1 /* 2 * Copyright (c) 2011, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.lang.invoke; 27 28 import java.lang.classfile.TypeKind; 29 import jdk.internal.perf.PerfCounter; 30 import jdk.internal.vm.annotation.DontInline; 31 import jdk.internal.vm.annotation.Hidden; 32 import jdk.internal.vm.annotation.Stable; 33 import sun.invoke.util.Wrapper; 34 35 import java.lang.annotation.ElementType; 36 import java.lang.annotation.Retention; 37 import java.lang.annotation.RetentionPolicy; 38 import java.lang.annotation.Target; 39 import java.lang.reflect.Method; 40 import java.util.Arrays; 41 import java.util.HashMap; 42 43 import static java.lang.invoke.LambdaForm.BasicType.*; 44 import static java.lang.invoke.MethodHandleNatives.Constants.*; 45 import static java.lang.invoke.MethodHandleStatics.*; 46 47 /** 48 * The symbolic, non-executable form of a method handle's invocation semantics. 49 * It consists of a series of names. 50 * The first N (N=arity) names are parameters, 51 * while any remaining names are temporary values. 52 * Each temporary specifies the application of a function to some arguments. 53 * The functions are method handles, while the arguments are mixes of 54 * constant values and local names. 55 * The result of the lambda is defined as one of the names, often the last one. 56 * <p> 57 * Here is an approximate grammar: 58 * <blockquote><pre>{@code 59 * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}" 60 * ArgName = "a" N ":" T 61 * TempName = "t" N ":" T "=" Function "(" Argument* ");" 62 * Function = ConstantValue 63 * Argument = NameRef | ConstantValue 64 * Result = NameRef | "void" 65 * NameRef = "a" N | "t" N 66 * N = (any whole number) 67 * T = "L" | "I" | "J" | "F" | "D" | "V" 68 * }</pre></blockquote> 69 * Names are numbered consecutively from left to right starting at zero. 70 * (The letters are merely a taste of syntax sugar.) 71 * Thus, the first temporary (if any) is always numbered N (where N=arity). 72 * Every occurrence of a name reference in an argument list must refer to 73 * a name previously defined within the same lambda. 74 * A lambda has a void result if and only if its result index is -1. 75 * If a temporary has the type "V", it cannot be the subject of a NameRef, 76 * even though possesses a number. 77 * Note that all reference types are erased to "L", which stands for {@code Object}. 78 * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}. 79 * The other types stand for the usual primitive types. 80 * <p> 81 * Function invocation closely follows the static rules of the Java verifier. 82 * Arguments and return values must exactly match when their "Name" types are 83 * considered. 84 * Conversions are allowed only if they do not change the erased type. 85 * <ul> 86 * <li>L = Object: casts are used freely to convert into and out of reference types 87 * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments}) 88 * <li>J = long: no implicit conversions 89 * <li>F = float: no implicit conversions 90 * <li>D = double: no implicit conversions 91 * <li>V = void: a function result may be void if and only if its Name is of type "V" 92 * </ul> 93 * Although implicit conversions are not allowed, explicit ones can easily be 94 * encoded by using temporary expressions which call type-transformed identity functions. 95 * <p> 96 * Examples: 97 * <blockquote><pre>{@code 98 * (a0:J)=>{ a0 } 99 * == identity(long) 100 * (a0:I)=>{ t1:V = System.out#println(a0); void } 101 * == System.out#println(int) 102 * (a0:L)=>{ t1:V = System.out#println(a0); a0 } 103 * == identity, with printing side-effect 104 * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0); 105 * t3:L = BoundMethodHandle#target(a0); 106 * t4:L = MethodHandle#invoke(t3, t2, a1); t4 } 107 * == general invoker for unary insertArgument combination 108 * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0); 109 * t3:L = MethodHandle#invoke(t2, a1); 110 * t4:L = FilterMethodHandle#target(a0); 111 * t5:L = MethodHandle#invoke(t4, t3); t5 } 112 * == general invoker for unary filterArgument combination 113 * (a0:L, a1:L)=>{ ...(same as previous example)... 114 * t5:L = MethodHandle#invoke(t4, t3, a1); t5 } 115 * == general invoker for unary/unary foldArgument combination 116 * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 } 117 * == invoker for identity method handle which performs i2l 118 * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0); 119 * t3:L = Class#cast(t2,a1); t3 } 120 * == invoker for identity method handle which performs cast 121 * }</pre></blockquote> 122 * <p> 123 * @author John Rose, JSR 292 EG 124 */ 125 class LambdaForm { 126 final int arity; 127 final int result; 128 final boolean forceInline; 129 final MethodHandle customized; 130 @Stable final Name[] names; 131 final Kind kind; 132 MemberName vmentry; // low-level behavior, or null if not yet prepared 133 private boolean isCompiled; 134 135 // Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF) 136 volatile Object transformCache; 137 138 public static final int VOID_RESULT = -1, LAST_RESULT = -2; 139 140 enum BasicType { 141 L_TYPE('L', Object.class, Wrapper.OBJECT, TypeKind.REFERENCE), // all reference types 142 I_TYPE('I', int.class, Wrapper.INT, TypeKind.INT), 143 J_TYPE('J', long.class, Wrapper.LONG, TypeKind.LONG), 144 F_TYPE('F', float.class, Wrapper.FLOAT, TypeKind.FLOAT), 145 D_TYPE('D', double.class, Wrapper.DOUBLE, TypeKind.DOUBLE), // all primitive types 146 V_TYPE('V', void.class, Wrapper.VOID, TypeKind.VOID); // not valid in all contexts 147 148 static final @Stable BasicType[] ALL_TYPES = BasicType.values(); 149 static final @Stable BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1); 150 151 static final int ARG_TYPE_LIMIT = ARG_TYPES.length; 152 static final int TYPE_LIMIT = ALL_TYPES.length; 153 154 final char btChar; 155 final Class<?> btClass; 156 final Wrapper btWrapper; 157 final TypeKind btKind; 158 159 private BasicType(char btChar, Class<?> btClass, Wrapper wrapper, TypeKind typeKind) { 160 this.btChar = btChar; 161 this.btClass = btClass; 162 this.btWrapper = wrapper; 163 this.btKind = typeKind; 164 } 165 166 char basicTypeChar() { 167 return btChar; 168 } 169 Class<?> basicTypeClass() { 170 return btClass; 171 } 172 Wrapper basicTypeWrapper() { 173 return btWrapper; 174 } 175 TypeKind basicTypeKind() { 176 return btKind; 177 } 178 int basicTypeSlots() { 179 return btWrapper.stackSlots(); 180 } 181 182 static BasicType basicType(byte type) { 183 return ALL_TYPES[type]; 184 } 185 static BasicType basicType(char type) { 186 return switch (type) { 187 case 'L' -> L_TYPE; 188 case 'I' -> I_TYPE; 189 case 'J' -> J_TYPE; 190 case 'F' -> F_TYPE; 191 case 'D' -> D_TYPE; 192 case 'V' -> V_TYPE; 193 // all subword types are represented as ints 194 case 'Z', 'B', 'S', 'C' -> I_TYPE; 195 default -> throw newInternalError("Unknown type char: '" + type + "'"); 196 }; 197 } 198 static BasicType basicType(Class<?> type) { 199 return basicType(Wrapper.basicTypeChar(type)); 200 } 201 static int[] basicTypeOrds(BasicType[] types) { 202 if (types == null) { 203 return null; 204 } 205 int[] a = new int[types.length]; 206 for(int i = 0; i < types.length; ++i) { 207 a[i] = types[i].ordinal(); 208 } 209 return a; 210 } 211 212 static char basicTypeChar(Class<?> type) { 213 return basicType(type).btChar; 214 } 215 216 static int[] basicTypesOrd(Class<?>[] types) { 217 int[] ords = new int[types.length]; 218 for (int i = 0; i < ords.length; i++) { 219 ords[i] = basicType(types[i]).ordinal(); 220 } 221 return ords; 222 } 223 224 static boolean isBasicTypeChar(char c) { 225 return "LIJFDV".indexOf(c) >= 0; 226 } 227 static boolean isArgBasicTypeChar(char c) { 228 return "LIJFD".indexOf(c) >= 0; 229 } 230 231 static { assert(checkBasicType()); } 232 private static boolean checkBasicType() { 233 for (int i = 0; i < ARG_TYPE_LIMIT; i++) { 234 assert ARG_TYPES[i].ordinal() == i; 235 assert ARG_TYPES[i] == ALL_TYPES[i]; 236 } 237 for (int i = 0; i < TYPE_LIMIT; i++) { 238 assert ALL_TYPES[i].ordinal() == i; 239 } 240 assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE; 241 assert !Arrays.asList(ARG_TYPES).contains(V_TYPE); 242 return true; 243 } 244 } 245 246 enum Kind { 247 GENERIC("invoke"), 248 IDENTITY("identity"), 249 CONSTANT("constant"), 250 BOUND_REINVOKER("BMH.reinvoke", "reinvoke"), 251 REINVOKER("MH.reinvoke", "reinvoke"), 252 DELEGATE("MH.delegate", "delegate"), 253 EXACT_LINKER("MH.invokeExact_MT", "invokeExact_MT"), 254 EXACT_INVOKER("MH.exactInvoker", "exactInvoker"), 255 GENERIC_LINKER("MH.invoke_MT", "invoke_MT"), 256 GENERIC_INVOKER("MH.invoker", "invoker"), 257 LINK_TO_TARGET_METHOD("linkToTargetMethod"), 258 LINK_TO_CALL_SITE("linkToCallSite"), 259 DIRECT_INVOKE_VIRTUAL("DMH.invokeVirtual", "invokeVirtual"), 260 DIRECT_INVOKE_SPECIAL("DMH.invokeSpecial", "invokeSpecial"), 261 DIRECT_INVOKE_SPECIAL_IFC("DMH.invokeSpecialIFC", "invokeSpecialIFC"), 262 DIRECT_INVOKE_STATIC("DMH.invokeStatic", "invokeStatic"), 263 DIRECT_NEW_INVOKE_SPECIAL("DMH.newInvokeSpecial", "newInvokeSpecial"), 264 DIRECT_INVOKE_INTERFACE("DMH.invokeInterface", "invokeInterface"), 265 DIRECT_INVOKE_STATIC_INIT("DMH.invokeStaticInit", "invokeStaticInit"), 266 GET_REFERENCE("getReference"), 267 PUT_REFERENCE("putReference"), 268 GET_REFERENCE_VOLATILE("getReferenceVolatile"), 269 PUT_REFERENCE_VOLATILE("putReferenceVolatile"), 270 GET_FLAT_VALUE("getFlatValue"), 271 PUT_FLAT_VALUE("putFlatValue"), 272 GET_FLAT_VALUE_VOLATILE("getFlatValueVolatile"), 273 PUT_FLAT_VALUE_VOLATILE("putFlatValueVolatile"), 274 GET_INT("getInt"), 275 PUT_INT("putInt"), 276 GET_INT_VOLATILE("getIntVolatile"), 277 PUT_INT_VOLATILE("putIntVolatile"), 278 GET_BOOLEAN("getBoolean"), 279 PUT_BOOLEAN("putBoolean"), 280 GET_BOOLEAN_VOLATILE("getBooleanVolatile"), 281 PUT_BOOLEAN_VOLATILE("putBooleanVolatile"), 282 GET_BYTE("getByte"), 283 PUT_BYTE("putByte"), 284 GET_BYTE_VOLATILE("getByteVolatile"), 285 PUT_BYTE_VOLATILE("putByteVolatile"), 286 GET_CHAR("getChar"), 287 PUT_CHAR("putChar"), 288 GET_CHAR_VOLATILE("getCharVolatile"), 289 PUT_CHAR_VOLATILE("putCharVolatile"), 290 GET_SHORT("getShort"), 291 PUT_SHORT("putShort"), 292 GET_SHORT_VOLATILE("getShortVolatile"), 293 PUT_SHORT_VOLATILE("putShortVolatile"), 294 GET_LONG("getLong"), 295 PUT_LONG("putLong"), 296 GET_LONG_VOLATILE("getLongVolatile"), 297 PUT_LONG_VOLATILE("putLongVolatile"), 298 GET_FLOAT("getFloat"), 299 PUT_FLOAT("putFloat"), 300 GET_FLOAT_VOLATILE("getFloatVolatile"), 301 PUT_FLOAT_VOLATILE("putFloatVolatile"), 302 GET_DOUBLE("getDouble"), 303 PUT_DOUBLE("putDouble"), 304 GET_DOUBLE_VOLATILE("getDoubleVolatile"), 305 PUT_DOUBLE_VOLATILE("putDoubleVolatile"), 306 TRY_FINALLY("tryFinally"), 307 TABLE_SWITCH("tableSwitch"), 308 COLLECTOR("collector"), 309 LOOP("loop"), 310 GUARD("guard"), 311 GUARD_WITH_CATCH("guardWithCatch"), 312 VARHANDLE_EXACT_INVOKER("VH.exactInvoker"), 313 VARHANDLE_INVOKER("VH.invoker", "invoker"), 314 VARHANDLE_LINKER("VH.invoke_MT", "invoke_MT"); 315 316 final String defaultLambdaName; 317 final String methodName; 318 319 private Kind(String defaultLambdaName) { 320 this(defaultLambdaName, defaultLambdaName); 321 } 322 323 private Kind(String defaultLambdaName, String methodName) { 324 this.defaultLambdaName = defaultLambdaName; 325 this.methodName = methodName; 326 } 327 } 328 329 // private version that doesn't do checks or defensive copies 330 private LambdaForm(int arity, int result, boolean forceInline, MethodHandle customized, Name[] names, Kind kind) { 331 this.arity = arity; 332 this.result = result; 333 this.forceInline = forceInline; 334 this.customized = customized; 335 this.names = names; 336 this.kind = kind; 337 this.vmentry = null; 338 this.isCompiled = false; 339 } 340 341 // root factory pre/post processing and calls simple constructor 342 private static LambdaForm create(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind) { 343 names = names.clone(); 344 assert(namesOK(arity, names)); 345 result = fixResult(result, names); 346 347 boolean canInterpret = normalizeNames(arity, names); 348 LambdaForm form = new LambdaForm(arity, result, forceInline, customized, names, kind); 349 assert(form.nameRefsAreLegal()); 350 if (!canInterpret) { 351 form.compileToBytecode(); 352 } 353 return form; 354 } 355 356 // derived factories with defaults 357 private static final int DEFAULT_RESULT = LAST_RESULT; 358 private static final boolean DEFAULT_FORCE_INLINE = true; 359 private static final MethodHandle DEFAULT_CUSTOMIZED = null; 360 private static final Kind DEFAULT_KIND = Kind.GENERIC; 361 362 static LambdaForm create(int arity, Name[] names, int result) { 363 return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND); 364 } 365 static LambdaForm create(int arity, Name[] names, int result, Kind kind) { 366 return create(arity, names, result, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind); 367 } 368 static LambdaForm create(int arity, Name[] names) { 369 return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, DEFAULT_KIND); 370 } 371 static LambdaForm create(int arity, Name[] names, Kind kind) { 372 return create(arity, names, DEFAULT_RESULT, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, kind); 373 } 374 static LambdaForm create(int arity, Name[] names, boolean forceInline, Kind kind) { 375 return create(arity, names, DEFAULT_RESULT, forceInline, DEFAULT_CUSTOMIZED, kind); 376 } 377 378 private static LambdaForm createBlankForType(MethodType mt) { 379 // Make a dummy blank lambda form. 380 // It is used as a template for managing the invocation of similar forms that are non-empty. 381 // Called only from getPreparedForm. 382 LambdaForm form = new LambdaForm(0, 0, DEFAULT_FORCE_INLINE, DEFAULT_CUSTOMIZED, new Name[0], Kind.GENERIC); 383 return form; 384 } 385 386 private static int fixResult(int result, Name[] names) { 387 if (result == LAST_RESULT) 388 result = names.length - 1; // might still be void 389 if (result >= 0 && names[result].type == V_TYPE) 390 result = VOID_RESULT; 391 return result; 392 } 393 394 static boolean debugNames() { 395 return DEBUG_NAME_COUNTERS != null; 396 } 397 398 static void associateWithDebugName(LambdaForm form, String name) { 399 assert (debugNames()); 400 synchronized (DEBUG_NAMES) { 401 DEBUG_NAMES.put(form, name); 402 } 403 } 404 405 String lambdaName() { 406 if (DEBUG_NAMES != null) { 407 synchronized (DEBUG_NAMES) { 408 String name = DEBUG_NAMES.get(this); 409 if (name == null) { 410 name = generateDebugName(); 411 } 412 return name; 413 } 414 } 415 return kind.defaultLambdaName; 416 } 417 418 private String generateDebugName() { 419 assert (debugNames()); 420 String debugNameStem = kind.defaultLambdaName; 421 Integer ctr = DEBUG_NAME_COUNTERS.getOrDefault(debugNameStem, 0); 422 DEBUG_NAME_COUNTERS.put(debugNameStem, ctr + 1); 423 StringBuilder buf = new StringBuilder(debugNameStem); 424 int leadingZero = buf.length(); 425 buf.append((int) ctr); 426 for (int i = buf.length() - leadingZero; i < 3; i++) { 427 buf.insert(leadingZero, '0'); 428 } 429 buf.append('_'); 430 buf.append(basicTypeSignature()); 431 String name = buf.toString(); 432 associateWithDebugName(this, name); 433 return name; 434 } 435 436 private static boolean namesOK(int arity, Name[] names) { 437 for (int i = 0; i < names.length; i++) { 438 Name n = names[i]; 439 assert(n != null) : "n is null"; 440 if (i < arity) 441 assert( n.isParam()) : n + " is not param at " + i; 442 else 443 assert(!n.isParam()) : n + " is param at " + i; 444 } 445 return true; 446 } 447 448 /** Customize LambdaForm for a particular MethodHandle */ 449 LambdaForm customize(MethodHandle mh) { 450 if (customized == mh) { 451 return this; 452 } 453 LambdaForm customForm = LambdaForm.create(arity, names, result, forceInline, mh, kind); 454 if (COMPILE_THRESHOLD >= 0 && isCompiled) { 455 // If shared LambdaForm has been compiled, compile customized version as well. 456 customForm.compileToBytecode(); 457 } 458 customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form. 459 return customForm; 460 } 461 462 /** Get uncustomized flavor of the LambdaForm */ 463 LambdaForm uncustomize() { 464 if (customized == null) { 465 return this; 466 } 467 assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version. 468 LambdaForm uncustomizedForm = (LambdaForm)transformCache; 469 if (COMPILE_THRESHOLD >= 0 && isCompiled) { 470 // If customized LambdaForm has been compiled, compile uncustomized version as well. 471 uncustomizedForm.compileToBytecode(); 472 } 473 return uncustomizedForm; 474 } 475 476 /** Renumber and/or replace params so that they are interned and canonically numbered. 477 * @return true if we can interpret 478 */ 479 private static boolean normalizeNames(int arity, Name[] names) { 480 Name[] oldNames = names.clone(); 481 int maxOutArity = 0; 482 for (int i = 0; i < names.length; i++) { 483 Name n = names[i]; 484 names[i] = n.withIndex(i); 485 if (n.arguments != null && maxOutArity < n.arguments.length) 486 maxOutArity = n.arguments.length; 487 } 488 if (oldNames != null) { 489 for (int i = Math.max(1, arity); i < names.length; i++) { 490 Name fixed = names[i].replaceNames(oldNames, names, 0, i); 491 names[i] = fixed.withIndex(i); 492 } 493 } 494 int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT); 495 boolean needIntern = false; 496 for (int i = 0; i < maxInterned; i++) { 497 Name n = names[i], n2 = internArgument(n); 498 if (n != n2) { 499 names[i] = n2; 500 needIntern = true; 501 } 502 } 503 if (needIntern) { 504 for (int i = arity; i < names.length; i++) { 505 names[i].internArguments(); 506 } 507 } 508 509 // return true if we can interpret 510 if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) { 511 // Cannot use LF interpreter on very high arity expressions. 512 assert(maxOutArity <= MethodType.MAX_JVM_ARITY); 513 return false; 514 } 515 return true; 516 } 517 518 /** 519 * Check that all embedded Name references are localizable to this lambda, 520 * and are properly ordered after their corresponding definitions. 521 * <p> 522 * Note that a Name can be local to multiple lambdas, as long as 523 * it possesses the same index in each use site. 524 * This allows Name references to be freely reused to construct 525 * fresh lambdas, without confusion. 526 */ 527 boolean nameRefsAreLegal() { 528 assert(arity >= 0 && arity <= names.length); 529 assert(result >= -1 && result < names.length); 530 // Do all names possess an index consistent with their local definition order? 531 for (int i = 0; i < arity; i++) { 532 Name n = names[i]; 533 assert(n.index() == i) : Arrays.asList(n.index(), i); 534 assert(n.isParam()); 535 } 536 // Also, do all local name references 537 for (int i = arity; i < names.length; i++) { 538 Name n = names[i]; 539 assert(n.index() == i); 540 for (Object arg : n.arguments) { 541 if (arg instanceof Name n2) { 542 int i2 = n2.index; 543 assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length; 544 assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this); 545 assert(i2 < i); // ref must come after def! 546 } 547 } 548 } 549 return true; 550 } 551 552 // /** Invoke this form on the given arguments. */ 553 // final Object invoke(Object... args) throws Throwable { 554 // // NYI: fit this into the fast path? 555 // return interpretWithArguments(args); 556 // } 557 558 /** Report the return type. */ 559 BasicType returnType() { 560 if (result < 0) return V_TYPE; 561 Name n = names[result]; 562 return n.type; 563 } 564 565 /** Report the N-th argument type. */ 566 BasicType parameterType(int n) { 567 return parameter(n).type; 568 } 569 570 /** Report the N-th argument name. */ 571 Name parameter(int n) { 572 Name param = names[n]; 573 assert(n < arity && param.isParam()); 574 return param; 575 } 576 577 /** Report the N-th argument type constraint. */ 578 Object parameterConstraint(int n) { 579 return parameter(n).constraint; 580 } 581 582 /** Report the arity. */ 583 int arity() { 584 return arity; 585 } 586 587 /** Report the number of expressions (non-parameter names). */ 588 int expressionCount() { 589 return names.length - arity; 590 } 591 592 /** Return the method type corresponding to my basic type signature. */ 593 MethodType methodType() { 594 Class<?>[] ptypes = new Class<?>[arity]; 595 for (int i = 0; i < arity; ++i) { 596 ptypes[i] = parameterType(i).btClass; 597 } 598 return MethodType.methodType(returnType().btClass, ptypes, true); 599 } 600 601 /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */ 602 final String basicTypeSignature() { 603 StringBuilder buf = new StringBuilder(arity() + 3); 604 for (int i = 0, a = arity(); i < a; i++) 605 buf.append(parameterType(i).basicTypeChar()); 606 return buf.append('_').append(returnType().basicTypeChar()).toString(); 607 } 608 static int signatureArity(String sig) { 609 assert(isValidSignature(sig)); 610 return sig.indexOf('_'); 611 } 612 static boolean isValidSignature(String sig) { 613 int arity = sig.indexOf('_'); 614 if (arity < 0) return false; // must be of the form *_* 615 int siglen = sig.length(); 616 if (siglen != arity + 2) return false; // *_X 617 for (int i = 0; i < siglen; i++) { 618 if (i == arity) continue; // skip '_' 619 char c = sig.charAt(i); 620 if (c == 'V') 621 return (i == siglen - 1 && arity == siglen - 2); 622 if (!isArgBasicTypeChar(c)) return false; // must be [LIJFD] 623 } 624 return true; // [LIJFD]*_[LIJFDV] 625 } 626 627 /** 628 * Check if i-th name is a call to MethodHandleImpl.selectAlternative. 629 */ 630 boolean isSelectAlternative(int pos) { 631 // selectAlternative idiom: 632 // t_{n}:L=MethodHandleImpl.selectAlternative(...) 633 // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...) 634 if (pos+1 >= names.length) return false; 635 Name name0 = names[pos]; 636 Name name1 = names[pos+1]; 637 return name0.refersTo(MethodHandleImpl.class, "selectAlternative") && 638 name1.isInvokeBasic() && 639 name1.lastUseIndex(name0) == 0 && // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...) 640 lastUseIndex(name0) == pos+1; // t_{n} is local: used only in t_{n+1} 641 } 642 643 private boolean isMatchingIdiom(int pos, String idiomName, int nArgs) { 644 if (pos+2 >= names.length) return false; 645 Name name0 = names[pos]; 646 Name name1 = names[pos+1]; 647 Name name2 = names[pos+2]; 648 return name1.refersTo(MethodHandleImpl.class, idiomName) && 649 name0.isInvokeBasic() && 650 name2.isInvokeBasic() && 651 name1.lastUseIndex(name0) == nArgs && // t_{n+1}:L=MethodHandleImpl.<invoker>(<args>, t_{n}); 652 lastUseIndex(name0) == pos+1 && // t_{n} is local: used only in t_{n+1} 653 name2.lastUseIndex(name1) == 1 && // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 654 lastUseIndex(name1) == pos+2; // t_{n+1} is local: used only in t_{n+2} 655 } 656 657 /** 658 * Check if i-th name is a start of GuardWithCatch idiom. 659 */ 660 boolean isGuardWithCatch(int pos) { 661 // GuardWithCatch idiom: 662 // t_{n}:L=MethodHandle.invokeBasic(...) 663 // t_{n+1}:L=MethodHandleImpl.guardWithCatch(*, *, *, t_{n}); 664 // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 665 return isMatchingIdiom(pos, "guardWithCatch", 3); 666 } 667 668 /** 669 * Check if i-th name is a start of the tryFinally idiom. 670 */ 671 boolean isTryFinally(int pos) { 672 // tryFinally idiom: 673 // t_{n}:L=MethodHandle.invokeBasic(...) 674 // t_{n+1}:L=MethodHandleImpl.tryFinally(*, *, t_{n}) 675 // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 676 return isMatchingIdiom(pos, "tryFinally", 2); 677 } 678 679 /** 680 * Check if i-th name is a start of the tableSwitch idiom. 681 */ 682 boolean isTableSwitch(int pos) { 683 // tableSwitch idiom: 684 // t_{n}:L=MethodHandle.invokeBasic(...) // args 685 // t_{n+1}:L=MethodHandleImpl.tableSwitch(*, *, *, t_{n}) 686 // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 687 if (pos + 2 >= names.length) return false; 688 689 final int POS_COLLECT_ARGS = pos; 690 final int POS_TABLE_SWITCH = pos + 1; 691 final int POS_UNBOX_RESULT = pos + 2; 692 693 Name collectArgs = names[POS_COLLECT_ARGS]; 694 Name tableSwitch = names[POS_TABLE_SWITCH]; 695 Name unboxResult = names[POS_UNBOX_RESULT]; 696 return tableSwitch.refersTo(MethodHandleImpl.class, "tableSwitch") && 697 collectArgs.isInvokeBasic() && 698 unboxResult.isInvokeBasic() && 699 tableSwitch.lastUseIndex(collectArgs) == 3 && // t_{n+1}:L=MethodHandleImpl.<invoker>(*, *, *, t_{n}); 700 lastUseIndex(collectArgs) == POS_TABLE_SWITCH && // t_{n} is local: used only in t_{n+1} 701 unboxResult.lastUseIndex(tableSwitch) == 1 && // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 702 lastUseIndex(tableSwitch) == POS_UNBOX_RESULT; // t_{n+1} is local: used only in t_{n+2} 703 } 704 705 /** 706 * Check if i-th name is a start of the loop idiom. 707 */ 708 boolean isLoop(int pos) { 709 // loop idiom: 710 // t_{n}:L=MethodHandle.invokeBasic(...) 711 // t_{n+1}:L=MethodHandleImpl.loop(types, *, t_{n}) 712 // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) 713 return isMatchingIdiom(pos, "loop", 2); 714 } 715 716 /* 717 * Code generation issues: 718 * 719 * Compiled LFs should be reusable in general. 720 * The biggest issue is how to decide when to pull a name into 721 * the bytecode, versus loading a reified form from the MH data. 722 * 723 * For example, an asType wrapper may require execution of a cast 724 * after a call to a MH. The target type of the cast can be placed 725 * as a constant in the LF itself. This will force the cast type 726 * to be compiled into the bytecodes and native code for the MH. 727 * Or, the target type of the cast can be erased in the LF, and 728 * loaded from the MH data. (Later on, if the MH as a whole is 729 * inlined, the data will flow into the inlined instance of the LF, 730 * as a constant, and the end result will be an optimal cast.) 731 * 732 * This erasure of cast types can be done with any use of 733 * reference types. It can also be done with whole method 734 * handles. Erasing a method handle might leave behind 735 * LF code that executes correctly for any MH of a given 736 * type, and load the required MH from the enclosing MH's data. 737 * Or, the erasure might even erase the expected MT. 738 * 739 * Also, for direct MHs, the MemberName of the target 740 * could be erased, and loaded from the containing direct MH. 741 * As a simple case, a LF for all int-valued non-static 742 * field getters would perform a cast on its input argument 743 * (to non-constant base type derived from the MemberName) 744 * and load an integer value from the input object 745 * (at a non-constant offset also derived from the MemberName). 746 * Such MN-erased LFs would be inlinable back to optimized 747 * code, whenever a constant enclosing DMH is available 748 * to supply a constant MN from its data. 749 * 750 * The main problem here is to keep LFs reasonably generic, 751 * while ensuring that hot spots will inline good instances. 752 * "Reasonably generic" means that we don't end up with 753 * repeated versions of bytecode or machine code that do 754 * not differ in their optimized form. Repeated versions 755 * of machine would have the undesirable overheads of 756 * (a) redundant compilation work and (b) extra I$ pressure. 757 * To control repeated versions, we need to be ready to 758 * erase details from LFs and move them into MH data, 759 * whenever those details are not relevant to significant 760 * optimization. "Significant" means optimization of 761 * code that is actually hot. 762 * 763 * Achieving this may require dynamic splitting of MHs, by replacing 764 * a generic LF with a more specialized one, on the same MH, 765 * if (a) the MH is frequently executed and (b) the MH cannot 766 * be inlined into a containing caller, such as an invokedynamic. 767 * 768 * Compiled LFs that are no longer used should be GC-able. 769 * If they contain non-BCP references, they should be properly 770 * interlinked with the class loader(s) that their embedded types 771 * depend on. This probably means that reusable compiled LFs 772 * will be tabulated (indexed) on relevant class loaders, 773 * or else that the tables that cache them will have weak links. 774 */ 775 776 /** 777 * Make this LF directly executable, as part of a MethodHandle. 778 * Invariant: Every MH which is invoked must prepare its LF 779 * before invocation. 780 * (In principle, the JVM could do this very lazily, 781 * as a sort of pre-invocation linkage step.) 782 */ 783 public void prepare() { 784 if (COMPILE_THRESHOLD == 0 && !forceInterpretation() && !isCompiled) { 785 compileToBytecode(); 786 } 787 if (this.vmentry != null) { 788 // already prepared (e.g., a primitive DMH invoker form) 789 return; 790 } 791 MethodType mtype = methodType(); 792 LambdaForm prep = mtype.form().cachedLambdaForm(MethodTypeForm.LF_INTERPRET); 793 if (prep == null) { 794 assert (isValidSignature(basicTypeSignature())); 795 prep = LambdaForm.createBlankForType(mtype); 796 prep.vmentry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(mtype); 797 prep = mtype.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, prep); 798 } 799 this.vmentry = prep.vmentry; 800 // TO DO: Maybe add invokeGeneric, invokeWithArguments 801 } 802 803 private static @Stable PerfCounter LF_FAILED; 804 805 private static PerfCounter failedCompilationCounter() { 806 if (LF_FAILED == null) { 807 LF_FAILED = PerfCounter.newPerfCounter("java.lang.invoke.failedLambdaFormCompilations"); 808 } 809 return LF_FAILED; 810 } 811 812 /** Generate optimizable bytecode for this form. */ 813 void compileToBytecode() { 814 if (forceInterpretation()) { 815 return; // this should not be compiled 816 } 817 if (vmentry != null && isCompiled) { 818 return; // already compiled somehow 819 } 820 821 // Obtain the invoker MethodType outside of the following try block. 822 // This ensures that an IllegalArgumentException is directly thrown if the 823 // type would have 256 or more parameters 824 MethodType invokerType = methodType(); 825 assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType)); 826 try { 827 vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType); 828 if (TRACE_INTERPRETER) 829 traceInterpreter("compileToBytecode", this); 830 isCompiled = true; 831 } catch (InvokerBytecodeGenerator.BytecodeGenerationException bge) { 832 // bytecode generation failed - mark this LambdaForm as to be run in interpretation mode only 833 invocationCounter = -1; 834 failedCompilationCounter().increment(); 835 if (LOG_LF_COMPILATION_FAILURE) { 836 System.out.println("LambdaForm compilation failed: " + this); 837 bge.printStackTrace(System.out); 838 } 839 } catch (Error e) { 840 // Pass through any error 841 throw e; 842 } catch (Exception e) { 843 // Wrap any exception 844 throw newInternalError(this.toString(), e); 845 } 846 } 847 848 // The next few routines are called only from assert expressions 849 // They verify that the built-in invokers process the correct raw data types. 850 private static boolean argumentTypesMatch(String sig, Object[] av) { 851 int arity = signatureArity(sig); 852 assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity; 853 assert(av[0] instanceof MethodHandle) : "av[0] not instance of MethodHandle: " + av[0]; 854 MethodHandle mh = (MethodHandle) av[0]; 855 MethodType mt = mh.type(); 856 assert(mt.parameterCount() == arity-1); 857 for (int i = 0; i < av.length; i++) { 858 Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1)); 859 assert(valueMatches(basicType(sig.charAt(i)), pt, av[i])); 860 } 861 return true; 862 } 863 private static boolean valueMatches(BasicType tc, Class<?> type, Object x) { 864 // The following line is needed because (...)void method handles can use non-void invokers 865 if (type == void.class) tc = V_TYPE; // can drop any kind of value 866 assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type); 867 switch (tc) { 868 case I_TYPE: assert checkInt(type, x) : "checkInt(" + type + "," + x +")"; break; 869 case J_TYPE: assert x instanceof Long : "instanceof Long: " + x; break; 870 case F_TYPE: assert x instanceof Float : "instanceof Float: " + x; break; 871 case D_TYPE: assert x instanceof Double : "instanceof Double: " + x; break; 872 case L_TYPE: assert checkRef(type, x) : "checkRef(" + type + "," + x + ")"; break; 873 case V_TYPE: break; // allow anything here; will be dropped 874 default: assert(false); 875 } 876 return true; 877 } 878 private static boolean checkInt(Class<?> type, Object x) { 879 assert(x instanceof Integer); 880 if (type == int.class) return true; 881 Wrapper w = Wrapper.forBasicType(type); 882 assert(w.isSubwordOrInt()); 883 Object x1 = Wrapper.INT.wrap(w.wrap(x)); 884 return x.equals(x1); 885 } 886 private static boolean checkRef(Class<?> type, Object x) { 887 assert(!type.isPrimitive()); 888 if (x == null) return true; 889 if (type.isInterface()) return true; 890 return type.isInstance(x); 891 } 892 893 /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */ 894 private static final int COMPILE_THRESHOLD; 895 static { 896 COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD); 897 } 898 private int invocationCounter = 0; // a value of -1 indicates LambdaForm interpretation mode forever 899 900 private boolean forceInterpretation() { 901 return invocationCounter == -1; 902 } 903 904 /** Interpretively invoke this form on the given arguments. */ 905 @Hidden 906 @DontInline 907 Object interpretWithArguments(Object... argumentValues) throws Throwable { 908 if (TRACE_INTERPRETER) 909 return interpretWithArgumentsTracing(argumentValues); 910 checkInvocationCounter(); 911 assert(arityCheck(argumentValues)); 912 Object[] values = Arrays.copyOf(argumentValues, names.length); 913 for (int i = argumentValues.length; i < values.length; i++) { 914 values[i] = interpretName(names[i], values); 915 } 916 Object rv = (result < 0) ? null : values[result]; 917 assert(resultCheck(argumentValues, rv)); 918 return rv; 919 } 920 921 /** Evaluate a single Name within this form, applying its function to its arguments. */ 922 @Hidden 923 @DontInline 924 Object interpretName(Name name, Object[] values) throws Throwable { 925 if (TRACE_INTERPRETER) 926 traceInterpreter("| interpretName", name.debugString(), (Object[]) null); 927 Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class); 928 for (int i = 0; i < arguments.length; i++) { 929 Object a = arguments[i]; 930 if (a instanceof Name n) { 931 int i2 = n.index(); 932 assert(names[i2] == a); 933 a = values[i2]; 934 arguments[i] = a; 935 } 936 } 937 return name.function.invokeWithArguments(arguments); 938 } 939 940 private void checkInvocationCounter() { 941 if (COMPILE_THRESHOLD != 0 && 942 !forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) { 943 invocationCounter++; // benign race 944 if (invocationCounter >= COMPILE_THRESHOLD) { 945 // Replace vmentry with a bytecode version of this LF. 946 compileToBytecode(); 947 } 948 } 949 } 950 Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable { 951 traceInterpreter("[ interpretWithArguments", this, argumentValues); 952 if (!forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) { 953 int ctr = invocationCounter++; // benign race 954 traceInterpreter("| invocationCounter", ctr); 955 if (invocationCounter >= COMPILE_THRESHOLD) { 956 compileToBytecode(); 957 } 958 } 959 Object rval; 960 try { 961 assert(arityCheck(argumentValues)); 962 Object[] values = Arrays.copyOf(argumentValues, names.length); 963 for (int i = argumentValues.length; i < values.length; i++) { 964 values[i] = interpretName(names[i], values); 965 } 966 rval = (result < 0) ? null : values[result]; 967 } catch (Throwable ex) { 968 traceInterpreter("] throw =>", ex); 969 throw ex; 970 } 971 traceInterpreter("] return =>", rval); 972 return rval; 973 } 974 975 static void traceInterpreter(String event, Object obj, Object... args) { 976 if (TRACE_INTERPRETER) { 977 System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : "")); 978 } 979 } 980 static void traceInterpreter(String event, Object obj) { 981 traceInterpreter(event, obj, (Object[])null); 982 } 983 private boolean arityCheck(Object[] argumentValues) { 984 assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length"; 985 // also check that the leading (receiver) argument is somehow bound to this LF: 986 assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0]; 987 MethodHandle mh = (MethodHandle) argumentValues[0]; 988 assert(mh.internalForm() == this); 989 // note: argument #0 could also be an interface wrapper, in the future 990 argumentTypesMatch(basicTypeSignature(), argumentValues); 991 return true; 992 } 993 private boolean resultCheck(Object[] argumentValues, Object result) { 994 MethodHandle mh = (MethodHandle) argumentValues[0]; 995 MethodType mt = mh.type(); 996 assert(valueMatches(returnType(), mt.returnType(), result)); 997 return true; 998 } 999 1000 public String toString() { 1001 return debugString(-1); 1002 } 1003 1004 String debugString(int indentLevel) { 1005 String prefix = MethodHandle.debugPrefix(indentLevel); 1006 String lambdaName = lambdaName(); 1007 StringBuilder buf = new StringBuilder(lambdaName); 1008 buf.append("=Lambda("); 1009 for (int i = 0; i < names.length; i++) { 1010 if (i == arity) buf.append(")=>{"); 1011 Name n = names[i]; 1012 if (i >= arity) buf.append("\n ").append(prefix); 1013 buf.append(n.paramString()); 1014 if (i < arity) { 1015 if (i+1 < arity) buf.append(","); 1016 continue; 1017 } 1018 buf.append("=").append(n.exprString()); 1019 buf.append(";"); 1020 } 1021 if (arity == names.length) buf.append(")=>{"); 1022 buf.append(result < 0 ? "void" : names[result]).append("}"); 1023 if (TRACE_INTERPRETER) { 1024 // Extra verbosity: 1025 buf.append(":").append(basicTypeSignature()); 1026 buf.append("/").append(vmentry); 1027 } 1028 return buf.toString(); 1029 } 1030 1031 @Override 1032 public boolean equals(Object obj) { 1033 return obj instanceof LambdaForm lf && equals(lf); 1034 } 1035 public boolean equals(LambdaForm that) { 1036 if (this.result != that.result) return false; 1037 return Arrays.equals(this.names, that.names); 1038 } 1039 public int hashCode() { 1040 return result + 31 * Arrays.hashCode(names); 1041 } 1042 LambdaFormEditor editor() { 1043 return LambdaFormEditor.lambdaFormEditor(this); 1044 } 1045 1046 boolean contains(Name name) { 1047 int pos = name.index(); 1048 if (pos >= 0) { 1049 return pos < names.length && name.equals(names[pos]); 1050 } 1051 for (int i = arity; i < names.length; i++) { 1052 if (name.equals(names[i])) 1053 return true; 1054 } 1055 return false; 1056 } 1057 1058 static class NamedFunction { 1059 final MemberName member; 1060 private @Stable MethodHandle resolvedHandle; 1061 private @Stable MethodType type; 1062 1063 NamedFunction(MethodHandle resolvedHandle) { 1064 this(resolvedHandle.internalMemberName(), resolvedHandle); 1065 } 1066 NamedFunction(MemberName member, MethodHandle resolvedHandle) { 1067 this.member = member; 1068 this.resolvedHandle = resolvedHandle; 1069 // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest. 1070 //assert(!isInvokeBasic(member)); 1071 } 1072 NamedFunction(MethodType basicInvokerType) { 1073 assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType; 1074 if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) { 1075 this.resolvedHandle = basicInvokerType.invokers().basicInvoker(); 1076 this.member = resolvedHandle.internalMemberName(); 1077 } else { 1078 // necessary to pass BigArityTest 1079 this.member = Invokers.invokeBasicMethod(basicInvokerType); 1080 } 1081 assert(isInvokeBasic(member)); 1082 } 1083 1084 private static boolean isInvokeBasic(MemberName member) { 1085 return member != null && 1086 member.getDeclaringClass() == MethodHandle.class && 1087 "invokeBasic".equals(member.getName()); 1088 } 1089 1090 // The next 2 constructors are used to break circular dependencies on MH.invokeStatic, etc. 1091 // Any LambdaForm containing such a member is not interpretable. 1092 // This is OK, since all such LFs are prepared with special primitive vmentry points. 1093 // And even without the resolvedHandle, the name can still be compiled and optimized. 1094 NamedFunction(Method method) { 1095 this(new MemberName(method)); 1096 } 1097 NamedFunction(MemberName member) { 1098 this(member, null); 1099 } 1100 1101 MethodHandle resolvedHandle() { 1102 if (resolvedHandle == null) resolve(); 1103 return resolvedHandle; 1104 } 1105 1106 synchronized void resolve() { 1107 if (resolvedHandle == null) { 1108 resolvedHandle = DirectMethodHandle.make(member); 1109 } 1110 } 1111 1112 @Override 1113 public boolean equals(Object other) { 1114 if (this == other) return true; 1115 if (other == null) return false; 1116 return (other instanceof NamedFunction that) 1117 && this.member != null 1118 && this.member.equals(that.member); 1119 } 1120 1121 @Override 1122 public int hashCode() { 1123 if (member != null) 1124 return member.hashCode(); 1125 return super.hashCode(); 1126 } 1127 1128 static final MethodType INVOKER_METHOD_TYPE = 1129 MethodType.methodType(Object.class, MethodHandle.class, Object[].class); 1130 1131 private static MethodHandle computeInvoker(MethodTypeForm typeForm) { 1132 typeForm = typeForm.basicType().form(); // normalize to basic type 1133 MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV); 1134 if (mh != null) return mh; 1135 MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm); // this could take a while 1136 mh = DirectMethodHandle.make(invoker); 1137 MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV); 1138 if (mh2 != null) return mh2; // benign race 1139 if (!mh.type().equals(INVOKER_METHOD_TYPE)) 1140 throw newInternalError(mh.debugString()); 1141 return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh); 1142 } 1143 1144 @Hidden 1145 Object invokeWithArguments(Object... arguments) throws Throwable { 1146 // If we have a cached invoker, call it right away. 1147 // NOTE: The invoker always returns a reference value. 1148 if (TRACE_INTERPRETER) return invokeWithArgumentsTracing(arguments); 1149 return invoker().invokeBasic(resolvedHandle(), arguments); 1150 } 1151 1152 @Hidden 1153 Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable { 1154 Object rval; 1155 try { 1156 traceInterpreter("[ call", this, arguments); 1157 // resolvedHandle might be uninitialized, ok for tracing 1158 if (resolvedHandle == null) { 1159 traceInterpreter("| resolve", this); 1160 resolvedHandle(); 1161 } 1162 rval = invoker().invokeBasic(resolvedHandle(), arguments); 1163 } catch (Throwable ex) { 1164 traceInterpreter("] throw =>", ex); 1165 throw ex; 1166 } 1167 traceInterpreter("] return =>", rval); 1168 return rval; 1169 } 1170 1171 private MethodHandle invoker() { 1172 return computeInvoker(methodType().form()); 1173 } 1174 1175 MethodType methodType() { 1176 MethodType type = this.type; 1177 if (type == null) { 1178 this.type = type = calculateMethodType(member, resolvedHandle); 1179 } 1180 return type; 1181 } 1182 1183 private static MethodType calculateMethodType(MemberName member, MethodHandle resolvedHandle) { 1184 if (resolvedHandle != null) { 1185 return resolvedHandle.type(); 1186 } else { 1187 // only for certain internal LFs during bootstrapping 1188 return member.getInvocationType(); 1189 } 1190 } 1191 1192 MemberName member() { 1193 assert(assertMemberIsConsistent()); 1194 return member; 1195 } 1196 1197 // Called only from assert. 1198 private boolean assertMemberIsConsistent() { 1199 if (resolvedHandle instanceof DirectMethodHandle) { 1200 MemberName m = resolvedHandle.internalMemberName(); 1201 assert(m.equals(member)); 1202 } 1203 return true; 1204 } 1205 1206 Class<?> memberDeclaringClassOrNull() { 1207 return (member == null) ? null : member.getDeclaringClass(); 1208 } 1209 1210 BasicType returnType() { 1211 return basicType(methodType().returnType()); 1212 } 1213 1214 BasicType parameterType(int n) { 1215 return basicType(methodType().parameterType(n)); 1216 } 1217 1218 int arity() { 1219 return methodType().parameterCount(); 1220 } 1221 1222 public String toString() { 1223 if (member == null) return String.valueOf(resolvedHandle); 1224 return member.getDeclaringClass().getSimpleName()+"."+member.getName(); 1225 } 1226 1227 public boolean isIdentity() { 1228 return this.equals(identity(returnType())); 1229 } 1230 1231 public MethodHandleImpl.Intrinsic intrinsicName() { 1232 return resolvedHandle != null 1233 ? resolvedHandle.intrinsicName() 1234 : MethodHandleImpl.Intrinsic.NONE; 1235 } 1236 1237 public Object intrinsicData() { 1238 return resolvedHandle != null 1239 ? resolvedHandle.intrinsicData() 1240 : null; 1241 } 1242 } 1243 1244 public static String basicTypeSignature(MethodType type) { 1245 int params = type.parameterCount(); 1246 char[] sig = new char[params + 2]; 1247 int sigp = 0; 1248 while (sigp < params) { 1249 sig[sigp] = basicTypeChar(type.parameterType(sigp++)); 1250 } 1251 sig[sigp++] = '_'; 1252 sig[sigp++] = basicTypeChar(type.returnType()); 1253 assert(sigp == sig.length); 1254 return String.valueOf(sig); 1255 } 1256 1257 /** Hack to make signatures more readable when they show up in method names. 1258 * Signature should start with a sequence of uppercase ASCII letters. 1259 * Runs of three or more are replaced by a single letter plus a decimal repeat count. 1260 * A tail of anything other than uppercase ASCII is passed through unchanged. 1261 * @param signature sequence of uppercase ASCII letters with possible repetitions 1262 * @return same sequence, with repetitions counted by decimal numerals 1263 */ 1264 public static String shortenSignature(String signature) { 1265 final int NO_CHAR = -1, MIN_RUN = 3; 1266 int c0, c1 = NO_CHAR, c1reps = 0; 1267 StringBuilder buf = null; 1268 int len = signature.length(); 1269 if (len < MIN_RUN) return signature; 1270 for (int i = 0; i <= len; i++) { 1271 if (c1 != NO_CHAR && !('A' <= c1 && c1 <= 'Z')) { 1272 // wrong kind of char; bail out here 1273 if (buf != null) { 1274 buf.append(signature, i - c1reps, len); 1275 } 1276 break; 1277 } 1278 // shift in the next char: 1279 c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i)); 1280 if (c1 == c0) { ++c1reps; continue; } 1281 // shift in the next count: 1282 int c0reps = c1reps; c1reps = 1; 1283 // end of a character run 1284 if (c0reps < MIN_RUN) { 1285 if (buf != null) { 1286 while (--c0reps >= 0) 1287 buf.append((char)c0); 1288 } 1289 continue; 1290 } 1291 // found three or more in a row 1292 if (buf == null) 1293 buf = new StringBuilder().append(signature, 0, i - c0reps); 1294 buf.append((char)c0).append(c0reps); 1295 } 1296 return (buf == null) ? signature : buf.toString(); 1297 } 1298 1299 static final class Name { 1300 final BasicType type; 1301 final short index; 1302 final NamedFunction function; 1303 final Object constraint; // additional type information, if not null 1304 @Stable final Object[] arguments; 1305 1306 private static final Object[] EMPTY_ARGS = new Object[0]; 1307 1308 private Name(int index, BasicType type, NamedFunction function, Object[] arguments, Object constraint) { 1309 this.index = (short)index; 1310 this.type = type; 1311 this.function = function; 1312 this.arguments = arguments; 1313 this.constraint = constraint; 1314 assert(this.index == index && typesMatch(function, arguments)); 1315 assert(constraint == null || isParam()); // only params have constraints 1316 assert(constraint == null || constraint instanceof ClassSpecializer.SpeciesData || constraint instanceof Class); 1317 } 1318 1319 Name(MethodHandle function, Object... arguments) { 1320 this(new NamedFunction(function), arguments); 1321 } 1322 Name(MethodType functionType, Object... arguments) { 1323 this(new NamedFunction(functionType), arguments); 1324 assert(arguments[0] instanceof Name name && name.type == L_TYPE); 1325 } 1326 Name(MemberName function, Object... arguments) { 1327 this(new NamedFunction(function), arguments); 1328 } 1329 Name(NamedFunction function) { 1330 this(-1, function.returnType(), function, EMPTY_ARGS, null); 1331 } 1332 Name(NamedFunction function, Object arg) { 1333 this(-1, function.returnType(), function, new Object[] { arg }, null); 1334 } 1335 Name(NamedFunction function, Object arg0, Object arg1) { 1336 this(-1, function.returnType(), function, new Object[] { arg0, arg1 }, null); 1337 } 1338 Name(NamedFunction function, Object... arguments) { 1339 this(-1, function.returnType(), function, Arrays.copyOf(arguments, arguments.length, Object[].class), null); 1340 } 1341 /** Create a raw parameter of the given type, with an expected index. */ 1342 Name(int index, BasicType type) { 1343 this(index, type, null, null, null); 1344 } 1345 /** Create a raw parameter of the given type. */ 1346 Name(BasicType type) { this(-1, type); } 1347 1348 BasicType type() { return type; } 1349 int index() { return index; } 1350 1351 char typeChar() { 1352 return type.btChar; 1353 } 1354 1355 Name withIndex(int i) { 1356 if (i == this.index) return this; 1357 return new Name(i, type, function, arguments, constraint); 1358 } 1359 1360 Name withConstraint(Object constraint) { 1361 if (constraint == this.constraint) return this; 1362 return new Name(index, type, function, arguments, constraint); 1363 } 1364 1365 Name replaceName(Name oldName, Name newName) { // FIXME: use replaceNames uniformly 1366 if (oldName == newName) return this; 1367 @SuppressWarnings("LocalVariableHidesMemberVariable") 1368 Object[] arguments = this.arguments; 1369 if (arguments == null) return this; 1370 boolean replaced = false; 1371 for (int j = 0; j < arguments.length; j++) { 1372 if (arguments[j] == oldName) { 1373 if (!replaced) { 1374 replaced = true; 1375 arguments = arguments.clone(); 1376 } 1377 arguments[j] = newName; 1378 } 1379 } 1380 if (!replaced) return this; 1381 return new Name(function, arguments); 1382 } 1383 /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i]. 1384 * Limit such replacements to {@code start<=i<end}. Return possibly changed self. 1385 */ 1386 Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) { 1387 if (start >= end) return this; 1388 @SuppressWarnings("LocalVariableHidesMemberVariable") 1389 Object[] arguments = this.arguments; 1390 boolean replaced = false; 1391 eachArg: 1392 for (int j = 0; j < arguments.length; j++) { 1393 if (arguments[j] instanceof Name n) { 1394 int check = n.index; 1395 // harmless check to see if the thing is already in newNames: 1396 if (check >= 0 && check < newNames.length && n == newNames[check]) 1397 continue eachArg; 1398 // n might not have the correct index: n != oldNames[n.index]. 1399 for (int i = start; i < end; i++) { 1400 if (n == oldNames[i]) { 1401 if (n == newNames[i]) 1402 continue eachArg; 1403 if (!replaced) { 1404 replaced = true; 1405 arguments = arguments.clone(); 1406 } 1407 arguments[j] = newNames[i]; 1408 continue eachArg; 1409 } 1410 } 1411 } 1412 } 1413 if (!replaced) return this; 1414 return new Name(function, arguments); 1415 } 1416 void internArguments() { 1417 @SuppressWarnings("LocalVariableHidesMemberVariable") 1418 Object[] arguments = this.arguments; 1419 for (int j = 0; j < arguments.length; j++) { 1420 if (arguments[j] instanceof Name n) { 1421 if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT) 1422 arguments[j] = internArgument(n); 1423 } 1424 } 1425 } 1426 boolean isParam() { 1427 return function == null; 1428 } 1429 1430 boolean refersTo(Class<?> declaringClass, String methodName) { 1431 return function != null && 1432 function.member() != null && function.member().refersTo(declaringClass, methodName); 1433 } 1434 1435 /** 1436 * Check if MemberName is a call to MethodHandle.invokeBasic. 1437 */ 1438 boolean isInvokeBasic() { 1439 if (function == null) 1440 return false; 1441 if (arguments.length < 1) 1442 return false; // must have MH argument 1443 MemberName member = function.member(); 1444 return member != null && member.refersTo(MethodHandle.class, "invokeBasic") && 1445 !member.isPublic() && !member.isStatic(); 1446 } 1447 1448 /** 1449 * Check if MemberName is a call to MethodHandle.linkToStatic, etc. 1450 */ 1451 boolean isLinkerMethodInvoke() { 1452 if (function == null) 1453 return false; 1454 if (arguments.length < 1) 1455 return false; // must have MH argument 1456 MemberName member = function.member(); 1457 return member != null && 1458 member.getDeclaringClass() == MethodHandle.class && 1459 !member.isPublic() && member.isStatic() && 1460 member.getName().startsWith("linkTo"); 1461 } 1462 1463 public String toString() { 1464 return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar(); 1465 } 1466 public String debugString() { 1467 String s = paramString(); 1468 return (function == null) ? s : s + "=" + exprString(); 1469 } 1470 public String paramString() { 1471 String s = toString(); 1472 Object c = constraint; 1473 if (c == null) 1474 return s; 1475 if (c instanceof Class<?> cl) c = cl.getSimpleName(); 1476 return s + "/" + c; 1477 } 1478 public String exprString() { 1479 if (function == null) return toString(); 1480 StringBuilder buf = new StringBuilder(function.toString()); 1481 buf.append("("); 1482 String cma = ""; 1483 for (Object a : arguments) { 1484 buf.append(cma); cma = ","; 1485 if (a instanceof Name || a instanceof Integer) 1486 buf.append(a); 1487 else 1488 buf.append("(").append(a).append(")"); 1489 } 1490 buf.append(")"); 1491 return buf.toString(); 1492 } 1493 1494 private boolean typesMatch(NamedFunction function, Object ... arguments) { 1495 if (arguments == null) { 1496 assert(function == null); 1497 return true; 1498 } 1499 assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString(); 1500 for (int i = 0; i < arguments.length; i++) { 1501 assert (typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString(); 1502 } 1503 return true; 1504 } 1505 1506 private static boolean typesMatch(BasicType parameterType, Object object) { 1507 if (object instanceof Name name) { 1508 return name.type == parameterType; 1509 } 1510 switch (parameterType) { 1511 case I_TYPE: return object instanceof Integer; 1512 case J_TYPE: return object instanceof Long; 1513 case F_TYPE: return object instanceof Float; 1514 case D_TYPE: return object instanceof Double; 1515 } 1516 assert(parameterType == L_TYPE); 1517 return true; 1518 } 1519 1520 /** Return the index of the last occurrence of n in the argument array. 1521 * Return -1 if the name is not used. 1522 */ 1523 int lastUseIndex(Name n) { 1524 Object[] arguments = this.arguments; 1525 if (arguments == null) return -1; 1526 for (int i = arguments.length; --i >= 0; ) { 1527 if (arguments[i] == n) return i; 1528 } 1529 return -1; 1530 } 1531 1532 public boolean equals(Name that) { 1533 if (this == that) return true; 1534 if (isParam()) 1535 // each parameter is a unique atom 1536 return false; // this != that 1537 return 1538 //this.index == that.index && 1539 this.type == that.type && 1540 this.function.equals(that.function) && 1541 Arrays.equals(this.arguments, that.arguments); 1542 } 1543 @Override 1544 public boolean equals(Object x) { 1545 return x instanceof Name n && equals(n); 1546 } 1547 @Override 1548 public int hashCode() { 1549 if (isParam()) 1550 return index | (type.ordinal() << 8); 1551 return function.hashCode() ^ Arrays.hashCode(arguments); 1552 } 1553 } 1554 1555 /** Return the index of the last name which contains n as an argument. 1556 * Return -1 if the name is not used. Return names.length if it is the return value. 1557 */ 1558 int lastUseIndex(Name n) { 1559 int ni = n.index, nmax = names.length; 1560 assert(names[ni] == n); 1561 if (result == ni) return nmax; // live all the way beyond the end 1562 for (int i = nmax; --i > ni; ) { 1563 if (names[i].lastUseIndex(n) >= 0) 1564 return i; 1565 } 1566 return -1; 1567 } 1568 1569 /** Return the number of times n is used as an argument or return value. */ 1570 int useCount(Name n) { 1571 int count = (result == n.index) ? 1 : 0; 1572 int i = Math.max(n.index + 1, arity); 1573 Name[] names = this.names; 1574 while (i < names.length) { 1575 Object[] arguments = names[i++].arguments; 1576 if (arguments != null) { 1577 for (Object argument : arguments) { 1578 if (argument == n) { 1579 count++; 1580 } 1581 } 1582 } 1583 } 1584 return count; 1585 } 1586 1587 static Name argument(int which, BasicType type) { 1588 if (which >= INTERNED_ARGUMENT_LIMIT) 1589 return new Name(which, type); 1590 return INTERNED_ARGUMENTS[type.ordinal()][which]; 1591 } 1592 static Name internArgument(Name n) { 1593 assert(n.isParam()) : "not param: " + n; 1594 assert(n.index < INTERNED_ARGUMENT_LIMIT); 1595 if (n.constraint != null) return n; 1596 return argument(n.index, n.type); 1597 } 1598 static Name[] arguments(int extra, MethodType types) { 1599 int length = types.parameterCount(); 1600 Name[] names = new Name[length + extra]; 1601 for (int i = 0; i < length; i++) 1602 names[i] = argument(i, basicType(types.parameterType(i))); 1603 return names; 1604 } 1605 1606 static Name[] invokeArguments(int extra, MethodType types) { 1607 int length = types.parameterCount(); 1608 Name[] names = new Name[length + extra + 1]; 1609 names[0] = argument(0, L_TYPE); 1610 for (int i = 0; i < length; i++) 1611 names[i + 1] = argument(i + 1, basicType(types.parameterType(i))); 1612 return names; 1613 } 1614 1615 static final int INTERNED_ARGUMENT_LIMIT = 10; 1616 private static final Name[][] INTERNED_ARGUMENTS 1617 = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT]; 1618 static { 1619 for (BasicType type : BasicType.ARG_TYPES) { 1620 int ord = type.ordinal(); 1621 for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) { 1622 INTERNED_ARGUMENTS[ord][i] = new Name(i, type); 1623 } 1624 } 1625 } 1626 1627 private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(); 1628 1629 static LambdaForm identityForm(BasicType type) { 1630 int ord = type.ordinal(); 1631 LambdaForm form = LF_identity[ord]; 1632 if (form != null) { 1633 return form; 1634 } 1635 createIdentityForm(type); 1636 return LF_identity[ord]; 1637 } 1638 1639 static NamedFunction identity(BasicType type) { 1640 int ord = type.ordinal(); 1641 NamedFunction function = NF_identity[ord]; 1642 if (function != null) { 1643 return function; 1644 } 1645 createIdentityForm(type); 1646 return NF_identity[ord]; 1647 } 1648 1649 static LambdaForm constantForm(BasicType type) { 1650 assert type != null && type != V_TYPE : type; 1651 var cached = LF_constant[type.ordinal()]; 1652 if (cached != null) 1653 return cached; 1654 return createConstantForm(type); 1655 } 1656 1657 private static LambdaForm createConstantForm(BasicType type) { 1658 UNSAFE.ensureClassInitialized(BoundMethodHandle.class); // defend access to SimpleMethodHandle 1659 var species = SimpleMethodHandle.BMH_SPECIES.extendWith(type); 1660 var carrier = argument(0, L_TYPE).withConstraint(species); // BMH bound with data 1661 Name[] constNames = new Name[] { carrier, new Name(species.getterFunction(0), carrier) }; 1662 return LF_constant[type.ordinal()] = create(1, constNames, Kind.CONSTANT); 1663 } 1664 1665 private static final @Stable LambdaForm[] LF_identity = new LambdaForm[TYPE_LIMIT]; 1666 private static final @Stable NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT]; 1667 private static final @Stable LambdaForm[] LF_constant = new LambdaForm[ARG_TYPE_LIMIT]; // no void 1668 1669 private static final Object createIdentityFormLock = new Object(); 1670 private static void createIdentityForm(BasicType type) { 1671 // Avoid racy initialization during bootstrap 1672 UNSAFE.ensureClassInitialized(BoundMethodHandle.class); 1673 synchronized (createIdentityFormLock) { 1674 final int ord = type.ordinal(); 1675 LambdaForm idForm = LF_identity[ord]; 1676 if (idForm != null) { 1677 return; 1678 } 1679 char btChar = type.basicTypeChar(); 1680 boolean isVoid = (type == V_TYPE); 1681 Class<?> btClass = type.btClass; 1682 MethodType idType = (isVoid) ? MethodType.methodType(btClass) : MethodType.methodType(btClass, btClass); 1683 1684 // Look up symbolic names. It might not be necessary to have these, 1685 // but if we need to emit direct references to bytecodes, it helps. 1686 MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic); 1687 try { 1688 idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, LM_TRUSTED, NoSuchMethodException.class); 1689 } catch (IllegalAccessException|NoSuchMethodException ex) { 1690 throw newInternalError(ex); 1691 } 1692 1693 NamedFunction idFun; 1694 1695 // Create the LFs and NamedFunctions. Precompiling LFs to byte code is needed to break circular 1696 // bootstrap dependency on this method in case we're interpreting LFs 1697 if (isVoid) { 1698 Name[] idNames = new Name[] { argument(0, L_TYPE) }; 1699 idForm = LambdaForm.create(1, idNames, VOID_RESULT, Kind.IDENTITY); 1700 idForm.compileToBytecode(); 1701 idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm)); 1702 } else { 1703 Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) }; 1704 idForm = LambdaForm.create(2, idNames, 1, Kind.IDENTITY); 1705 idForm.compileToBytecode(); 1706 idFun = new NamedFunction(idMem, MethodHandleImpl.makeIntrinsic(idMem.getInvocationType(), idForm, 1707 MethodHandleImpl.Intrinsic.IDENTITY)); 1708 } 1709 1710 LF_identity[ord] = idForm; 1711 NF_identity[ord] = idFun; 1712 1713 assert(idFun.isIdentity()); 1714 } 1715 } 1716 1717 // Avoid appealing to ValueConversions at bootstrap time: 1718 private static int identity_I(int x) { return x; } 1719 private static long identity_J(long x) { return x; } 1720 private static float identity_F(float x) { return x; } 1721 private static double identity_D(double x) { return x; } 1722 private static Object identity_L(Object x) { return x; } 1723 private static void identity_V() { return; } 1724 /** 1725 * Internal marker for byte-compiled LambdaForms. 1726 */ 1727 /*non-public*/ 1728 @Target(ElementType.METHOD) 1729 @Retention(RetentionPolicy.RUNTIME) 1730 @interface Compiled { 1731 } 1732 1733 private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS; 1734 private static final HashMap<LambdaForm,String> DEBUG_NAMES; 1735 static { 1736 if (debugEnabled()) { 1737 DEBUG_NAME_COUNTERS = new HashMap<>(); 1738 DEBUG_NAMES = new HashMap<>(); 1739 } else { 1740 DEBUG_NAME_COUNTERS = null; 1741 DEBUG_NAMES = null; 1742 } 1743 } 1744 1745 static { 1746 // The Holder class will contain pre-generated forms resolved 1747 // using MemberName.getFactory(). However, that doesn't initialize the 1748 // class, which subtly breaks inlining etc. By forcing 1749 // initialization of the Holder class we avoid these issues. 1750 UNSAFE.ensureClassInitialized(Holder.class); 1751 } 1752 1753 /* Placeholder class for identity and constant forms generated ahead of time */ 1754 final class Holder {} 1755 1756 // The following hack is necessary in order to suppress TRACE_INTERPRETER 1757 // during execution of the static initializes of this class. 1758 // Turning on TRACE_INTERPRETER too early will cause 1759 // stack overflows and other misbehavior during attempts to trace events 1760 // that occur during LambdaForm.<clinit>. 1761 // Therefore, do not move this line higher in this file, and do not remove. 1762 private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER; 1763 }