * 577 * @param s the {@code CharSequence} containing the {@code int} 578 * representation to be parsed 579 * @param beginIndex the beginning index, inclusive. 580 * @param endIndex the ending index, exclusive. 581 * @param radix the radix to be used while parsing {@code s}. 582 * @return the signed {@code int} represented by the subsequence in 583 * the specified radix. 584 * @throws NullPointerException if {@code s} is null. 585 * @throws IndexOutOfBoundsException if {@code beginIndex} is 586 * negative, or if {@code beginIndex} is greater than 587 * {@code endIndex} or if {@code endIndex} is greater than 588 * {@code s.length()}. 589 * @throws NumberFormatException if the {@code CharSequence} does not 590 * contain a parsable {@code int} in the specified 591 * {@code radix}, or if {@code radix} is either smaller than 592 * {@link java.lang.Character#MIN_RADIX} or larger than 593 * {@link java.lang.Character#MAX_RADIX}. 594 * @since 9 595 */ 596 public static int parseInt(CharSequence s, int beginIndex, int endIndex, int radix) 597 throws NumberFormatException { 598 Objects.requireNonNull(s); 599 Objects.checkFromToIndex(beginIndex, endIndex, s.length()); 600 601 if (radix < Character.MIN_RADIX) { 602 throw new NumberFormatException(String.format( 603 "radix %s less than Character.MIN_RADIX", radix)); 604 } 605 606 if (radix > Character.MAX_RADIX) { 607 throw new NumberFormatException(String.format( 608 "radix %s greater than Character.MAX_RADIX", radix)); 609 } 610 611 /* 612 * While s can be concurrently modified, it is ensured that each 613 * of its characters is read at most once, from lower to higher indices. 614 * This is obtained by reading them using the pattern s.charAt(i++), 615 * and by not updating i anywhere else. 616 */ 617 if (beginIndex == endIndex) { 618 throw NumberFormatException.forInputString("", radix); 619 } 620 int digit = ~0xFF; 621 int i = beginIndex; 622 char firstChar = s.charAt(i++); 623 if (firstChar != '-' && firstChar != '+') { 624 digit = digit(firstChar, radix); 625 } 626 if (digit >= 0 || digit == ~0xFF && endIndex - beginIndex > 1) { 627 int limit = firstChar != '-' ? MIN_VALUE + 1 : MIN_VALUE; 628 int multmin = limit / radix; 629 int result = -(digit & 0xFF); 630 boolean inRange = true; 631 /* Accumulating negatively avoids surprises near MAX_VALUE */ 632 while (i < endIndex && (digit = digit(s.charAt(i++), radix)) >= 0 633 && (inRange = result > multmin 634 || result == multmin && digit <= radix * multmin - limit)) { 635 result = radix * result - digit; 636 } 637 if (inRange && i == endIndex && digit >= 0) { 638 return firstChar != '-' ? -result : result; 639 } 640 } 641 throw NumberFormatException.forCharSequence(s, beginIndex, 642 endIndex, i - (digit < -1 ? 0 : 1)); 643 } 644 645 /** 646 * Parses the string argument as a signed decimal integer. The 647 * characters in the string must all be decimal digits, except 648 * that the first character may be an ASCII minus sign {@code '-'} 649 * ({@code '\u005Cu002D'}) to indicate a negative value or an 650 * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to 651 * indicate a positive value. The resulting integer value is 652 * returned, exactly as if the argument and the radix 10 were 653 * given as arguments to the {@link #parseInt(java.lang.String, 654 * int)} method. 655 * 656 * @param s a {@code String} containing the {@code int} 657 * representation to be parsed 658 * @return the integer value represented by the argument in decimal. 659 * @throws NumberFormatException if the string does not contain a 660 * parsable integer. 661 */ 662 public static int parseInt(String s) throws NumberFormatException { 663 return parseInt(s, 10); 664 } 665 666 /** 667 * Parses the string argument as an unsigned integer in the radix 668 * specified by the second argument. An unsigned integer maps the 669 * values usually associated with negative numbers to positive 670 * numbers larger than {@code MAX_VALUE}. 671 * 672 * The characters in the string must all be digits of the 673 * specified radix (as determined by whether {@link 674 * java.lang.Character#digit(char, int)} returns a nonnegative 675 * value), except that the first character may be an ASCII plus 676 * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting 677 * integer value is returned. 678 * 679 * <p>An exception of type {@code NumberFormatException} is 680 * thrown if any of the following situations occurs: 681 * <ul> 682 * <li>The first argument is {@code null} or is a string of 683 * length zero. 684 * 685 * <li>The radix is either smaller than 686 * {@link java.lang.Character#MIN_RADIX} or 687 * larger than {@link java.lang.Character#MAX_RADIX}. 688 * 689 * <li>Any character of the string is not a digit of the specified 690 * radix, except that the first character may be a plus sign 691 * {@code '+'} ({@code '\u005Cu002B'}) provided that the 692 * string is longer than length 1. 693 * 694 * <li>The value represented by the string is larger than the 695 * largest unsigned {@code int}, 2<sup>32</sup>-1. 696 * 697 * </ul> 698 * 699 * 700 * @param s the {@code String} containing the unsigned integer 701 * representation to be parsed 702 * @param radix the radix to be used while parsing {@code s}. 703 * @return the integer represented by the string argument in the 704 * specified radix. 705 * @throws NumberFormatException if the {@code String} 706 * does not contain a parsable {@code int}. 707 * @since 1.8 708 */ 709 public static int parseUnsignedInt(String s, int radix) 710 throws NumberFormatException { 711 if (s == null) { 712 throw new NumberFormatException("Cannot parse null string"); 713 } 714 715 if (radix < Character.MIN_RADIX) { 716 throw new NumberFormatException(String.format( 717 "radix %s less than Character.MIN_RADIX", radix)); 718 } 719 720 if (radix > Character.MAX_RADIX) { 721 throw new NumberFormatException(String.format( 722 "radix %s greater than Character.MAX_RADIX", radix)); 723 } 724 725 int len = s.length(); 726 if (len == 0) { 727 throw NumberFormatException.forInputString(s, radix); 728 } 729 int i = 0; 730 char firstChar = s.charAt(i++); 731 if (firstChar == '-') { 732 throw new NumberFormatException(String.format( 733 "Illegal leading minus sign on unsigned string %s.", s)); 734 } 735 int digit = ~0xFF; 736 if (firstChar != '+') { 737 digit = digit(firstChar, radix); 738 } 739 if (digit >= 0 || digit == ~0xFF && len > 1) { 740 int multmax = divideUnsigned(-1, radix); // -1 is max unsigned int 741 int result = digit & 0xFF; 742 boolean inRange = true; 743 while (i < len && (digit = digit(s.charAt(i++), radix)) >= 0 744 && (inRange = compareUnsigned(result, multmax) < 0 745 || result == multmax && digit < -radix * multmax)) { 746 result = radix * result + digit; 747 } 748 if (inRange && i == len && digit >= 0) { 749 return result; 750 } 751 } 752 if (digit < 0) { 753 throw NumberFormatException.forInputString(s, radix); 754 } 755 throw new NumberFormatException(String.format( 756 "String value %s exceeds range of unsigned int.", s)); 757 } 758 759 /** 760 * Parses the {@link CharSequence} argument as an unsigned {@code int} in 761 * the specified {@code radix}, beginning at the specified 762 * {@code beginIndex} and extending to {@code endIndex - 1}. 763 * 764 * <p>The method does not take steps to guard against the 765 * {@code CharSequence} being mutated while parsing. 766 * 767 * @param s the {@code CharSequence} containing the unsigned 768 * {@code int} representation to be parsed 769 * @param beginIndex the beginning index, inclusive. 770 * @param endIndex the ending index, exclusive. 771 * @param radix the radix to be used while parsing {@code s}. 772 * @return the unsigned {@code int} represented by the subsequence in 773 * the specified radix. 774 * @throws NullPointerException if {@code s} is null. 775 * @throws IndexOutOfBoundsException if {@code beginIndex} is 776 * negative, or if {@code beginIndex} is greater than 777 * {@code endIndex} or if {@code endIndex} is greater than 778 * {@code s.length()}. 779 * @throws NumberFormatException if the {@code CharSequence} does not 780 * contain a parsable unsigned {@code int} in the specified 781 * {@code radix}, or if {@code radix} is either smaller than 782 * {@link java.lang.Character#MIN_RADIX} or larger than 783 * {@link java.lang.Character#MAX_RADIX}. 784 * @since 9 785 */ 786 public static int parseUnsignedInt(CharSequence s, int beginIndex, int endIndex, int radix) 787 throws NumberFormatException { 788 Objects.requireNonNull(s); 789 Objects.checkFromToIndex(beginIndex, endIndex, s.length()); 790 791 if (radix < Character.MIN_RADIX) { 792 throw new NumberFormatException(String.format( 793 "radix %s less than Character.MIN_RADIX", radix)); 794 } 795 796 if (radix > Character.MAX_RADIX) { 797 throw new NumberFormatException(String.format( 798 "radix %s greater than Character.MAX_RADIX", radix)); 799 } 800 801 /* 802 * While s can be concurrently modified, it is ensured that each 803 * of its characters is read at most once, from lower to higher indices. 804 * This is obtained by reading them using the pattern s.charAt(i++), 805 * and by not updating i anywhere else. 806 */ 807 if (beginIndex == endIndex) { 808 throw NumberFormatException.forInputString("", radix); 809 } 810 int i = beginIndex; 811 char firstChar = s.charAt(i++); 812 if (firstChar == '-') { 813 throw new NumberFormatException( 814 "Illegal leading minus sign on unsigned string " + s + "."); 815 } 816 int digit = ~0xFF; 817 if (firstChar != '+') { 818 digit = digit(firstChar, radix); 819 } 820 if (digit >= 0 || digit == ~0xFF && endIndex - beginIndex > 1) { 821 int multmax = divideUnsigned(-1, radix); // -1 is max unsigned int 822 int result = digit & 0xFF; 823 boolean inRange = true; 824 while (i < endIndex && (digit = digit(s.charAt(i++), radix)) >= 0 825 && (inRange = compareUnsigned(result, multmax) < 0 826 || result == multmax && digit < -radix * multmax)) { 827 result = radix * result + digit; 828 } 829 if (inRange && i == endIndex && digit >= 0) { 830 return result; 831 } 832 } 833 if (digit < 0) { 834 throw NumberFormatException.forCharSequence(s, beginIndex, 835 endIndex, i - (digit < -1 ? 0 : 1)); 836 } 837 throw new NumberFormatException(String.format( 838 "String value %s exceeds range of unsigned int.", s)); 839 } 840 841 /** 842 * Parses the string argument as an unsigned decimal integer. The 843 * characters in the string must all be decimal digits, except 844 * that the first character may be an ASCII plus sign {@code 845 * '+'} ({@code '\u005Cu002B'}). The resulting integer value 846 * is returned, exactly as if the argument and the radix 10 were 847 * given as arguments to the {@link 848 * #parseUnsignedInt(java.lang.String, int)} method. 849 * 850 * @param s a {@code String} containing the unsigned {@code int} 851 * representation to be parsed 852 * @return the unsigned integer value represented by the argument in decimal. 853 * @throws NumberFormatException if the string does not contain a 854 * parsable unsigned integer. 855 * @since 1.8 856 */ 857 public static int parseUnsignedInt(String s) throws NumberFormatException { 858 return parseUnsignedInt(s, 10); 859 } 860 861 /** 862 * Returns an {@code Integer} object holding the value 863 * extracted from the specified {@code String} when parsed 864 * with the radix given by the second argument. The first argument 865 * is interpreted as representing a signed integer in the radix 866 * specified by the second argument, exactly as if the arguments 867 * were given to the {@link #parseInt(java.lang.String, int)} 868 * method. The result is an {@code Integer} object that 869 * represents the integer value specified by the string. 870 * 871 * <p>In other words, this method returns an {@code Integer} 872 * object equal to the value of: 873 * 874 * <blockquote> 875 * {@code Integer.valueOf(Integer.parseInt(s, radix))} 876 * </blockquote> 877 * 878 * @param s the string to be parsed. 879 * @param radix the radix to be used in interpreting {@code s} 880 * @return an {@code Integer} object holding the value 881 * represented by the string argument in the specified 882 * radix. 883 * @throws NumberFormatException if the {@code String} 884 * does not contain a parsable {@code int}. 885 */ 886 public static Integer valueOf(String s, int radix) throws NumberFormatException { 887 return Integer.valueOf(parseInt(s,radix)); 888 } 889 890 /** 891 * Returns an {@code Integer} object holding the 892 * value of the specified {@code String}. The argument is 893 * interpreted as representing a signed decimal integer, exactly 894 * as if the argument were given to the {@link 895 * #parseInt(java.lang.String)} method. The result is an 896 * {@code Integer} object that represents the integer value 897 * specified by the string. 898 * 899 * <p>In other words, this method returns an {@code Integer} 900 * object equal to the value of: 901 * 902 * <blockquote> 903 * {@code Integer.valueOf(Integer.parseInt(s))} 904 * </blockquote> 905 * 906 * @param s the string to be parsed. 907 * @return an {@code Integer} object holding the value 908 * represented by the string argument. 909 * @throws NumberFormatException if the string cannot be parsed 910 * as an integer. 911 */ 912 public static Integer valueOf(String s) throws NumberFormatException { 913 return Integer.valueOf(parseInt(s, 10)); 914 } 915 916 /** 917 * Cache to support the object identity semantics of autoboxing for values between 918 * -128 and 127 (inclusive) as required by JLS. 919 * 920 * The cache is initialized on first usage. The size of the cache 921 * may be controlled by the {@code -XX:AutoBoxCacheMax=<size>} option. 922 * During VM initialization, java.lang.Integer.IntegerCache.high property 923 * may be set and saved in the private system properties in the 924 * jdk.internal.misc.VM class. 925 * 926 * WARNING: The cache is archived with CDS and reloaded from the shared 927 * archive at runtime. The archived cache (Integer[]) and Integer objects 928 * reside in the closed archive heap regions. Care should be taken when 929 * changing the implementation and the cache array should not be assigned 930 * with new Integer object(s) after initialization. 931 */ 932 933 private static final class IntegerCache { 934 static final int low = -128; 935 static final int high; 936 937 @Stable 938 static final Integer[] cache; 939 static Integer[] archivedCache; 940 941 static { 942 // high value may be configured by property 943 int h = 127; 944 String integerCacheHighPropValue = 945 VM.getSavedProperty("java.lang.Integer.IntegerCache.high"); 946 if (integerCacheHighPropValue != null) { 947 try { 948 h = Math.max(parseInt(integerCacheHighPropValue), 127); 949 // Maximum array size is Integer.MAX_VALUE 950 h = Math.min(h, Integer.MAX_VALUE - (-low) -1); 951 } catch( NumberFormatException nfe) { 952 // If the property cannot be parsed into an int, ignore it. 953 } 954 } 955 high = h; 956 957 // Load IntegerCache.archivedCache from archive, if possible 958 CDS.initializeFromArchive(IntegerCache.class); 959 int size = (high - low) + 1; 960 961 // Use the archived cache if it exists and is large enough 962 if (archivedCache == null || size > archivedCache.length) { 963 Integer[] c = new Integer[size]; 964 int j = low; 965 // If archive has Integer cache, we must use all instances from it. 966 // Otherwise, the identity checks between archived Integers and 967 // runtime-cached Integers would fail. 968 int archivedSize = (archivedCache == null) ? 0 : archivedCache.length; 969 for (int i = 0; i < archivedSize; i++) { 970 c[i] = archivedCache[i]; 971 assert j == archivedCache[i]; 972 j++; 973 } 974 // Fill the rest of the cache. 975 for (int i = archivedSize; i < size; i++) { 976 c[i] = new Integer(j++); 977 } 978 archivedCache = c; 979 } 980 cache = archivedCache; 981 // range [-128, 127] must be interned (JLS7 5.1.7) 982 assert IntegerCache.high >= 127; 983 } 984 985 private IntegerCache() {} 986 } 987 988 /** 989 * Returns an {@code Integer} instance representing the specified 990 * {@code int} value. If a new {@code Integer} instance is not 991 * required, this method should generally be used in preference to 992 * the constructor {@link #Integer(int)}, as this method is likely 993 * to yield significantly better space and time performance by 994 * caching frequently requested values. 995 * 996 * This method will always cache values in the range -128 to 127, 997 * inclusive, and may cache other values outside of this range. 998 * 999 * @param i an {@code int} value. 1000 * @return an {@code Integer} instance representing {@code i}. 1001 * @since 1.5 1002 */ 1003 @IntrinsicCandidate 1004 @DeserializeConstructor 1005 public static Integer valueOf(int i) { 1006 if (i >= IntegerCache.low && i <= IntegerCache.high) 1007 return IntegerCache.cache[i + (-IntegerCache.low)]; 1008 return new Integer(i); 1009 } 1010 1011 /** 1012 * The value of the {@code Integer}. 1013 * 1014 * @serial 1015 */ 1016 private final int value; 1017 1018 /** 1019 * Constructs a newly allocated {@code Integer} object that 1020 * represents the specified {@code int} value. 1021 * 1022 * @param value the value to be represented by the 1023 * {@code Integer} object. 1024 * 1025 * @deprecated 1026 * It is rarely appropriate to use this constructor. The static factory 1027 * {@link #valueOf(int)} is generally a better choice, as it is 1028 * likely to yield significantly better space and time performance. 1029 */ 1030 @Deprecated(since="9", forRemoval = true) 1031 public Integer(int value) { 1032 this.value = value; 1033 } 1034 1035 /** 1036 * Constructs a newly allocated {@code Integer} object that 1037 * represents the {@code int} value indicated by the 1038 * {@code String} parameter. The string is converted to an 1039 * {@code int} value in exactly the manner used by the 1040 * {@code parseInt} method for radix 10. 1041 * 1042 * @param s the {@code String} to be converted to an {@code Integer}. 1043 * @throws NumberFormatException if the {@code String} does not 1044 * contain a parsable integer. 1045 * 1046 * @deprecated 1047 * It is rarely appropriate to use this constructor. 1048 * Use {@link #parseInt(String)} to convert a string to a 1049 * {@code int} primitive, or use {@link #valueOf(String)} 1050 * to convert a string to an {@code Integer} object. 1051 */ 1052 @Deprecated(since="9", forRemoval = true) 1053 public Integer(String s) throws NumberFormatException { 1054 this.value = parseInt(s, 10); 1055 } 1056 1057 /** 1058 * Returns the value of this {@code Integer} as a {@code byte} 1059 * after a narrowing primitive conversion. 1060 * @jls 5.1.3 Narrowing Primitive Conversion 1061 */ 1062 public byte byteValue() { 1063 return (byte)value; 1064 } 1065 1066 /** 1067 * Returns the value of this {@code Integer} as a {@code short} 1068 * after a narrowing primitive conversion. 1069 * @jls 5.1.3 Narrowing Primitive Conversion 1070 */ 1071 public short shortValue() { 1072 return (short)value; 1073 } 1074 1075 /** 1076 * Returns the value of this {@code Integer} as an 1077 * {@code int}. 1078 */ 1079 @IntrinsicCandidate 1080 public int intValue() { 1081 return value; 1082 } 1083 1084 /** 1085 * Returns the value of this {@code Integer} as a {@code long} 1086 * after a widening primitive conversion. 1087 * @jls 5.1.2 Widening Primitive Conversion 1088 * @see Integer#toUnsignedLong(int) 1089 */ 1090 public long longValue() { 1091 return (long)value; 1092 } 1093 1094 /** 1095 * Returns the value of this {@code Integer} as a {@code float} 1096 * after a widening primitive conversion. 1097 * @jls 5.1.2 Widening Primitive Conversion 1098 */ 1099 public float floatValue() { 1100 return (float)value; 1101 } 1102 1103 /** 1104 * Returns the value of this {@code Integer} as a {@code double} 1105 * after a widening primitive conversion. 1106 * @jls 5.1.2 Widening Primitive Conversion 1107 */ 1108 public double doubleValue() { 1109 return (double)value; 1110 } 1111 1112 /** 1113 * Returns a {@code String} object representing this 1114 * {@code Integer}'s value. The value is converted to signed 1115 * decimal representation and returned as a string, exactly as if 1116 * the integer value were given as an argument to the {@link 1117 * java.lang.Integer#toString(int)} method. 1118 * 1119 * @return a string representation of the value of this object in 1120 * base 10. 1121 */ 1122 public String toString() { 1123 return toString(value); 1124 } 1125 1126 /** 1127 * Returns a hash code for this {@code Integer}. 1128 * 1129 * @return a hash code value for this object, equal to the 1130 * primitive {@code int} value represented by this 1131 * {@code Integer} object. 1132 */ 1133 @Override 1134 public int hashCode() { 1135 return Integer.hashCode(value); 1136 } 1137 1138 /** 1139 * Returns a hash code for an {@code int} value; compatible with 1140 * {@code Integer.hashCode()}. 1141 * 1142 * @param value the value to hash 1143 * @since 1.8 1144 * 1145 * @return a hash code value for an {@code int} value. 1146 */ 1147 public static int hashCode(int value) { 1148 return value; 1149 } 1150 1151 /** 1152 * Compares this object to the specified object. The result is 1153 * {@code true} if and only if the argument is not 1154 * {@code null} and is an {@code Integer} object that 1155 * contains the same {@code int} value as this object. 1156 * 1157 * @param obj the object to compare with. 1158 * @return {@code true} if the objects are the same; 1159 * {@code false} otherwise. 1160 */ 1161 public boolean equals(Object obj) { 1162 if (obj instanceof Integer i) { 1163 return value == i.intValue(); 1164 } 1165 return false; 1166 } 1167 1168 /** 1169 * Determines the integer value of the system property with the 1170 * specified name. 1171 * 1172 * <p>The first argument is treated as the name of a system 1173 * property. System properties are accessible through the {@link 1174 * java.lang.System#getProperty(java.lang.String)} method. The 1175 * string value of this property is then interpreted as an integer 1176 * value using the grammar supported by {@link Integer#decode decode} and 1177 * an {@code Integer} object representing this value is returned. 1178 * 1179 * <p>If there is no property with the specified name, if the 1180 * specified name is empty or {@code null}, or if the property 1181 * does not have the correct numeric format, then {@code null} is 1182 * returned. 1183 * 1184 * <p>In other words, this method returns an {@code Integer} 1185 * object equal to the value of: 1186 * 1187 * <blockquote> 1188 * {@code getInteger(nm, null)} 1189 * </blockquote> 1190 * 1191 * @param nm property name. 1192 * @return the {@code Integer} value of the property. 1193 * @throws SecurityException for the same reasons as 1194 * {@link System#getProperty(String) System.getProperty} 1195 * @see java.lang.System#getProperty(java.lang.String) 1196 * @see java.lang.System#getProperty(java.lang.String, java.lang.String) 1197 */ 1198 public static Integer getInteger(String nm) { 1199 return getInteger(nm, null); 1200 } 1201 1202 /** 1203 * Determines the integer value of the system property with the 1204 * specified name. 1205 * 1206 * <p>The first argument is treated as the name of a system 1207 * property. System properties are accessible through the {@link 1208 * java.lang.System#getProperty(java.lang.String)} method. The 1209 * string value of this property is then interpreted as an integer 1210 * value using the grammar supported by {@link Integer#decode decode} and 1211 * an {@code Integer} object representing this value is returned. 1212 * 1213 * <p>The second argument is the default value. An {@code Integer} object 1214 * that represents the value of the second argument is returned if there 1215 * is no property of the specified name, if the property does not have 1216 * the correct numeric format, or if the specified name is empty or 1217 * {@code null}. 1218 * 1219 * <p>In other words, this method returns an {@code Integer} object 1220 * equal to the value of: 1221 * 1222 * <blockquote> 1223 * {@code getInteger(nm, Integer.valueOf(val))} 1224 * </blockquote> 1225 * 1226 * but in practice it may be implemented in a manner such as: 1227 * 1228 * <blockquote><pre> 1229 * Integer result = getInteger(nm, null); 1230 * return (result == null) ? Integer.valueOf(val) : result; 1231 * </pre></blockquote> 1232 * 1233 * to avoid the unnecessary allocation of an {@code Integer} 1234 * object when the default value is not needed. 1235 * 1236 * @param nm property name. 1237 * @param val default value. 1238 * @return the {@code Integer} value of the property. 1239 * @throws SecurityException for the same reasons as 1240 * {@link System#getProperty(String) System.getProperty} 1241 * @see java.lang.System#getProperty(java.lang.String) 1242 * @see java.lang.System#getProperty(java.lang.String, java.lang.String) 1243 */ 1244 public static Integer getInteger(String nm, int val) { 1245 Integer result = getInteger(nm, null); 1246 return (result == null) ? Integer.valueOf(val) : result; 1247 } 1248 1249 /** 1250 * Returns the integer value of the system property with the 1251 * specified name. The first argument is treated as the name of a 1252 * system property. System properties are accessible through the 1253 * {@link java.lang.System#getProperty(java.lang.String)} method. 1254 * The string value of this property is then interpreted as an 1255 * integer value, as per the {@link Integer#decode decode} method, 1256 * and an {@code Integer} object representing this value is 1257 * returned; in summary: 1258 * 1259 * <ul><li>If the property value begins with the two ASCII characters 1260 * {@code 0x} or the ASCII character {@code #}, not 1261 * followed by a minus sign, then the rest of it is parsed as a 1262 * hexadecimal integer exactly as by the method 1263 * {@link #valueOf(java.lang.String, int)} with radix 16. 1264 * <li>If the property value begins with the ASCII character 1265 * {@code 0} followed by another character, it is parsed as an 1266 * octal integer exactly as by the method 1267 * {@link #valueOf(java.lang.String, int)} with radix 8. 1268 * <li>Otherwise, the property value is parsed as a decimal integer 1269 * exactly as by the method {@link #valueOf(java.lang.String, int)} 1270 * with radix 10. 1271 * </ul> 1272 * 1273 * <p>The second argument is the default value. The default value is 1274 * returned if there is no property of the specified name, if the 1275 * property does not have the correct numeric format, or if the 1276 * specified name is empty or {@code null}. 1277 * 1278 * @param nm property name. 1279 * @param val default value. 1280 * @return the {@code Integer} value of the property. 1281 * @throws SecurityException for the same reasons as 1282 * {@link System#getProperty(String) System.getProperty} 1283 * @see System#getProperty(java.lang.String) 1284 * @see System#getProperty(java.lang.String, java.lang.String) 1285 */ 1286 public static Integer getInteger(String nm, Integer val) { 1287 String v = null; 1288 try { 1289 v = System.getProperty(nm); 1290 } catch (IllegalArgumentException | NullPointerException e) { 1291 } 1292 if (v != null) { 1293 try { 1294 return Integer.decode(v); 1295 } catch (NumberFormatException e) { 1296 } 1297 } 1298 return val; 1299 } 1300 1301 /** 1302 * Decodes a {@code String} into an {@code Integer}. 1303 * Accepts decimal, hexadecimal, and octal numbers given 1304 * by the following grammar: 1305 * 1306 * <blockquote> 1307 * <dl> 1308 * <dt><i>DecodableString:</i> 1309 * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i> 1310 * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i> 1311 * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i> 1312 * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i> 1313 * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i> 1314 * 1315 * <dt><i>Sign:</i> 1316 * <dd>{@code -} 1317 * <dd>{@code +} 1318 * </dl> 1319 * </blockquote> 1320 * 1321 * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i> 1322 * are as defined in section {@jls 3.10.1} of 1323 * <cite>The Java Language Specification</cite>, 1324 * except that underscores are not accepted between digits. 1325 * 1326 * <p>The sequence of characters following an optional 1327 * sign and/or radix specifier ("{@code 0x}", "{@code 0X}", 1328 * "{@code #}", or leading zero) is parsed as by the {@code 1329 * Integer.parseInt} method with the indicated radix (10, 16, or 1330 * 8). This sequence of characters must represent a positive 1331 * value or a {@link NumberFormatException} will be thrown. The 1332 * result is negated if first character of the specified {@code 1333 * String} is the minus sign. No whitespace characters are 1334 * permitted in the {@code String}. 1335 * 1336 * @param nm the {@code String} to decode. 1337 * @return an {@code Integer} object holding the {@code int} 1338 * value represented by {@code nm} 1339 * @throws NumberFormatException if the {@code String} does not 1340 * contain a parsable integer. 1341 * @see java.lang.Integer#parseInt(java.lang.String, int) 1342 */ 1343 public static Integer decode(String nm) throws NumberFormatException { 1344 int radix = 10; 1345 int index = 0; 1346 boolean negative = false; 1347 int result; 1348 1349 if (nm.isEmpty()) 1350 throw new NumberFormatException("Zero length string"); 1351 char firstChar = nm.charAt(0); 1352 // Handle sign, if present 1353 if (firstChar == '-') { 1354 negative = true; 1355 index++; 1356 } else if (firstChar == '+') 1357 index++; 1358 1359 // Handle radix specifier, if present 1360 if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) { 1361 index += 2; 1362 radix = 16; 1363 } 1364 else if (nm.startsWith("#", index)) { 1365 index ++; 1366 radix = 16; 1367 } 1368 else if (nm.startsWith("0", index) && nm.length() > 1 + index) { 1369 index ++; 1370 radix = 8; 1371 } 1372 1373 if (nm.startsWith("-", index) || nm.startsWith("+", index)) 1374 throw new NumberFormatException("Sign character in wrong position"); 1375 1376 try { 1377 result = parseInt(nm, index, nm.length(), radix); 1378 result = negative ? -result : result; 1379 } catch (NumberFormatException e) { 1380 // If number is Integer.MIN_VALUE, we'll end up here. The next line 1381 // handles this case, and causes any genuine format error to be 1382 // rethrown. 1383 String constant = negative ? ("-" + nm.substring(index)) 1384 : nm.substring(index); 1385 result = parseInt(constant, radix); 1386 } 1387 return result; 1388 } 1389 1390 /** 1391 * Compares two {@code Integer} objects numerically. 1392 * 1393 * @param anotherInteger the {@code Integer} to be compared. 1394 * @return the value {@code 0} if this {@code Integer} is 1395 * equal to the argument {@code Integer}; a value less than 1396 * {@code 0} if this {@code Integer} is numerically less 1397 * than the argument {@code Integer}; and a value greater 1398 * than {@code 0} if this {@code Integer} is numerically 1399 * greater than the argument {@code Integer} (signed 1400 * comparison). 1401 * @since 1.2 1402 */ 1403 public int compareTo(Integer anotherInteger) { 1404 return compare(this.value, anotherInteger.value); 1405 } 1406 1407 /** 1408 * Compares two {@code int} values numerically. 1409 * The value returned is identical to what would be returned by: 1410 * <pre> 1411 * Integer.valueOf(x).compareTo(Integer.valueOf(y)) 1412 * </pre> 1413 * 1414 * @param x the first {@code int} to compare 1415 * @param y the second {@code int} to compare 1416 * @return the value {@code 0} if {@code x == y}; 1417 * a value less than {@code 0} if {@code x < y}; and 1418 * a value greater than {@code 0} if {@code x > y} 1419 * @since 1.7 1420 */ 1421 public static int compare(int x, int y) { 1422 return (x < y) ? -1 : ((x == y) ? 0 : 1); 1423 } 1424 1425 /** 1426 * Compares two {@code int} values numerically treating the values 1427 * as unsigned. 1428 * 1429 * @param x the first {@code int} to compare 1430 * @param y the second {@code int} to compare 1431 * @return the value {@code 0} if {@code x == y}; a value less 1432 * than {@code 0} if {@code x < y} as unsigned values; and 1433 * a value greater than {@code 0} if {@code x > y} as 1434 * unsigned values 1435 * @since 1.8 1436 */ 1437 @IntrinsicCandidate 1438 public static int compareUnsigned(int x, int y) { 1439 return compare(x + MIN_VALUE, y + MIN_VALUE); 1440 } 1441 1442 /** 1443 * Converts the argument to a {@code long} by an unsigned 1444 * conversion. In an unsigned conversion to a {@code long}, the 1445 * high-order 32 bits of the {@code long} are zero and the 1446 * low-order 32 bits are equal to the bits of the integer 1447 * argument. 1448 * 1449 * Consequently, zero and positive {@code int} values are mapped 1450 * to a numerically equal {@code long} value and negative {@code 1451 * int} values are mapped to a {@code long} value equal to the 1452 * input plus 2<sup>32</sup>. 1453 * 1454 * @param x the value to convert to an unsigned {@code long} 1455 * @return the argument converted to {@code long} by an unsigned 1456 * conversion 1457 * @since 1.8 1458 */ 1459 public static long toUnsignedLong(int x) { 1460 return ((long) x) & 0xffffffffL; 1461 } 1462 1463 /** 1464 * Returns the unsigned quotient of dividing the first argument by 1465 * the second where each argument and the result is interpreted as 1466 * an unsigned value. 1467 * 1468 * <p>Note that in two's complement arithmetic, the three other 1469 * basic arithmetic operations of add, subtract, and multiply are 1470 * bit-wise identical if the two operands are regarded as both 1471 * being signed or both being unsigned. Therefore separate {@code 1472 * addUnsigned}, etc. methods are not provided. 1473 * 1474 * @param dividend the value to be divided 1475 * @param divisor the value doing the dividing 1476 * @return the unsigned quotient of the first argument divided by 1477 * the second argument 1478 * @see #remainderUnsigned 1479 * @since 1.8 1480 */ 1481 @IntrinsicCandidate 1482 public static int divideUnsigned(int dividend, int divisor) { 1483 // In lieu of tricky code, for now just use long arithmetic. 1484 return (int)(toUnsignedLong(dividend) / toUnsignedLong(divisor)); 1485 } 1486 1487 /** 1488 * Returns the unsigned remainder from dividing the first argument 1489 * by the second where each argument and the result is interpreted 1490 * as an unsigned value. 1491 * 1492 * @param dividend the value to be divided 1493 * @param divisor the value doing the dividing 1494 * @return the unsigned remainder of the first argument divided by 1495 * the second argument 1496 * @see #divideUnsigned 1497 * @since 1.8 1498 */ 1499 @IntrinsicCandidate 1500 public static int remainderUnsigned(int dividend, int divisor) { 1501 // In lieu of tricky code, for now just use long arithmetic. 1502 return (int)(toUnsignedLong(dividend) % toUnsignedLong(divisor)); 1503 } 1504 1505 1506 // Bit twiddling 1507 1508 /** 1509 * The number of bits used to represent an {@code int} value in two's 1510 * complement binary form. 1511 * 1512 * @since 1.5 1513 */ 1514 @Native public static final int SIZE = 32; 1515 1516 /** 1517 * The number of bytes used to represent an {@code int} value in two's 1518 * complement binary form. 1519 * 1520 * @since 1.8 1521 */ 1522 public static final int BYTES = SIZE / Byte.SIZE; 1523 1524 /** 1525 * Returns an {@code int} value with at most a single one-bit, in the 1526 * position of the highest-order ("leftmost") one-bit in the specified 1527 * {@code int} value. Returns zero if the specified value has no 1528 * one-bits in its two's complement binary representation, that is, if it 1529 * is equal to zero. 1530 * 1531 * @param i the value whose highest one bit is to be computed 1532 * @return an {@code int} value with a single one-bit, in the position 1533 * of the highest-order one-bit in the specified value, or zero if 1534 * the specified value is itself equal to zero. 1535 * @since 1.5 1536 */ 1537 public static int highestOneBit(int i) { 1538 return i & (MIN_VALUE >>> numberOfLeadingZeros(i)); 1539 } 1540 1541 /** 1542 * Returns an {@code int} value with at most a single one-bit, in the 1543 * position of the lowest-order ("rightmost") one-bit in the specified 1544 * {@code int} value. Returns zero if the specified value has no 1545 * one-bits in its two's complement binary representation, that is, if it 1546 * is equal to zero. 1547 * 1548 * @param i the value whose lowest one bit is to be computed 1549 * @return an {@code int} value with a single one-bit, in the position 1550 * of the lowest-order one-bit in the specified value, or zero if 1551 * the specified value is itself equal to zero. 1552 * @since 1.5 1553 */ 1554 public static int lowestOneBit(int i) { 1555 // HD, Section 2-1 1556 return i & -i; 1557 } 1558 1559 /** 1560 * Returns the number of zero bits preceding the highest-order 1561 * ("leftmost") one-bit in the two's complement binary representation 1562 * of the specified {@code int} value. Returns 32 if the 1563 * specified value has no one-bits in its two's complement representation, 1564 * in other words if it is equal to zero. 1565 * 1566 * <p>Note that this method is closely related to the logarithm base 2. 1567 * For all positive {@code int} values x: 1568 * <ul> 1569 * <li>floor(log<sub>2</sub>(x)) = {@code 31 - numberOfLeadingZeros(x)} 1570 * <li>ceil(log<sub>2</sub>(x)) = {@code 32 - numberOfLeadingZeros(x - 1)} 1571 * </ul> 1572 * 1573 * @param i the value whose number of leading zeros is to be computed 1574 * @return the number of zero bits preceding the highest-order 1575 * ("leftmost") one-bit in the two's complement binary representation 1576 * of the specified {@code int} value, or 32 if the value 1577 * is equal to zero. 1578 * @since 1.5 1579 */ 1580 @IntrinsicCandidate 1581 public static int numberOfLeadingZeros(int i) { 1582 // HD, Count leading 0's 1583 if (i <= 0) 1584 return i == 0 ? 32 : 0; 1585 int n = 31; 1586 if (i >= 1 << 16) { n -= 16; i >>>= 16; } 1587 if (i >= 1 << 8) { n -= 8; i >>>= 8; } 1588 if (i >= 1 << 4) { n -= 4; i >>>= 4; } 1589 if (i >= 1 << 2) { n -= 2; i >>>= 2; } 1590 return n - (i >>> 1); 1591 } 1592 1593 /** 1594 * Returns the number of zero bits following the lowest-order ("rightmost") 1595 * one-bit in the two's complement binary representation of the specified 1596 * {@code int} value. Returns 32 if the specified value has no 1597 * one-bits in its two's complement representation, in other words if it is 1598 * equal to zero. 1599 * 1600 * @param i the value whose number of trailing zeros is to be computed 1601 * @return the number of zero bits following the lowest-order ("rightmost") 1602 * one-bit in the two's complement binary representation of the 1603 * specified {@code int} value, or 32 if the value is equal 1604 * to zero. 1605 * @since 1.5 1606 */ 1607 @IntrinsicCandidate 1608 public static int numberOfTrailingZeros(int i) { 1609 // HD, Count trailing 0's 1610 i = ~i & (i - 1); 1611 if (i <= 0) return i & 32; 1612 int n = 1; 1613 if (i > 1 << 16) { n += 16; i >>>= 16; } 1614 if (i > 1 << 8) { n += 8; i >>>= 8; } 1615 if (i > 1 << 4) { n += 4; i >>>= 4; } 1616 if (i > 1 << 2) { n += 2; i >>>= 2; } 1617 return n + (i >>> 1); 1618 } 1619 1620 /** 1621 * Returns the number of one-bits in the two's complement binary 1622 * representation of the specified {@code int} value. This function is 1623 * sometimes referred to as the <i>population count</i>. 1624 * 1625 * @param i the value whose bits are to be counted 1626 * @return the number of one-bits in the two's complement binary 1627 * representation of the specified {@code int} value. 1628 * @since 1.5 1629 */ 1630 @IntrinsicCandidate 1631 public static int bitCount(int i) { 1632 // HD, Figure 5-2 1633 i = i - ((i >>> 1) & 0x55555555); 1634 i = (i & 0x33333333) + ((i >>> 2) & 0x33333333); 1635 i = (i + (i >>> 4)) & 0x0f0f0f0f; 1636 i = i + (i >>> 8); 1637 i = i + (i >>> 16); 1638 return i & 0x3f; 1639 } 1640 1641 /** 1642 * Returns the value obtained by rotating the two's complement binary 1643 * representation of the specified {@code int} value left by the 1644 * specified number of bits. (Bits shifted out of the left hand, or 1645 * high-order, side reenter on the right, or low-order.) 1646 * 1647 * <p>Note that left rotation with a negative distance is equivalent to 1648 * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val, 1649 * distance)}. Note also that rotation by any multiple of 32 is a 1650 * no-op, so all but the last five bits of the rotation distance can be 1651 * ignored, even if the distance is negative: {@code rotateLeft(val, 1652 * distance) == rotateLeft(val, distance & 0x1F)}. 1653 * 1654 * @param i the value whose bits are to be rotated left 1655 * @param distance the number of bit positions to rotate left 1656 * @return the value obtained by rotating the two's complement binary 1657 * representation of the specified {@code int} value left by the 1658 * specified number of bits. 1659 * @since 1.5 1660 */ 1661 public static int rotateLeft(int i, int distance) { 1662 return (i << distance) | (i >>> -distance); 1663 } 1664 1665 /** 1666 * Returns the value obtained by rotating the two's complement binary 1667 * representation of the specified {@code int} value right by the 1668 * specified number of bits. (Bits shifted out of the right hand, or 1669 * low-order, side reenter on the left, or high-order.) 1670 * 1671 * <p>Note that right rotation with a negative distance is equivalent to 1672 * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val, 1673 * distance)}. Note also that rotation by any multiple of 32 is a 1674 * no-op, so all but the last five bits of the rotation distance can be 1675 * ignored, even if the distance is negative: {@code rotateRight(val, 1676 * distance) == rotateRight(val, distance & 0x1F)}. 1677 * 1678 * @param i the value whose bits are to be rotated right 1679 * @param distance the number of bit positions to rotate right 1680 * @return the value obtained by rotating the two's complement binary 1681 * representation of the specified {@code int} value right by the 1682 * specified number of bits. 1683 * @since 1.5 1684 */ 1685 public static int rotateRight(int i, int distance) { 1686 return (i >>> distance) | (i << -distance); 1687 } 1688 1689 /** 1690 * Returns the value obtained by reversing the order of the bits in the 1691 * two's complement binary representation of the specified {@code int} 1692 * value. 1693 * 1694 * @param i the value to be reversed 1695 * @return the value obtained by reversing order of the bits in the 1696 * specified {@code int} value. 1697 * @since 1.5 1698 */ 1699 @IntrinsicCandidate 1700 public static int reverse(int i) { 1701 // HD, Figure 7-1 1702 i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555; 1703 i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333; 1704 i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f; 1705 1706 return reverseBytes(i); 1707 } 1708 1709 /** 1710 * Returns the value obtained by compressing the bits of the 1711 * specified {@code int} value, {@code i}, in accordance with 1712 * the specified bit mask. 1713 * <p> 1714 * For each one-bit value {@code mb} of the mask, from least 1715 * significant to most significant, the bit value of {@code i} at 1716 * the same bit location as {@code mb} is assigned to the compressed 1717 * value contiguously starting from the least significant bit location. 1718 * All the upper remaining bits of the compressed value are set 1719 * to zero. 1720 * 1721 * @apiNote 1722 * Consider the simple case of compressing the digits of a hexadecimal 1723 * value: 1724 * {@snippet lang="java" : 1725 * // Compressing drink to food 1726 * compress(0xCAFEBABE, 0xFF00FFF0) == 0xCABAB 1727 * } 1728 * Starting from the least significant hexadecimal digit at position 0 1729 * from the right, the mask {@code 0xFF00FFF0} selects hexadecimal digits 1730 * at positions 1, 2, 3, 6 and 7 of {@code 0xCAFEBABE}. The selected digits 1731 * occur in the resulting compressed value contiguously from digit position 1732 * 0 in the same order. 1733 * <p> 1734 * The following identities all return {@code true} and are helpful to 1735 * understand the behaviour of {@code compress}: 1736 * {@snippet lang="java" : 1737 * // Returns 1 if the bit at position n is one 1738 * compress(x, 1 << n) == (x >> n & 1) 1739 * 1740 * // Logical shift right 1741 * compress(x, -1 << n) == x >>> n 1742 * 1743 * // Any bits not covered by the mask are ignored 1744 * compress(x, m) == compress(x & m, m) 1745 * 1746 * // Compressing a value by itself 1747 * compress(m, m) == (m == -1 || m == 0) ? m : (1 << bitCount(m)) - 1 1748 * 1749 * // Expanding then compressing with the same mask 1750 * compress(expand(x, m), m) == x & compress(m, m) 1751 * } 1752 * <p> 1753 * The Sheep And Goats (SAG) operation (see Hacker's Delight, Second Edition, section 7.7) 1754 * can be implemented as follows: 1755 * {@snippet lang="java" : 1756 * int compressLeft(int i, int mask) { 1757 * // This implementation follows the description in Hacker's Delight which 1758 * // is informative. A more optimal implementation is: 1759 * // Integer.compress(i, mask) << -Integer.bitCount(mask) 1760 * return Integer.reverse( 1761 * Integer.compress(Integer.reverse(i), Integer.reverse(mask))); 1762 * } 1763 * 1764 * int sag(int i, int mask) { 1765 * return compressLeft(i, mask) | Integer.compress(i, ~mask); 1766 * } 1767 * 1768 * // Separate the sheep from the goats 1769 * sag(0xCAFEBABE, 0xFF00FFF0) == 0xCABABFEE 1770 * } 1771 * 1772 * @param i the value whose bits are to be compressed 1773 * @param mask the bit mask 1774 * @return the compressed value 1775 * @see #expand 1776 * @since 19 1777 */ 1778 @IntrinsicCandidate 1779 public static int compress(int i, int mask) { 1780 // See Hacker's Delight (2nd ed) section 7.4 Compress, or Generalized Extract 1781 1782 i = i & mask; // Clear irrelevant bits 1783 int maskCount = ~mask << 1; // Count 0's to right 1784 1785 for (int j = 0; j < 5; j++) { 1786 // Parallel prefix 1787 // Mask prefix identifies bits of the mask that have an odd number of 0's to the right 1788 int maskPrefix = parallelSuffix(maskCount); 1789 // Bits to move 1790 int maskMove = maskPrefix & mask; 1791 // Compress mask 1792 mask = (mask ^ maskMove) | (maskMove >>> (1 << j)); 1793 // Bits of i to be moved 1794 int t = i & maskMove; 1795 // Compress i 1796 i = (i ^ t) | (t >>> (1 << j)); 1797 // Adjust the mask count by identifying bits that have 0 to the right 1798 maskCount = maskCount & ~maskPrefix; 1799 } 1800 return i; 1801 } 1802 1803 /** 1804 * Returns the value obtained by expanding the bits of the 1805 * specified {@code int} value, {@code i}, in accordance with 1806 * the specified bit mask. 1807 * <p> 1808 * For each one-bit value {@code mb} of the mask, from least 1809 * significant to most significant, the next contiguous bit value 1810 * of {@code i} starting at the least significant bit is assigned 1811 * to the expanded value at the same bit location as {@code mb}. 1812 * All other remaining bits of the expanded value are set to zero. 1813 * 1814 * @apiNote 1815 * Consider the simple case of expanding the digits of a hexadecimal 1816 * value: 1817 * {@snippet lang="java" : 1818 * expand(0x0000CABAB, 0xFF00FFF0) == 0xCA00BAB0 1819 * } 1820 * Starting from the least significant hexadecimal digit at position 0 1821 * from the right, the mask {@code 0xFF00FFF0} selects the first five 1822 * hexadecimal digits of {@code 0x0000CABAB}. The selected digits occur 1823 * in the resulting expanded value in order at positions 1, 2, 3, 6, and 7. 1824 * <p> 1825 * The following identities all return {@code true} and are helpful to 1826 * understand the behaviour of {@code expand}: 1827 * {@snippet lang="java" : 1828 * // Logically shift right the bit at position 0 1829 * expand(x, 1 << n) == (x & 1) << n 1830 * 1831 * // Logically shift right 1832 * expand(x, -1 << n) == x << n 1833 * 1834 * // Expanding all bits returns the mask 1835 * expand(-1, m) == m 1836 * 1837 * // Any bits not covered by the mask are ignored 1838 * expand(x, m) == expand(x, m) & m 1839 * 1840 * // Compressing then expanding with the same mask 1841 * expand(compress(x, m), m) == x & m 1842 * } 1843 * <p> 1844 * The select operation for determining the position of the one-bit with 1845 * index {@code n} in a {@code int} value can be implemented as follows: 1846 * {@snippet lang="java" : 1847 * int select(int i, int n) { 1848 * // the one-bit in i (the mask) with index n 1849 * int nthBit = Integer.expand(1 << n, i); 1850 * // the bit position of the one-bit with index n 1851 * return Integer.numberOfTrailingZeros(nthBit); 1852 * } 1853 * 1854 * // The one-bit with index 0 is at bit position 1 1855 * select(0b10101010_10101010, 0) == 1 1856 * // The one-bit with index 3 is at bit position 7 1857 * select(0b10101010_10101010, 3) == 7 1858 * } 1859 * 1860 * @param i the value whose bits are to be expanded 1861 * @param mask the bit mask 1862 * @return the expanded value 1863 * @see #compress 1864 * @since 19 1865 */ 1866 @IntrinsicCandidate 1867 public static int expand(int i, int mask) { 1868 // Save original mask 1869 int originalMask = mask; 1870 // Count 0's to right 1871 int maskCount = ~mask << 1; 1872 int maskPrefix = parallelSuffix(maskCount); 1873 // Bits to move 1874 int maskMove1 = maskPrefix & mask; 1875 // Compress mask 1876 mask = (mask ^ maskMove1) | (maskMove1 >>> (1 << 0)); 1877 maskCount = maskCount & ~maskPrefix; 1878 1879 maskPrefix = parallelSuffix(maskCount); 1880 // Bits to move 1881 int maskMove2 = maskPrefix & mask; 1882 // Compress mask 1883 mask = (mask ^ maskMove2) | (maskMove2 >>> (1 << 1)); 1884 maskCount = maskCount & ~maskPrefix; 1885 1886 maskPrefix = parallelSuffix(maskCount); 1887 // Bits to move 1888 int maskMove3 = maskPrefix & mask; 1889 // Compress mask 1890 mask = (mask ^ maskMove3) | (maskMove3 >>> (1 << 2)); 1891 maskCount = maskCount & ~maskPrefix; 1892 1893 maskPrefix = parallelSuffix(maskCount); 1894 // Bits to move 1895 int maskMove4 = maskPrefix & mask; 1896 // Compress mask 1897 mask = (mask ^ maskMove4) | (maskMove4 >>> (1 << 3)); 1898 maskCount = maskCount & ~maskPrefix; 1899 1900 maskPrefix = parallelSuffix(maskCount); 1901 // Bits to move 1902 int maskMove5 = maskPrefix & mask; 1903 1904 int t = i << (1 << 4); 1905 i = (i & ~maskMove5) | (t & maskMove5); 1906 t = i << (1 << 3); 1907 i = (i & ~maskMove4) | (t & maskMove4); 1908 t = i << (1 << 2); 1909 i = (i & ~maskMove3) | (t & maskMove3); 1910 t = i << (1 << 1); 1911 i = (i & ~maskMove2) | (t & maskMove2); 1912 t = i << (1 << 0); 1913 i = (i & ~maskMove1) | (t & maskMove1); 1914 1915 // Clear irrelevant bits 1916 return i & originalMask; 1917 } 1918 1919 @ForceInline 1920 private static int parallelSuffix(int maskCount) { 1921 int maskPrefix = maskCount ^ (maskCount << 1); 1922 maskPrefix = maskPrefix ^ (maskPrefix << 2); 1923 maskPrefix = maskPrefix ^ (maskPrefix << 4); 1924 maskPrefix = maskPrefix ^ (maskPrefix << 8); 1925 maskPrefix = maskPrefix ^ (maskPrefix << 16); 1926 return maskPrefix; 1927 } 1928 1929 /** 1930 * Returns the signum function of the specified {@code int} value. (The 1931 * return value is -1 if the specified value is negative; 0 if the 1932 * specified value is zero; and 1 if the specified value is positive.) 1933 * 1934 * @param i the value whose signum is to be computed 1935 * @return the signum function of the specified {@code int} value. 1936 * @since 1.5 1937 */ 1938 public static int signum(int i) { 1939 // HD, Section 2-7 1940 return (i >> 31) | (-i >>> 31); 1941 } 1942 1943 /** 1944 * Returns the value obtained by reversing the order of the bytes in the 1945 * two's complement representation of the specified {@code int} value. 1946 * 1947 * @param i the value whose bytes are to be reversed 1948 * @return the value obtained by reversing the bytes in the specified 1949 * {@code int} value. 1950 * @since 1.5 1951 */ 1952 @IntrinsicCandidate 1953 public static int reverseBytes(int i) { 1954 return (i << 24) | 1955 ((i & 0xff00) << 8) | 1956 ((i >>> 8) & 0xff00) | 1957 (i >>> 24); 1958 } 1959 1960 /** 1961 * Adds two integers together as per the + operator. 1962 * 1963 * @param a the first operand 1964 * @param b the second operand 1965 * @return the sum of {@code a} and {@code b} 1966 * @see java.util.function.BinaryOperator 1967 * @since 1.8 1968 */ 1969 public static int sum(int a, int b) { 1970 return a + b; 1971 } 1972 1973 /** 1974 * Returns the greater of two {@code int} values 1975 * as if by calling {@link Math#max(int, int) Math.max}. 1976 * 1977 * @param a the first operand 1978 * @param b the second operand 1979 * @return the greater of {@code a} and {@code b} 1980 * @see java.util.function.BinaryOperator 1981 * @since 1.8 1982 */ 1983 public static int max(int a, int b) { 1984 return Math.max(a, b); 1985 } 1986 1987 /** 1988 * Returns the smaller of two {@code int} values 1989 * as if by calling {@link Math#min(int, int) Math.min}. 1990 * 1991 * @param a the first operand 1992 * @param b the second operand 1993 * @return the smaller of {@code a} and {@code b} 1994 * @see java.util.function.BinaryOperator 1995 * @since 1.8 1996 */ 1997 public static int min(int a, int b) { 1998 return Math.min(a, b); 1999 } 2000 2001 /** 2002 * Returns an {@link Optional} containing the nominal descriptor for this 2003 * instance, which is the instance itself. 2004 * 2005 * @return an {@link Optional} describing the {@linkplain Integer} instance 2006 * @since 12 2007 */ 2008 @Override 2009 public Optional<Integer> describeConstable() { 2010 return Optional.of(this); 2011 } 2012 2013 /** 2014 * Resolves this instance as a {@link ConstantDesc}, the result of which is 2015 * the instance itself. 2016 * 2017 * @param lookup ignored 2018 * @return the {@linkplain Integer} instance 2019 * @since 12 2020 */ 2021 @Override 2022 public Integer resolveConstantDesc(MethodHandles.Lookup lookup) { 2023 return this; 2024 } 2025 2026 /** use serialVersionUID from JDK 1.0.2 for interoperability */ 2027 @java.io.Serial 2028 @Native private static final long serialVersionUID = 1360826667806852920L; 2029 }