1 /*
   2  * Copyright (c) 2008, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.access.SharedSecrets;
  29 import jdk.internal.misc.Unsafe;
  30 import jdk.internal.misc.VM;
  31 import jdk.internal.reflect.CallerSensitive;
  32 import jdk.internal.reflect.CallerSensitiveAdapter;
  33 import jdk.internal.reflect.Reflection;
  34 import jdk.internal.util.ClassFileDumper;
  35 import jdk.internal.vm.annotation.ForceInline;
  36 import jdk.internal.vm.annotation.Stable;
  37 import sun.invoke.util.ValueConversions;
  38 import sun.invoke.util.VerifyAccess;
  39 import sun.invoke.util.Wrapper;
  40 
  41 import java.lang.classfile.ClassFile;
  42 import java.lang.classfile.ClassModel;
  43 import java.lang.constant.ClassDesc;
  44 import java.lang.constant.ConstantDescs;
  45 import java.lang.invoke.LambdaForm.BasicType;
  46 import java.lang.invoke.MethodHandleImpl.Intrinsic;
  47 import java.lang.reflect.Constructor;
  48 import java.lang.reflect.Field;
  49 import java.lang.reflect.Member;
  50 import java.lang.reflect.Method;
  51 import java.lang.reflect.Modifier;
  52 import java.nio.ByteOrder;
  53 import java.security.ProtectionDomain;
  54 import java.util.ArrayList;
  55 import java.util.Arrays;
  56 import java.util.BitSet;
  57 import java.util.Comparator;
  58 import java.util.Iterator;
  59 import java.util.List;
  60 import java.util.Objects;
  61 import java.util.Set;
  62 import java.util.concurrent.ConcurrentHashMap;
  63 import java.util.stream.Stream;
  64 
  65 import static java.lang.classfile.ClassFile.*;
  66 import static java.lang.invoke.LambdaForm.BasicType.V_TYPE;
  67 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  68 import static java.lang.invoke.MethodHandleStatics.*;
  69 import static java.lang.invoke.MethodType.methodType;
  70 
  71 /**
  72  * This class consists exclusively of static methods that operate on or return
  73  * method handles. They fall into several categories:
  74  * <ul>
  75  * <li>Lookup methods which help create method handles for methods and fields.
  76  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  77  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  78  * </ul>
  79  * A lookup, combinator, or factory method will fail and throw an
  80  * {@code IllegalArgumentException} if the created method handle's type
  81  * would have <a href="MethodHandle.html#maxarity">too many parameters</a>.
  82  *
  83  * @author John Rose, JSR 292 EG
  84  * @since 1.7
  85  */
  86 public final class MethodHandles {
  87 
  88     private MethodHandles() { }  // do not instantiate
  89 
  90     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  91 
  92     // See IMPL_LOOKUP below.
  93 
  94     //--- Method handle creation from ordinary methods.
  95 
  96     /**
  97      * Returns a {@link Lookup lookup object} with
  98      * full capabilities to emulate all supported bytecode behaviors of the caller.
  99      * These capabilities include {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access} to the caller.
 100      * Factory methods on the lookup object can create
 101      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
 102      * for any member that the caller has access to via bytecodes,
 103      * including protected and private fields and methods.
 104      * This lookup object is created by the original lookup class
 105      * and has the {@link Lookup#ORIGINAL ORIGINAL} bit set.
 106      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
 107      * Do not store it in place where untrusted code can access it.
 108      * <p>
 109      * This method is caller sensitive, which means that it may return different
 110      * values to different callers.
 111      * In cases where {@code MethodHandles.lookup} is called from a context where
 112      * there is no caller frame on the stack (e.g. when called directly
 113      * from a JNI attached thread), {@code IllegalCallerException} is thrown.
 114      * To obtain a {@link Lookup lookup object} in such a context, use an auxiliary class that will
 115      * implicitly be identified as the caller, or use {@link MethodHandles#publicLookup()}
 116      * to obtain a low-privileged lookup instead.
 117      * @return a lookup object for the caller of this method, with
 118      * {@linkplain Lookup#ORIGINAL original} and
 119      * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access}.
 120      * @throws IllegalCallerException if there is no caller frame on the stack.
 121      */
 122     @CallerSensitive
 123     @ForceInline // to ensure Reflection.getCallerClass optimization
 124     public static Lookup lookup() {
 125         final Class<?> c = Reflection.getCallerClass();
 126         if (c == null) {
 127             throw new IllegalCallerException("no caller frame");
 128         }
 129         return new Lookup(c);
 130     }
 131 
 132     /**
 133      * This lookup method is the alternate implementation of
 134      * the lookup method with a leading caller class argument which is
 135      * non-caller-sensitive.  This method is only invoked by reflection
 136      * and method handle.
 137      */
 138     @CallerSensitiveAdapter
 139     private static Lookup lookup(Class<?> caller) {
 140         if (caller.getClassLoader() == null) {
 141             throw newInternalError("calling lookup() reflectively is not supported: "+caller);
 142         }
 143         return new Lookup(caller);
 144     }
 145 
 146     /**
 147      * Returns a {@link Lookup lookup object} which is trusted minimally.
 148      * The lookup has the {@code UNCONDITIONAL} mode.
 149      * It can only be used to create method handles to public members of
 150      * public classes in packages that are exported unconditionally.
 151      * <p>
 152      * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class}
 153      * of this lookup object will be {@link java.lang.Object}.
 154      *
 155      * @apiNote The use of Object is conventional, and because the lookup modes are
 156      * limited, there is no special access provided to the internals of Object, its package
 157      * or its module.  This public lookup object or other lookup object with
 158      * {@code UNCONDITIONAL} mode assumes readability. Consequently, the lookup class
 159      * is not used to determine the lookup context.
 160      *
 161      * <p style="font-size:smaller;">
 162      * <em>Discussion:</em>
 163      * The lookup class can be changed to any other class {@code C} using an expression of the form
 164      * {@link Lookup#in publicLookup().in(C.class)}.
 165      * Also, it cannot access
 166      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 167      * @return a lookup object which is trusted minimally
 168      */
 169     public static Lookup publicLookup() {
 170         return Lookup.PUBLIC_LOOKUP;
 171     }
 172 
 173     /**
 174      * Returns a {@link Lookup lookup} object on a target class to emulate all supported
 175      * bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 176      * The returned lookup object can provide access to classes in modules and packages,
 177      * and members of those classes, outside the normal rules of Java access control,
 178      * instead conforming to the more permissive rules for modular <em>deep reflection</em>.
 179      * <p>
 180      * A caller, specified as a {@code Lookup} object, in module {@code M1} is
 181      * allowed to do deep reflection on module {@code M2} and package of the target class
 182      * if and only if all of the following conditions are {@code true}:
 183      * <ul>
 184      * <li>The caller lookup object must have {@linkplain Lookup#hasFullPrivilegeAccess()
 185      * full privilege access}.  Specifically:
 186      *   <ul>
 187      *     <li>The caller lookup object must have the {@link Lookup#MODULE MODULE} lookup mode.
 188      *         (This is because otherwise there would be no way to ensure the original lookup
 189      *         creator was a member of any particular module, and so any subsequent checks
 190      *         for readability and qualified exports would become ineffective.)
 191      *     <li>The caller lookup object must have {@link Lookup#PRIVATE PRIVATE} access.
 192      *         (This is because an application intending to share intra-module access
 193      *         using {@link Lookup#MODULE MODULE} alone will inadvertently also share
 194      *         deep reflection to its own module.)
 195      *   </ul>
 196      * <li>The target class must be a proper class, not a primitive or array class.
 197      * (Thus, {@code M2} is well-defined.)
 198      * <li>If the caller module {@code M1} differs from
 199      * the target module {@code M2} then both of the following must be true:
 200      *   <ul>
 201      *     <li>{@code M1} {@link Module#canRead reads} {@code M2}.</li>
 202      *     <li>{@code M2} {@link Module#isOpen(String,Module) opens} the package
 203      *         containing the target class to at least {@code M1}.</li>
 204      *   </ul>
 205      * </ul>
 206      * <p>
 207      * If any of the above checks is violated, this method fails with an
 208      * exception.
 209      * <p>
 210      * Otherwise, if {@code M1} and {@code M2} are the same module, this method
 211      * returns a {@code Lookup} on {@code targetClass} with
 212      * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access}
 213      * with {@code null} previous lookup class.
 214      * <p>
 215      * Otherwise, {@code M1} and {@code M2} are two different modules.  This method
 216      * returns a {@code Lookup} on {@code targetClass} that records
 217      * the lookup class of the caller as the new previous lookup class with
 218      * {@code PRIVATE} access but no {@code MODULE} access.
 219      * <p>
 220      * The resulting {@code Lookup} object has no {@code ORIGINAL} access.
 221      *
 222      * @apiNote The {@code Lookup} object returned by this method is allowed to
 223      * {@linkplain Lookup#defineClass(byte[]) define classes} in the runtime package
 224      * of {@code targetClass}. Extreme caution should be taken when opening a package
 225      * to another module as such defined classes have the same full privilege
 226      * access as other members in {@code targetClass}'s module.
 227      *
 228      * @param targetClass the target class
 229      * @param caller the caller lookup object
 230      * @return a lookup object for the target class, with private access
 231      * @throws IllegalArgumentException if {@code targetClass} is a primitive type or void or array class
 232      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 233      * @throws IllegalAccessException if any of the other access checks specified above fails
 234      * @since 9
 235      * @see Lookup#dropLookupMode
 236      * @see <a href="MethodHandles.Lookup.html#cross-module-lookup">Cross-module lookups</a>
 237      */
 238     public static Lookup privateLookupIn(Class<?> targetClass, Lookup caller) throws IllegalAccessException {
 239         if (caller.allowedModes == Lookup.TRUSTED) {
 240             return new Lookup(targetClass);
 241         }
 242 
 243         if (targetClass.isPrimitive())
 244             throw new IllegalArgumentException(targetClass + " is a primitive class");
 245         if (targetClass.isArray())
 246             throw new IllegalArgumentException(targetClass + " is an array class");
 247         // Ensure that we can reason accurately about private and module access.
 248         int requireAccess = Lookup.PRIVATE|Lookup.MODULE;
 249         if ((caller.lookupModes() & requireAccess) != requireAccess)
 250             throw new IllegalAccessException("caller does not have PRIVATE and MODULE lookup mode");
 251 
 252         // previous lookup class is never set if it has MODULE access
 253         assert caller.previousLookupClass() == null;
 254 
 255         Class<?> callerClass = caller.lookupClass();
 256         Module callerModule = callerClass.getModule();  // M1
 257         Module targetModule = targetClass.getModule();  // M2
 258         Class<?> newPreviousClass = null;
 259         int newModes = Lookup.FULL_POWER_MODES & ~Lookup.ORIGINAL;
 260 
 261         if (targetModule != callerModule) {
 262             if (!callerModule.canRead(targetModule))
 263                 throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 264             if (targetModule.isNamed()) {
 265                 String pn = targetClass.getPackageName();
 266                 assert !pn.isEmpty() : "unnamed package cannot be in named module";
 267                 if (!targetModule.isOpen(pn, callerModule))
 268                     throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 269             }
 270 
 271             // M2 != M1, set previous lookup class to M1 and drop MODULE access
 272             newPreviousClass = callerClass;
 273             newModes &= ~Lookup.MODULE;
 274         }
 275         return Lookup.newLookup(targetClass, newPreviousClass, newModes);
 276     }
 277 
 278     /**
 279      * Returns the <em>class data</em> associated with the lookup class
 280      * of the given {@code caller} lookup object, or {@code null}.
 281      *
 282      * <p> A hidden class with class data can be created by calling
 283      * {@link Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...)
 284      * Lookup::defineHiddenClassWithClassData}.
 285      * This method will cause the static class initializer of the lookup
 286      * class of the given {@code caller} lookup object be executed if
 287      * it has not been initialized.
 288      *
 289      * <p> A hidden class created by {@link Lookup#defineHiddenClass(byte[], boolean, Lookup.ClassOption...)
 290      * Lookup::defineHiddenClass} and non-hidden classes have no class data.
 291      * {@code null} is returned if this method is called on the lookup object
 292      * on these classes.
 293      *
 294      * <p> The {@linkplain Lookup#lookupModes() lookup modes} for this lookup
 295      * must have {@linkplain Lookup#ORIGINAL original access}
 296      * in order to retrieve the class data.
 297      *
 298      * @apiNote
 299      * This method can be called as a bootstrap method for a dynamically computed
 300      * constant.  A framework can create a hidden class with class data, for
 301      * example that can be {@code Class} or {@code MethodHandle} object.
 302      * The class data is accessible only to the lookup object
 303      * created by the original caller but inaccessible to other members
 304      * in the same nest.  If a framework passes security sensitive objects
 305      * to a hidden class via class data, it is recommended to load the value
 306      * of class data as a dynamically computed constant instead of storing
 307      * the class data in private static field(s) which are accessible to
 308      * other nestmates.
 309      *
 310      * @param <T> the type to cast the class data object to
 311      * @param caller the lookup context describing the class performing the
 312      * operation (normally stacked by the JVM)
 313      * @param name must be {@link ConstantDescs#DEFAULT_NAME}
 314      *             ({@code "_"})
 315      * @param type the type of the class data
 316      * @return the value of the class data if present in the lookup class;
 317      * otherwise {@code null}
 318      * @throws IllegalArgumentException if name is not {@code "_"}
 319      * @throws IllegalAccessException if the lookup context does not have
 320      * {@linkplain Lookup#ORIGINAL original} access
 321      * @throws ClassCastException if the class data cannot be converted to
 322      * the given {@code type}
 323      * @throws NullPointerException if {@code caller} or {@code type} argument
 324      * is {@code null}
 325      * @see Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...)
 326      * @see MethodHandles#classDataAt(Lookup, String, Class, int)
 327      * @since 16
 328      * @jvms 5.5 Initialization
 329      */
 330      public static <T> T classData(Lookup caller, String name, Class<T> type) throws IllegalAccessException {
 331          Objects.requireNonNull(caller);
 332          Objects.requireNonNull(type);
 333          if (!ConstantDescs.DEFAULT_NAME.equals(name)) {
 334              throw new IllegalArgumentException("name must be \"_\": " + name);
 335          }
 336 
 337          if ((caller.lookupModes() & Lookup.ORIGINAL) != Lookup.ORIGINAL)  {
 338              throw new IllegalAccessException(caller + " does not have ORIGINAL access");
 339          }
 340 
 341          Object classdata = classData(caller.lookupClass());
 342          if (classdata == null) return null;
 343 
 344          try {
 345              return BootstrapMethodInvoker.widenAndCast(classdata, type);
 346          } catch (RuntimeException|Error e) {
 347              throw e; // let CCE and other runtime exceptions through
 348          } catch (Throwable e) {
 349              throw new InternalError(e);
 350          }
 351     }
 352 
 353     /*
 354      * Returns the class data set by the VM in the Class::classData field.
 355      *
 356      * This is also invoked by LambdaForms as it cannot use condy via
 357      * MethodHandles::classData due to bootstrapping issue.
 358      */
 359     static Object classData(Class<?> c) {
 360         UNSAFE.ensureClassInitialized(c);
 361         return SharedSecrets.getJavaLangAccess().classData(c);
 362     }
 363 
 364     /**
 365      * Returns the element at the specified index in the
 366      * {@linkplain #classData(Lookup, String, Class) class data},
 367      * if the class data associated with the lookup class
 368      * of the given {@code caller} lookup object is a {@code List}.
 369      * If the class data is not present in this lookup class, this method
 370      * returns {@code null}.
 371      *
 372      * <p> A hidden class with class data can be created by calling
 373      * {@link Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...)
 374      * Lookup::defineHiddenClassWithClassData}.
 375      * This method will cause the static class initializer of the lookup
 376      * class of the given {@code caller} lookup object be executed if
 377      * it has not been initialized.
 378      *
 379      * <p> A hidden class created by {@link Lookup#defineHiddenClass(byte[], boolean, Lookup.ClassOption...)
 380      * Lookup::defineHiddenClass} and non-hidden classes have no class data.
 381      * {@code null} is returned if this method is called on the lookup object
 382      * on these classes.
 383      *
 384      * <p> The {@linkplain Lookup#lookupModes() lookup modes} for this lookup
 385      * must have {@linkplain Lookup#ORIGINAL original access}
 386      * in order to retrieve the class data.
 387      *
 388      * @apiNote
 389      * This method can be called as a bootstrap method for a dynamically computed
 390      * constant.  A framework can create a hidden class with class data, for
 391      * example that can be {@code List.of(o1, o2, o3....)} containing more than
 392      * one object and use this method to load one element at a specific index.
 393      * The class data is accessible only to the lookup object
 394      * created by the original caller but inaccessible to other members
 395      * in the same nest.  If a framework passes security sensitive objects
 396      * to a hidden class via class data, it is recommended to load the value
 397      * of class data as a dynamically computed constant instead of storing
 398      * the class data in private static field(s) which are accessible to other
 399      * nestmates.
 400      *
 401      * @param <T> the type to cast the result object to
 402      * @param caller the lookup context describing the class performing the
 403      * operation (normally stacked by the JVM)
 404      * @param name must be {@link java.lang.constant.ConstantDescs#DEFAULT_NAME}
 405      *             ({@code "_"})
 406      * @param type the type of the element at the given index in the class data
 407      * @param index index of the element in the class data
 408      * @return the element at the given index in the class data
 409      * if the class data is present; otherwise {@code null}
 410      * @throws IllegalArgumentException if name is not {@code "_"}
 411      * @throws IllegalAccessException if the lookup context does not have
 412      * {@linkplain Lookup#ORIGINAL original} access
 413      * @throws ClassCastException if the class data cannot be converted to {@code List}
 414      * or the element at the specified index cannot be converted to the given type
 415      * @throws IndexOutOfBoundsException if the index is out of range
 416      * @throws NullPointerException if {@code caller} or {@code type} argument is
 417      * {@code null}; or if unboxing operation fails because
 418      * the element at the given index is {@code null}
 419      *
 420      * @since 16
 421      * @see #classData(Lookup, String, Class)
 422      * @see Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...)
 423      */
 424     public static <T> T classDataAt(Lookup caller, String name, Class<T> type, int index)
 425             throws IllegalAccessException
 426     {
 427         @SuppressWarnings("unchecked")
 428         List<Object> classdata = (List<Object>)classData(caller, name, List.class);
 429         if (classdata == null) return null;
 430 
 431         try {
 432             Object element = classdata.get(index);
 433             return BootstrapMethodInvoker.widenAndCast(element, type);
 434         } catch (RuntimeException|Error e) {
 435             throw e; // let specified exceptions and other runtime exceptions/errors through
 436         } catch (Throwable e) {
 437             throw new InternalError(e);
 438         }
 439     }
 440 
 441     /**
 442      * Performs an unchecked "crack" of a
 443      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 444      * The result is as if the user had obtained a lookup object capable enough
 445      * to crack the target method handle, called
 446      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 447      * on the target to obtain its symbolic reference, and then called
 448      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 449      * to resolve the symbolic reference to a member.
 450      * @param <T> the desired type of the result, either {@link Member} or a subtype
 451      * @param expected a class object representing the desired result type {@code T}
 452      * @param target a direct method handle to crack into symbolic reference components
 453      * @return a reference to the method, constructor, or field object
 454      * @throws    NullPointerException if either argument is {@code null}
 455      * @throws    IllegalArgumentException if the target is not a direct method handle
 456      * @throws    ClassCastException if the member is not of the expected type
 457      * @since 1.8
 458      */
 459     public static <T extends Member> T reflectAs(Class<T> expected, MethodHandle target) {
 460         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 461         return lookup.revealDirect(target).reflectAs(expected, lookup);
 462     }
 463 
 464     /**
 465      * A <em>lookup object</em> is a factory for creating method handles,
 466      * when the creation requires access checking.
 467      * Method handles do not perform
 468      * access checks when they are called, but rather when they are created.
 469      * Therefore, method handle access
 470      * restrictions must be enforced when a method handle is created.
 471      * The caller class against which those restrictions are enforced
 472      * is known as the {@linkplain #lookupClass() lookup class}.
 473      * <p>
 474      * A lookup class which needs to create method handles will call
 475      * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself.
 476      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 477      * determined, and securely stored in the {@code Lookup} object.
 478      * The lookup class (or its delegates) may then use factory methods
 479      * on the {@code Lookup} object to create method handles for access-checked members.
 480      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 481      * even private ones.
 482      *
 483      * <h2><a id="lookups"></a>Lookup Factory Methods</h2>
 484      * The factory methods on a {@code Lookup} object correspond to all major
 485      * use cases for methods, constructors, and fields.
 486      * Each method handle created by a factory method is the functional
 487      * equivalent of a particular <em>bytecode behavior</em>.
 488      * (Bytecode behaviors are described in section {@jvms 5.4.3.5} of
 489      * the Java Virtual Machine Specification.)
 490      * Here is a summary of the correspondence between these factory methods and
 491      * the behavior of the resulting method handles:
 492      * <table class="striped">
 493      * <caption style="display:none">lookup method behaviors</caption>
 494      * <thead>
 495      * <tr>
 496      *     <th scope="col"><a id="equiv"></a>lookup expression</th>
 497      *     <th scope="col">member</th>
 498      *     <th scope="col">bytecode behavior</th>
 499      * </tr>
 500      * </thead>
 501      * <tbody>
 502      * <tr>
 503      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th>
 504      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 505      * </tr>
 506      * <tr>
 507      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th>
 508      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (FT) C.f;}</td>
 509      * </tr>
 510      * <tr>
 511      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th>
 512      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 513      * </tr>
 514      * <tr>
 515      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th>
 516      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 517      * </tr>
 518      * <tr>
 519      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th>
 520      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 521      * </tr>
 522      * <tr>
 523      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th>
 524      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 525      * </tr>
 526      * <tr>
 527      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th>
 528      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 529      * </tr>
 530      * <tr>
 531      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th>
 532      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 533      * </tr>
 534      * <tr>
 535      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th>
 536      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 537      * </tr>
 538      * <tr>
 539      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th>
 540      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 541      * </tr>
 542      * <tr>
 543      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 544      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 545      * </tr>
 546      * <tr>
 547      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th>
 548      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 549      * </tr>
 550      * <tr>
 551      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSpecial lookup.unreflectSpecial(aMethod,this.class)}</th>
 552      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 553      * </tr>
 554      * <tr>
 555      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th>
 556      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 557      * </tr>
 558      * </tbody>
 559      * </table>
 560      *
 561      * Here, the type {@code C} is the class or interface being searched for a member,
 562      * documented as a parameter named {@code refc} in the lookup methods.
 563      * The method type {@code MT} is composed from the return type {@code T}
 564      * and the sequence of argument types {@code A*}.
 565      * The constructor also has a sequence of argument types {@code A*} and
 566      * is deemed to return the newly-created object of type {@code C}.
 567      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 568      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 569      * if it is present, it is always the leading argument to the method handle invocation.
 570      * (In the case of some {@code protected} members, {@code this} may be
 571      * restricted in type to the lookup class; see below.)
 572      * The name {@code arg} stands for all the other method handle arguments.
 573      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 574      * stands for a null reference if the accessed method or field is static,
 575      * and {@code this} otherwise.
 576      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 577      * for reflective objects corresponding to the given members declared in type {@code C}.
 578      * <p>
 579      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 580      * as if by {@code ldc CONSTANT_Class}.
 581      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 582      * <p>
 583      * In cases where the given member is of variable arity (i.e., a method or constructor)
 584      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 585      * In all other cases, the returned method handle will be of fixed arity.
 586      * <p style="font-size:smaller;">
 587      * <em>Discussion:</em>
 588      * The equivalence between looked-up method handles and underlying
 589      * class members and bytecode behaviors
 590      * can break down in a few ways:
 591      * <ul style="font-size:smaller;">
 592      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 593      * the lookup can still succeed, even when there is no equivalent
 594      * Java expression or bytecoded constant.
 595      * <li>Likewise, if {@code T} or {@code MT}
 596      * is not symbolically accessible from the lookup class's loader,
 597      * the lookup can still succeed.
 598      * For example, lookups for {@code MethodHandle.invokeExact} and
 599      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 600      * <li>If the looked-up method has a
 601      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 602      * the method handle creation may fail with an
 603      * {@code IllegalArgumentException}, due to the method handle type having
 604      * <a href="MethodHandle.html#maxarity">too many parameters.</a>
 605      * </ul>
 606      *
 607      * <h2><a id="access"></a>Access checking</h2>
 608      * Access checks are applied in the factory methods of {@code Lookup},
 609      * when a method handle is created.
 610      * This is a key difference from the Core Reflection API, since
 611      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 612      * performs access checking against every caller, on every call.
 613      * <p>
 614      * All access checks start from a {@code Lookup} object, which
 615      * compares its recorded lookup class against all requests to
 616      * create method handles.
 617      * A single {@code Lookup} object can be used to create any number
 618      * of access-checked method handles, all checked against a single
 619      * lookup class.
 620      * <p>
 621      * A {@code Lookup} object can be shared with other trusted code,
 622      * such as a metaobject protocol.
 623      * A shared {@code Lookup} object delegates the capability
 624      * to create method handles on private members of the lookup class.
 625      * Even if privileged code uses the {@code Lookup} object,
 626      * the access checking is confined to the privileges of the
 627      * original lookup class.
 628      * <p>
 629      * A lookup can fail, because
 630      * the containing class is not accessible to the lookup class, or
 631      * because the desired class member is missing, or because the
 632      * desired class member is not accessible to the lookup class, or
 633      * because the lookup object is not trusted enough to access the member.
 634      * In the case of a field setter function on a {@code final} field,
 635      * finality enforcement is treated as a kind of access control,
 636      * and the lookup will fail, except in special cases of
 637      * {@link Lookup#unreflectSetter Lookup.unreflectSetter}.
 638      * In any of these cases, a {@code ReflectiveOperationException} will be
 639      * thrown from the attempted lookup.  The exact class will be one of
 640      * the following:
 641      * <ul>
 642      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 643      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 644      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 645      * </ul>
 646      * <p>
 647      * In general, the conditions under which a method handle may be
 648      * looked up for a method {@code M} are no more restrictive than the conditions
 649      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 650      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 651      * a method handle lookup will generally raise a corresponding
 652      * checked exception, such as {@code NoSuchMethodException}.
 653      * And the effect of invoking the method handle resulting from the lookup
 654      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 655      * to executing the compiled, verified, and resolved call to {@code M}.
 656      * The same point is true of fields and constructors.
 657      * <p style="font-size:smaller;">
 658      * <em>Discussion:</em>
 659      * Access checks only apply to named and reflected methods,
 660      * constructors, and fields.
 661      * Other method handle creation methods, such as
 662      * {@link MethodHandle#asType MethodHandle.asType},
 663      * do not require any access checks, and are used
 664      * independently of any {@code Lookup} object.
 665      * <p>
 666      * If the desired member is {@code protected}, the usual JVM rules apply,
 667      * including the requirement that the lookup class must either be in the
 668      * same package as the desired member, or must inherit that member.
 669      * (See the Java Virtual Machine Specification, sections {@jvms
 670      * 4.9.2}, {@jvms 5.4.3.5}, and {@jvms 6.4}.)
 671      * In addition, if the desired member is a non-static field or method
 672      * in a different package, the resulting method handle may only be applied
 673      * to objects of the lookup class or one of its subclasses.
 674      * This requirement is enforced by narrowing the type of the leading
 675      * {@code this} parameter from {@code C}
 676      * (which will necessarily be a superclass of the lookup class)
 677      * to the lookup class itself.
 678      * <p>
 679      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 680      * that the receiver argument must match both the resolved method <em>and</em>
 681      * the current class.  Again, this requirement is enforced by narrowing the
 682      * type of the leading parameter to the resulting method handle.
 683      * (See the Java Virtual Machine Specification, section {@jvms 4.10.1.9}.)
 684      * <p>
 685      * The JVM represents constructors and static initializer blocks as internal methods
 686      * with special names ({@value ConstantDescs#INIT_NAME} and {@value
 687      * ConstantDescs#CLASS_INIT_NAME}).
 688      * The internal syntax of invocation instructions allows them to refer to such internal
 689      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 690      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 691      * <p>
 692      * If the relationship between nested types is expressed directly through the
 693      * {@code NestHost} and {@code NestMembers} attributes
 694      * (see the Java Virtual Machine Specification, sections {@jvms
 695      * 4.7.28} and {@jvms 4.7.29}),
 696      * then the associated {@code Lookup} object provides direct access to
 697      * the lookup class and all of its nestmates
 698      * (see {@link java.lang.Class#getNestHost Class.getNestHost}).
 699      * Otherwise, access between nested classes is obtained by the Java compiler creating
 700      * a wrapper method to access a private method of another class in the same nest.
 701      * For example, a nested class {@code C.D}
 702      * can access private members within other related classes such as
 703      * {@code C}, {@code C.D.E}, or {@code C.B},
 704      * but the Java compiler may need to generate wrapper methods in
 705      * those related classes.  In such cases, a {@code Lookup} object on
 706      * {@code C.E} would be unable to access those private members.
 707      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 708      * which can transform a lookup on {@code C.E} into one on any of those other
 709      * classes, without special elevation of privilege.
 710      * <p>
 711      * The accesses permitted to a given lookup object may be limited,
 712      * according to its set of {@link #lookupModes lookupModes},
 713      * to a subset of members normally accessible to the lookup class.
 714      * For example, the {@link MethodHandles#publicLookup publicLookup}
 715      * method produces a lookup object which is only allowed to access
 716      * public members in public classes of exported packages.
 717      * The caller sensitive method {@link MethodHandles#lookup lookup}
 718      * produces a lookup object with full capabilities relative to
 719      * its caller class, to emulate all supported bytecode behaviors.
 720      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 721      * with fewer access modes than the original lookup object.
 722      *
 723      * <p style="font-size:smaller;">
 724      * <a id="privacc"></a>
 725      * <em>Discussion of private and module access:</em>
 726      * We say that a lookup has <em>private access</em>
 727      * if its {@linkplain #lookupModes lookup modes}
 728      * include the possibility of accessing {@code private} members
 729      * (which includes the private members of nestmates).
 730      * As documented in the relevant methods elsewhere,
 731      * only lookups with private access possess the following capabilities:
 732      * <ul style="font-size:smaller;">
 733      * <li>access private fields, methods, and constructors of the lookup class and its nestmates
 734      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 735      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 736      *     within the same package member
 737      * </ul>
 738      * <p style="font-size:smaller;">
 739      * Similarly, a lookup with module access ensures that the original lookup creator was
 740      * a member in the same module as the lookup class.
 741      * <p style="font-size:smaller;">
 742      * Private and module access are independently determined modes; a lookup may have
 743      * either or both or neither.  A lookup which possesses both access modes is said to
 744      * possess {@linkplain #hasFullPrivilegeAccess() full privilege access}.
 745      * <p style="font-size:smaller;">
 746      * A lookup with <em>original access</em> ensures that this lookup is created by
 747      * the original lookup class and the bootstrap method invoked by the VM.
 748      * Such a lookup with original access also has private and module access
 749      * which has the following additional capability:
 750      * <ul style="font-size:smaller;">
 751      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 752      *     such as {@code Class.forName}
 753      * <li>obtain the {@linkplain MethodHandles#classData(Lookup, String, Class)
 754      * class data} associated with the lookup class</li>
 755      * </ul>
 756      * <p style="font-size:smaller;">
 757      * Each of these permissions is a consequence of the fact that a lookup object
 758      * with private access can be securely traced back to an originating class,
 759      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 760      * can be reliably determined and emulated by method handles.
 761      *
 762      * <h2><a id="cross-module-lookup"></a>Cross-module lookups</h2>
 763      * When a lookup class in one module {@code M1} accesses a class in another module
 764      * {@code M2}, extra access checking is performed beyond the access mode bits.
 765      * A {@code Lookup} with {@link #PUBLIC} mode and a lookup class in {@code M1}
 766      * can access public types in {@code M2} when {@code M2} is readable to {@code M1}
 767      * and when the type is in a package of {@code M2} that is exported to
 768      * at least {@code M1}.
 769      * <p>
 770      * A {@code Lookup} on {@code C} can also <em>teleport</em> to a target class
 771      * via {@link #in(Class) Lookup.in} and {@link MethodHandles#privateLookupIn(Class, Lookup)
 772      * MethodHandles.privateLookupIn} methods.
 773      * Teleporting across modules will always record the original lookup class as
 774      * the <em>{@linkplain #previousLookupClass() previous lookup class}</em>
 775      * and drops {@link Lookup#MODULE MODULE} access.
 776      * If the target class is in the same module as the lookup class {@code C},
 777      * then the target class becomes the new lookup class
 778      * and there is no change to the previous lookup class.
 779      * If the target class is in a different module from {@code M1} ({@code C}'s module),
 780      * {@code C} becomes the new previous lookup class
 781      * and the target class becomes the new lookup class.
 782      * In that case, if there was already a previous lookup class in {@code M0},
 783      * and it differs from {@code M1} and {@code M2}, then the resulting lookup
 784      * drops all privileges.
 785      * For example,
 786      * {@snippet lang="java" :
 787      * Lookup lookup = MethodHandles.lookup();   // in class C
 788      * Lookup lookup2 = lookup.in(D.class);
 789      * MethodHandle mh = lookup2.findStatic(E.class, "m", MT);
 790      * }
 791      * <p>
 792      * The {@link #lookup()} factory method produces a {@code Lookup} object
 793      * with {@code null} previous lookup class.
 794      * {@link Lookup#in lookup.in(D.class)} transforms the {@code lookup} on class {@code C}
 795      * to class {@code D} without elevation of privileges.
 796      * If {@code C} and {@code D} are in the same module,
 797      * {@code lookup2} records {@code D} as the new lookup class and keeps the
 798      * same previous lookup class as the original {@code lookup}, or
 799      * {@code null} if not present.
 800      * <p>
 801      * When a {@code Lookup} teleports from a class
 802      * in one nest to another nest, {@code PRIVATE} access is dropped.
 803      * When a {@code Lookup} teleports from a class in one package to
 804      * another package, {@code PACKAGE} access is dropped.
 805      * When a {@code Lookup} teleports from a class in one module to another module,
 806      * {@code MODULE} access is dropped.
 807      * Teleporting across modules drops the ability to access non-exported classes
 808      * in both the module of the new lookup class and the module of the old lookup class
 809      * and the resulting {@code Lookup} remains only {@code PUBLIC} access.
 810      * A {@code Lookup} can teleport back and forth to a class in the module of
 811      * the lookup class and the module of the previous class lookup.
 812      * Teleporting across modules can only decrease access but cannot increase it.
 813      * Teleporting to some third module drops all accesses.
 814      * <p>
 815      * In the above example, if {@code C} and {@code D} are in different modules,
 816      * {@code lookup2} records {@code D} as its lookup class and
 817      * {@code C} as its previous lookup class and {@code lookup2} has only
 818      * {@code PUBLIC} access. {@code lookup2} can teleport to other class in
 819      * {@code C}'s module and {@code D}'s module.
 820      * If class {@code E} is in a third module, {@code lookup2.in(E.class)} creates
 821      * a {@code Lookup} on {@code E} with no access and {@code lookup2}'s lookup
 822      * class {@code D} is recorded as its previous lookup class.
 823      * <p>
 824      * Teleporting across modules restricts access to the public types that
 825      * both the lookup class and the previous lookup class can equally access
 826      * (see below).
 827      * <p>
 828      * {@link MethodHandles#privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn(T.class, lookup)}
 829      * can be used to teleport a {@code lookup} from class {@code C} to class {@code T}
 830      * and produce a new {@code Lookup} with <a href="#privacc">private access</a>
 831      * if the lookup class is allowed to do <em>deep reflection</em> on {@code T}.
 832      * The {@code lookup} must have {@link #MODULE} and {@link #PRIVATE} access
 833      * to call {@code privateLookupIn}.
 834      * A {@code lookup} on {@code C} in module {@code M1} is allowed to do deep reflection
 835      * on all classes in {@code M1}.  If {@code T} is in {@code M1}, {@code privateLookupIn}
 836      * produces a new {@code Lookup} on {@code T} with full capabilities.
 837      * A {@code lookup} on {@code C} is also allowed
 838      * to do deep reflection on {@code T} in another module {@code M2} if
 839      * {@code M1} reads {@code M2} and {@code M2} {@link Module#isOpen(String,Module) opens}
 840      * the package containing {@code T} to at least {@code M1}.
 841      * {@code T} becomes the new lookup class and {@code C} becomes the new previous
 842      * lookup class and {@code MODULE} access is dropped from the resulting {@code Lookup}.
 843      * The resulting {@code Lookup} can be used to do member lookup or teleport
 844      * to another lookup class by calling {@link #in Lookup::in}.  But
 845      * it cannot be used to obtain another private {@code Lookup} by calling
 846      * {@link MethodHandles#privateLookupIn(Class, Lookup) privateLookupIn}
 847      * because it has no {@code MODULE} access.
 848      * <p>
 849      * The {@code Lookup} object returned by {@code privateLookupIn} is allowed to
 850      * {@linkplain Lookup#defineClass(byte[]) define classes} in the runtime package
 851      * of {@code T}. Extreme caution should be taken when opening a package
 852      * to another module as such defined classes have the same full privilege
 853      * access as other members in {@code M2}.
 854      *
 855      * <h2><a id="module-access-check"></a>Cross-module access checks</h2>
 856      *
 857      * A {@code Lookup} with {@link #PUBLIC} or with {@link #UNCONDITIONAL} mode
 858      * allows cross-module access. The access checking is performed with respect
 859      * to both the lookup class and the previous lookup class if present.
 860      * <p>
 861      * A {@code Lookup} with {@link #UNCONDITIONAL} mode can access public type
 862      * in all modules when the type is in a package that is {@linkplain Module#isExported(String)
 863      * exported unconditionally}.
 864      * <p>
 865      * If a {@code Lookup} on {@code LC} in {@code M1} has no previous lookup class,
 866      * the lookup with {@link #PUBLIC} mode can access all public types in modules
 867      * that are readable to {@code M1} and the type is in a package that is exported
 868      * at least to {@code M1}.
 869      * <p>
 870      * If a {@code Lookup} on {@code LC} in {@code M1} has a previous lookup class
 871      * {@code PLC} on {@code M0}, the lookup with {@link #PUBLIC} mode can access
 872      * the intersection of all public types that are accessible to {@code M1}
 873      * with all public types that are accessible to {@code M0}. {@code M0}
 874      * reads {@code M1} and hence the set of accessible types includes:
 875      *
 876      * <ul>
 877      * <li>unconditional-exported packages from {@code M1}</li>
 878      * <li>unconditional-exported packages from {@code M0} if {@code M1} reads {@code M0}</li>
 879      * <li>
 880      *     unconditional-exported packages from a third module {@code M2}if both {@code M0}
 881      *     and {@code M1} read {@code M2}
 882      * </li>
 883      * <li>qualified-exported packages from {@code M1} to {@code M0}</li>
 884      * <li>qualified-exported packages from {@code M0} to {@code M1} if {@code M1} reads {@code M0}</li>
 885      * <li>
 886      *     qualified-exported packages from a third module {@code M2} to both {@code M0} and
 887      *     {@code M1} if both {@code M0} and {@code M1} read {@code M2}
 888      * </li>
 889      * </ul>
 890      *
 891      * <h2><a id="access-modes"></a>Access modes</h2>
 892      *
 893      * The table below shows the access modes of a {@code Lookup} produced by
 894      * any of the following factory or transformation methods:
 895      * <ul>
 896      * <li>{@link #lookup() MethodHandles::lookup}</li>
 897      * <li>{@link #publicLookup() MethodHandles::publicLookup}</li>
 898      * <li>{@link #privateLookupIn(Class, Lookup) MethodHandles::privateLookupIn}</li>
 899      * <li>{@link Lookup#in Lookup::in}</li>
 900      * <li>{@link Lookup#dropLookupMode(int) Lookup::dropLookupMode}</li>
 901      * </ul>
 902      *
 903      * <table class="striped">
 904      * <caption style="display:none">
 905      * Access mode summary
 906      * </caption>
 907      * <thead>
 908      * <tr>
 909      * <th scope="col">Lookup object</th>
 910      * <th style="text-align:center">original</th>
 911      * <th style="text-align:center">protected</th>
 912      * <th style="text-align:center">private</th>
 913      * <th style="text-align:center">package</th>
 914      * <th style="text-align:center">module</th>
 915      * <th style="text-align:center">public</th>
 916      * </tr>
 917      * </thead>
 918      * <tbody>
 919      * <tr>
 920      * <th scope="row" style="text-align:left">{@code CL = MethodHandles.lookup()} in {@code C}</th>
 921      * <td style="text-align:center">ORI</td>
 922      * <td style="text-align:center">PRO</td>
 923      * <td style="text-align:center">PRI</td>
 924      * <td style="text-align:center">PAC</td>
 925      * <td style="text-align:center">MOD</td>
 926      * <td style="text-align:center">1R</td>
 927      * </tr>
 928      * <tr>
 929      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same package</th>
 930      * <td></td>
 931      * <td></td>
 932      * <td></td>
 933      * <td style="text-align:center">PAC</td>
 934      * <td style="text-align:center">MOD</td>
 935      * <td style="text-align:center">1R</td>
 936      * </tr>
 937      * <tr>
 938      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same module</th>
 939      * <td></td>
 940      * <td></td>
 941      * <td></td>
 942      * <td></td>
 943      * <td style="text-align:center">MOD</td>
 944      * <td style="text-align:center">1R</td>
 945      * </tr>
 946      * <tr>
 947      * <th scope="row" style="text-align:left">{@code CL.in(D)} different module</th>
 948      * <td></td>
 949      * <td></td>
 950      * <td></td>
 951      * <td></td>
 952      * <td></td>
 953      * <td style="text-align:center">2R</td>
 954      * </tr>
 955      * <tr>
 956      * <th scope="row" style="text-align:left">{@code CL.in(D).in(C)} hop back to module</th>
 957      * <td></td>
 958      * <td></td>
 959      * <td></td>
 960      * <td></td>
 961      * <td></td>
 962      * <td style="text-align:center">2R</td>
 963      * </tr>
 964      * <tr>
 965      * <th scope="row" style="text-align:left">{@code PRI1 = privateLookupIn(C1,CL)}</th>
 966      * <td></td>
 967      * <td style="text-align:center">PRO</td>
 968      * <td style="text-align:center">PRI</td>
 969      * <td style="text-align:center">PAC</td>
 970      * <td style="text-align:center">MOD</td>
 971      * <td style="text-align:center">1R</td>
 972      * </tr>
 973      * <tr>
 974      * <th scope="row" style="text-align:left">{@code PRI1a = privateLookupIn(C,PRI1)}</th>
 975      * <td></td>
 976      * <td style="text-align:center">PRO</td>
 977      * <td style="text-align:center">PRI</td>
 978      * <td style="text-align:center">PAC</td>
 979      * <td style="text-align:center">MOD</td>
 980      * <td style="text-align:center">1R</td>
 981      * </tr>
 982      * <tr>
 983      * <th scope="row" style="text-align:left">{@code PRI1.in(C1)} same package</th>
 984      * <td></td>
 985      * <td></td>
 986      * <td></td>
 987      * <td style="text-align:center">PAC</td>
 988      * <td style="text-align:center">MOD</td>
 989      * <td style="text-align:center">1R</td>
 990      * </tr>
 991      * <tr>
 992      * <th scope="row" style="text-align:left">{@code PRI1.in(C1)} different package</th>
 993      * <td></td>
 994      * <td></td>
 995      * <td></td>
 996      * <td></td>
 997      * <td style="text-align:center">MOD</td>
 998      * <td style="text-align:center">1R</td>
 999      * </tr>
1000      * <tr>
1001      * <th scope="row" style="text-align:left">{@code PRI1.in(D)} different module</th>
1002      * <td></td>
1003      * <td></td>
1004      * <td></td>
1005      * <td></td>
1006      * <td></td>
1007      * <td style="text-align:center">2R</td>
1008      * </tr>
1009      * <tr>
1010      * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(PROTECTED)}</th>
1011      * <td></td>
1012      * <td></td>
1013      * <td style="text-align:center">PRI</td>
1014      * <td style="text-align:center">PAC</td>
1015      * <td style="text-align:center">MOD</td>
1016      * <td style="text-align:center">1R</td>
1017      * </tr>
1018      * <tr>
1019      * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(PRIVATE)}</th>
1020      * <td></td>
1021      * <td></td>
1022      * <td></td>
1023      * <td style="text-align:center">PAC</td>
1024      * <td style="text-align:center">MOD</td>
1025      * <td style="text-align:center">1R</td>
1026      * </tr>
1027      * <tr>
1028      * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(PACKAGE)}</th>
1029      * <td></td>
1030      * <td></td>
1031      * <td></td>
1032      * <td></td>
1033      * <td style="text-align:center">MOD</td>
1034      * <td style="text-align:center">1R</td>
1035      * </tr>
1036      * <tr>
1037      * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(MODULE)}</th>
1038      * <td></td>
1039      * <td></td>
1040      * <td></td>
1041      * <td></td>
1042      * <td></td>
1043      * <td style="text-align:center">1R</td>
1044      * </tr>
1045      * <tr>
1046      * <th scope="row" style="text-align:left">{@code PRI1.dropLookupMode(PUBLIC)}</th>
1047      * <td></td>
1048      * <td></td>
1049      * <td></td>
1050      * <td></td>
1051      * <td></td>
1052      * <td style="text-align:center">none</td>
1053      * <tr>
1054      * <th scope="row" style="text-align:left">{@code PRI2 = privateLookupIn(D,CL)}</th>
1055      * <td></td>
1056      * <td style="text-align:center">PRO</td>
1057      * <td style="text-align:center">PRI</td>
1058      * <td style="text-align:center">PAC</td>
1059      * <td></td>
1060      * <td style="text-align:center">2R</td>
1061      * </tr>
1062      * <tr>
1063      * <th scope="row" style="text-align:left">{@code privateLookupIn(D,PRI1)}</th>
1064      * <td></td>
1065      * <td style="text-align:center">PRO</td>
1066      * <td style="text-align:center">PRI</td>
1067      * <td style="text-align:center">PAC</td>
1068      * <td></td>
1069      * <td style="text-align:center">2R</td>
1070      * </tr>
1071      * <tr>
1072      * <th scope="row" style="text-align:left">{@code privateLookupIn(C,PRI2)} fails</th>
1073      * <td></td>
1074      * <td></td>
1075      * <td></td>
1076      * <td></td>
1077      * <td></td>
1078      * <td style="text-align:center">IAE</td>
1079      * </tr>
1080      * <tr>
1081      * <th scope="row" style="text-align:left">{@code PRI2.in(D2)} same package</th>
1082      * <td></td>
1083      * <td></td>
1084      * <td></td>
1085      * <td style="text-align:center">PAC</td>
1086      * <td></td>
1087      * <td style="text-align:center">2R</td>
1088      * </tr>
1089      * <tr>
1090      * <th scope="row" style="text-align:left">{@code PRI2.in(D2)} different package</th>
1091      * <td></td>
1092      * <td></td>
1093      * <td></td>
1094      * <td></td>
1095      * <td></td>
1096      * <td style="text-align:center">2R</td>
1097      * </tr>
1098      * <tr>
1099      * <th scope="row" style="text-align:left">{@code PRI2.in(C1)} hop back to module</th>
1100      * <td></td>
1101      * <td></td>
1102      * <td></td>
1103      * <td></td>
1104      * <td></td>
1105      * <td style="text-align:center">2R</td>
1106      * </tr>
1107      * <tr>
1108      * <th scope="row" style="text-align:left">{@code PRI2.in(E)} hop to third module</th>
1109      * <td></td>
1110      * <td></td>
1111      * <td></td>
1112      * <td></td>
1113      * <td></td>
1114      * <td style="text-align:center">none</td>
1115      * </tr>
1116      * <tr>
1117      * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(PROTECTED)}</th>
1118      * <td></td>
1119      * <td></td>
1120      * <td style="text-align:center">PRI</td>
1121      * <td style="text-align:center">PAC</td>
1122      * <td></td>
1123      * <td style="text-align:center">2R</td>
1124      * </tr>
1125      * <tr>
1126      * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(PRIVATE)}</th>
1127      * <td></td>
1128      * <td></td>
1129      * <td></td>
1130      * <td style="text-align:center">PAC</td>
1131      * <td></td>
1132      * <td style="text-align:center">2R</td>
1133      * </tr>
1134      * <tr>
1135      * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(PACKAGE)}</th>
1136      * <td></td>
1137      * <td></td>
1138      * <td></td>
1139      * <td></td>
1140      * <td></td>
1141      * <td style="text-align:center">2R</td>
1142      * </tr>
1143      * <tr>
1144      * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(MODULE)}</th>
1145      * <td></td>
1146      * <td></td>
1147      * <td></td>
1148      * <td></td>
1149      * <td></td>
1150      * <td style="text-align:center">2R</td>
1151      * </tr>
1152      * <tr>
1153      * <th scope="row" style="text-align:left">{@code PRI2.dropLookupMode(PUBLIC)}</th>
1154      * <td></td>
1155      * <td></td>
1156      * <td></td>
1157      * <td></td>
1158      * <td></td>
1159      * <td style="text-align:center">none</td>
1160      * </tr>
1161      * <tr>
1162      * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(PROTECTED)}</th>
1163      * <td></td>
1164      * <td></td>
1165      * <td style="text-align:center">PRI</td>
1166      * <td style="text-align:center">PAC</td>
1167      * <td style="text-align:center">MOD</td>
1168      * <td style="text-align:center">1R</td>
1169      * </tr>
1170      * <tr>
1171      * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(PRIVATE)}</th>
1172      * <td></td>
1173      * <td></td>
1174      * <td></td>
1175      * <td style="text-align:center">PAC</td>
1176      * <td style="text-align:center">MOD</td>
1177      * <td style="text-align:center">1R</td>
1178      * </tr>
1179      * <tr>
1180      * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(PACKAGE)}</th>
1181      * <td></td>
1182      * <td></td>
1183      * <td></td>
1184      * <td></td>
1185      * <td style="text-align:center">MOD</td>
1186      * <td style="text-align:center">1R</td>
1187      * </tr>
1188      * <tr>
1189      * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(MODULE)}</th>
1190      * <td></td>
1191      * <td></td>
1192      * <td></td>
1193      * <td></td>
1194      * <td></td>
1195      * <td style="text-align:center">1R</td>
1196      * </tr>
1197      * <tr>
1198      * <th scope="row" style="text-align:left">{@code CL.dropLookupMode(PUBLIC)}</th>
1199      * <td></td>
1200      * <td></td>
1201      * <td></td>
1202      * <td></td>
1203      * <td></td>
1204      * <td style="text-align:center">none</td>
1205      * </tr>
1206      * <tr>
1207      * <th scope="row" style="text-align:left">{@code PUB = publicLookup()}</th>
1208      * <td></td>
1209      * <td></td>
1210      * <td></td>
1211      * <td></td>
1212      * <td></td>
1213      * <td style="text-align:center">U</td>
1214      * </tr>
1215      * <tr>
1216      * <th scope="row" style="text-align:left">{@code PUB.in(D)} different module</th>
1217      * <td></td>
1218      * <td></td>
1219      * <td></td>
1220      * <td></td>
1221      * <td></td>
1222      * <td style="text-align:center">U</td>
1223      * </tr>
1224      * <tr>
1225      * <th scope="row" style="text-align:left">{@code PUB.in(D).in(E)} third module</th>
1226      * <td></td>
1227      * <td></td>
1228      * <td></td>
1229      * <td></td>
1230      * <td></td>
1231      * <td style="text-align:center">U</td>
1232      * </tr>
1233      * <tr>
1234      * <th scope="row" style="text-align:left">{@code PUB.dropLookupMode(UNCONDITIONAL)}</th>
1235      * <td></td>
1236      * <td></td>
1237      * <td></td>
1238      * <td></td>
1239      * <td></td>
1240      * <td style="text-align:center">none</td>
1241      * </tr>
1242      * <tr>
1243      * <th scope="row" style="text-align:left">{@code privateLookupIn(C1,PUB)} fails</th>
1244      * <td></td>
1245      * <td></td>
1246      * <td></td>
1247      * <td></td>
1248      * <td></td>
1249      * <td style="text-align:center">IAE</td>
1250      * </tr>
1251      * <tr>
1252      * <th scope="row" style="text-align:left">{@code ANY.in(X)}, for inaccessible {@code X}</th>
1253      * <td></td>
1254      * <td></td>
1255      * <td></td>
1256      * <td></td>
1257      * <td></td>
1258      * <td style="text-align:center">none</td>
1259      * </tr>
1260      * </tbody>
1261      * </table>
1262      *
1263      * <p>
1264      * Notes:
1265      * <ul>
1266      * <li>Class {@code C} and class {@code C1} are in module {@code M1},
1267      *     but {@code D} and {@code D2} are in module {@code M2}, and {@code E}
1268      *     is in module {@code M3}. {@code X} stands for class which is inaccessible
1269      *     to the lookup. {@code ANY} stands for any of the example lookups.</li>
1270      * <li>{@code ORI} indicates {@link #ORIGINAL} bit set,
1271      *     {@code PRO} indicates {@link #PROTECTED} bit set,
1272      *     {@code PRI} indicates {@link #PRIVATE} bit set,
1273      *     {@code PAC} indicates {@link #PACKAGE} bit set,
1274      *     {@code MOD} indicates {@link #MODULE} bit set,
1275      *     {@code 1R} and {@code 2R} indicate {@link #PUBLIC} bit set,
1276      *     {@code U} indicates {@link #UNCONDITIONAL} bit set,
1277      *     {@code IAE} indicates {@code IllegalAccessException} thrown.</li>
1278      * <li>Public access comes in three kinds:
1279      * <ul>
1280      * <li>unconditional ({@code U}): the lookup assumes readability.
1281      *     The lookup has {@code null} previous lookup class.
1282      * <li>one-module-reads ({@code 1R}): the module access checking is
1283      *     performed with respect to the lookup class.  The lookup has {@code null}
1284      *     previous lookup class.
1285      * <li>two-module-reads ({@code 2R}): the module access checking is
1286      *     performed with respect to the lookup class and the previous lookup class.
1287      *     The lookup has a non-null previous lookup class which is in a
1288      *     different module from the current lookup class.
1289      * </ul>
1290      * <li>Any attempt to reach a third module loses all access.</li>
1291      * <li>If a target class {@code X} is not accessible to {@code Lookup::in}
1292      * all access modes are dropped.</li>
1293      * </ul>
1294      *
1295      * <h2><a id="callsens"></a>Caller sensitive methods</h2>
1296      * A small number of Java methods have a special property called caller sensitivity.
1297      * A <em>caller-sensitive</em> method can behave differently depending on the
1298      * identity of its immediate caller.
1299      * <p>
1300      * If a method handle for a caller-sensitive method is requested,
1301      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
1302      * but they take account of the lookup class in a special way.
1303      * The resulting method handle behaves as if it were called
1304      * from an instruction contained in the lookup class,
1305      * so that the caller-sensitive method detects the lookup class.
1306      * (By contrast, the invoker of the method handle is disregarded.)
1307      * Thus, in the case of caller-sensitive methods,
1308      * different lookup classes may give rise to
1309      * differently behaving method handles.
1310      * <p>
1311      * In cases where the lookup object is
1312      * {@link MethodHandles#publicLookup() publicLookup()},
1313      * or some other lookup object without the
1314      * {@linkplain #ORIGINAL original access},
1315      * the lookup class is disregarded.
1316      * In such cases, no caller-sensitive method handle can be created,
1317      * access is forbidden, and the lookup fails with an
1318      * {@code IllegalAccessException}.
1319      * <p style="font-size:smaller;">
1320      * <em>Discussion:</em>
1321      * For example, the caller-sensitive method
1322      * {@link java.lang.Class#forName(String) Class.forName(x)}
1323      * can return varying classes or throw varying exceptions,
1324      * depending on the class loader of the class that calls it.
1325      * A public lookup of {@code Class.forName} will fail, because
1326      * there is no reasonable way to determine its bytecode behavior.
1327      * <p style="font-size:smaller;">
1328      * If an application caches method handles for broad sharing,
1329      * it should use {@code publicLookup()} to create them.
1330      * If there is a lookup of {@code Class.forName}, it will fail,
1331      * and the application must take appropriate action in that case.
1332      * It may be that a later lookup, perhaps during the invocation of a
1333      * bootstrap method, can incorporate the specific identity
1334      * of the caller, making the method accessible.
1335      * <p style="font-size:smaller;">
1336      * The function {@code MethodHandles.lookup} is caller sensitive
1337      * so that there can be a secure foundation for lookups.
1338      * Nearly all other methods in the JSR 292 API rely on lookup
1339      * objects to check access requests.
1340      */
1341     public static final
1342     class Lookup {
1343         /** The class on behalf of whom the lookup is being performed. */
1344         private final Class<?> lookupClass;
1345 
1346         /** previous lookup class */
1347         private final Class<?> prevLookupClass;
1348 
1349         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
1350         private final int allowedModes;
1351 
1352         static {
1353             Reflection.registerFieldsToFilter(Lookup.class, Set.of("lookupClass", "allowedModes"));
1354         }
1355 
1356         /** A single-bit mask representing {@code public} access,
1357          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1358          *  The value, {@code 0x01}, happens to be the same as the value of the
1359          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
1360          *  <p>
1361          *  A {@code Lookup} with this lookup mode performs cross-module access check
1362          *  with respect to the {@linkplain #lookupClass() lookup class} and
1363          *  {@linkplain #previousLookupClass() previous lookup class} if present.
1364          */
1365         public static final int PUBLIC = Modifier.PUBLIC;
1366 
1367         /** A single-bit mask representing {@code private} access,
1368          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1369          *  The value, {@code 0x02}, happens to be the same as the value of the
1370          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
1371          */
1372         public static final int PRIVATE = Modifier.PRIVATE;
1373 
1374         /** A single-bit mask representing {@code protected} access,
1375          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1376          *  The value, {@code 0x04}, happens to be the same as the value of the
1377          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
1378          */
1379         public static final int PROTECTED = Modifier.PROTECTED;
1380 
1381         /** A single-bit mask representing {@code package} access (default access),
1382          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1383          *  The value is {@code 0x08}, which does not correspond meaningfully to
1384          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1385          */
1386         public static final int PACKAGE = Modifier.STATIC;
1387 
1388         /** A single-bit mask representing {@code module} access,
1389          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1390          *  The value is {@code 0x10}, which does not correspond meaningfully to
1391          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1392          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
1393          *  with this lookup mode can access all public types in the module of the
1394          *  lookup class and public types in packages exported by other modules
1395          *  to the module of the lookup class.
1396          *  <p>
1397          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1398          *  previous lookup class} is always {@code null}.
1399          *
1400          *  @since 9
1401          */
1402         public static final int MODULE = PACKAGE << 1;
1403 
1404         /** A single-bit mask representing {@code unconditional} access
1405          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1406          *  The value is {@code 0x20}, which does not correspond meaningfully to
1407          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1408          *  A {@code Lookup} with this lookup mode assumes {@linkplain
1409          *  java.lang.Module#canRead(java.lang.Module) readability}.
1410          *  This lookup mode can access all public members of public types
1411          *  of all modules when the type is in a package that is {@link
1412          *  java.lang.Module#isExported(String) exported unconditionally}.
1413          *
1414          *  <p>
1415          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1416          *  previous lookup class} is always {@code null}.
1417          *
1418          *  @since 9
1419          *  @see #publicLookup()
1420          */
1421         public static final int UNCONDITIONAL = PACKAGE << 2;
1422 
1423         /** A single-bit mask representing {@code original} access
1424          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1425          *  The value is {@code 0x40}, which does not correspond meaningfully to
1426          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1427          *
1428          *  <p>
1429          *  If this lookup mode is set, the {@code Lookup} object must be
1430          *  created by the original lookup class by calling
1431          *  {@link MethodHandles#lookup()} method or by a bootstrap method
1432          *  invoked by the VM.  The {@code Lookup} object with this lookup
1433          *  mode has {@linkplain #hasFullPrivilegeAccess() full privilege access}.
1434          *
1435          *  @since 16
1436          */
1437         public static final int ORIGINAL = PACKAGE << 3;
1438 
1439         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL | ORIGINAL);
1440         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);   // with original access
1441         private static final int TRUSTED   = -1;
1442 
1443         /*
1444          * Adjust PUBLIC => PUBLIC|MODULE|ORIGINAL|UNCONDITIONAL
1445          * Adjust 0 => PACKAGE
1446          */
1447         private static int fixmods(int mods) {
1448             mods &= (ALL_MODES - PACKAGE - MODULE - ORIGINAL - UNCONDITIONAL);
1449             if (Modifier.isPublic(mods))
1450                 mods |= UNCONDITIONAL;
1451             return (mods != 0) ? mods : PACKAGE;
1452         }
1453 
1454         /** Tells which class is performing the lookup.  It is this class against
1455          *  which checks are performed for visibility and access permissions.
1456          *  <p>
1457          *  If this lookup object has a {@linkplain #previousLookupClass() previous lookup class},
1458          *  access checks are performed against both the lookup class and the previous lookup class.
1459          *  <p>
1460          *  The class implies a maximum level of access permission,
1461          *  but the permissions may be additionally limited by the bitmask
1462          *  {@link #lookupModes lookupModes}, which controls whether non-public members
1463          *  can be accessed.
1464          *  @return the lookup class, on behalf of which this lookup object finds members
1465          *  @see <a href="#cross-module-lookup">Cross-module lookups</a>
1466          */
1467         public Class<?> lookupClass() {
1468             return lookupClass;
1469         }
1470 
1471         /** Reports a lookup class in another module that this lookup object
1472          * was previously teleported from, or {@code null}.
1473          * <p>
1474          * A {@code Lookup} object produced by the factory methods, such as the
1475          * {@link #lookup() lookup()} and {@link #publicLookup() publicLookup()} method,
1476          * has {@code null} previous lookup class.
1477          * A {@code Lookup} object has a non-null previous lookup class
1478          * when this lookup was teleported from an old lookup class
1479          * in one module to a new lookup class in another module.
1480          *
1481          * @return the lookup class in another module that this lookup object was
1482          *         previously teleported from, or {@code null}
1483          * @since 14
1484          * @see #in(Class)
1485          * @see MethodHandles#privateLookupIn(Class, Lookup)
1486          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1487          */
1488         public Class<?> previousLookupClass() {
1489             return prevLookupClass;
1490         }
1491 
1492         // This is just for calling out to MethodHandleImpl.
1493         private Class<?> lookupClassOrNull() {
1494             return (allowedModes == TRUSTED) ? null : lookupClass;
1495         }
1496 
1497         /** Tells which access-protection classes of members this lookup object can produce.
1498          *  The result is a bit-mask of the bits
1499          *  {@linkplain #PUBLIC PUBLIC (0x01)},
1500          *  {@linkplain #PRIVATE PRIVATE (0x02)},
1501          *  {@linkplain #PROTECTED PROTECTED (0x04)},
1502          *  {@linkplain #PACKAGE PACKAGE (0x08)},
1503          *  {@linkplain #MODULE MODULE (0x10)},
1504          *  {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)},
1505          *  and {@linkplain #ORIGINAL ORIGINAL (0x40)}.
1506          *  <p>
1507          *  A freshly-created lookup object
1508          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
1509          *  all possible bits set, except {@code UNCONDITIONAL}.
1510          *  A lookup object on a new lookup class
1511          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
1512          *  may have some mode bits set to zero.
1513          *  Mode bits can also be
1514          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
1515          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
1516          *  The purpose of this is to restrict access via the new lookup object,
1517          *  so that it can access only names which can be reached by the original
1518          *  lookup object, and also by the new lookup class.
1519          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
1520          *  @see #in
1521          *  @see #dropLookupMode
1522          */
1523         public int lookupModes() {
1524             return allowedModes & ALL_MODES;
1525         }
1526 
1527         /** Embody the current class (the lookupClass) as a lookup class
1528          * for method handle creation.
1529          * Must be called by from a method in this package,
1530          * which in turn is called by a method not in this package.
1531          */
1532         Lookup(Class<?> lookupClass) {
1533             this(lookupClass, null, FULL_POWER_MODES);
1534         }
1535 
1536         private Lookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1537             assert prevLookupClass == null || ((allowedModes & MODULE) == 0
1538                     && prevLookupClass.getModule() != lookupClass.getModule());
1539             assert !lookupClass.isArray() && !lookupClass.isPrimitive();
1540             this.lookupClass = lookupClass;
1541             this.prevLookupClass = prevLookupClass;
1542             this.allowedModes = allowedModes;
1543         }
1544 
1545         private static Lookup newLookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1546             // make sure we haven't accidentally picked up a privileged class:
1547             checkUnprivilegedlookupClass(lookupClass);
1548             return new Lookup(lookupClass, prevLookupClass, allowedModes);
1549         }
1550 
1551         /**
1552          * Creates a lookup on the specified new lookup class.
1553          * The resulting object will report the specified
1554          * class as its own {@link #lookupClass() lookupClass}.
1555          *
1556          * <p>
1557          * However, the resulting {@code Lookup} object is guaranteed
1558          * to have no more access capabilities than the original.
1559          * In particular, access capabilities can be lost as follows:<ul>
1560          * <li>If the new lookup class is different from the old lookup class,
1561          * i.e. {@link #ORIGINAL ORIGINAL} access is lost.
1562          * <li>If the new lookup class is in a different module from the old one,
1563          * i.e. {@link #MODULE MODULE} access is lost.
1564          * <li>If the new lookup class is in a different package
1565          * than the old one, protected and default (package) members will not be accessible,
1566          * i.e. {@link #PROTECTED PROTECTED} and {@link #PACKAGE PACKAGE} access are lost.
1567          * <li>If the new lookup class is not within the same package member
1568          * as the old one, private members will not be accessible, and protected members
1569          * will not be accessible by virtue of inheritance,
1570          * i.e. {@link #PRIVATE PRIVATE} access is lost.
1571          * (Protected members may continue to be accessible because of package sharing.)
1572          * <li>If the new lookup class is not
1573          * {@linkplain #accessClass(Class) accessible} to this lookup,
1574          * then no members, not even public members, will be accessible
1575          * i.e. all access modes are lost.
1576          * <li>If the new lookup class, the old lookup class and the previous lookup class
1577          * are all in different modules i.e. teleporting to a third module,
1578          * all access modes are lost.
1579          * </ul>
1580          * <p>
1581          * The new previous lookup class is chosen as follows:
1582          * <ul>
1583          * <li>If the new lookup object has {@link #UNCONDITIONAL UNCONDITIONAL} bit,
1584          * the new previous lookup class is {@code null}.
1585          * <li>If the new lookup class is in the same module as the old lookup class,
1586          * the new previous lookup class is the old previous lookup class.
1587          * <li>If the new lookup class is in a different module from the old lookup class,
1588          * the new previous lookup class is the old lookup class.
1589          *</ul>
1590          * <p>
1591          * The resulting lookup's capabilities for loading classes
1592          * (used during {@link #findClass} invocations)
1593          * are determined by the lookup class' loader,
1594          * which may change due to this operation.
1595          *
1596          * @param requestedLookupClass the desired lookup class for the new lookup object
1597          * @return a lookup object which reports the desired lookup class, or the same object
1598          * if there is no change
1599          * @throws IllegalArgumentException if {@code requestedLookupClass} is a primitive type or void or array class
1600          * @throws NullPointerException if the argument is null
1601          *
1602          * @see #accessClass(Class)
1603          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1604          */
1605         public Lookup in(Class<?> requestedLookupClass) {
1606             Objects.requireNonNull(requestedLookupClass);
1607             if (requestedLookupClass.isPrimitive())
1608                 throw new IllegalArgumentException(requestedLookupClass + " is a primitive class");
1609             if (requestedLookupClass.isArray())
1610                 throw new IllegalArgumentException(requestedLookupClass + " is an array class");
1611 
1612             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
1613                 return new Lookup(requestedLookupClass, null, FULL_POWER_MODES);
1614             if (requestedLookupClass == this.lookupClass)
1615                 return this;  // keep same capabilities
1616             int newModes = (allowedModes & FULL_POWER_MODES) & ~ORIGINAL;
1617             Module fromModule = this.lookupClass.getModule();
1618             Module targetModule = requestedLookupClass.getModule();
1619             Class<?> plc = this.previousLookupClass();
1620             if ((this.allowedModes & UNCONDITIONAL) != 0) {
1621                 assert plc == null;
1622                 newModes = UNCONDITIONAL;
1623             } else if (fromModule != targetModule) {
1624                 if (plc != null && !VerifyAccess.isSameModule(plc, requestedLookupClass)) {
1625                     // allow hopping back and forth between fromModule and plc's module
1626                     // but not the third module
1627                     newModes = 0;
1628                 }
1629                 // drop MODULE access
1630                 newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
1631                 // teleport from this lookup class
1632                 plc = this.lookupClass;
1633             }
1634             if ((newModes & PACKAGE) != 0
1635                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
1636                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
1637             }
1638             // Allow nestmate lookups to be created without special privilege:
1639             if ((newModes & PRIVATE) != 0
1640                     && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
1641                 newModes &= ~(PRIVATE|PROTECTED);
1642             }
1643             if ((newModes & (PUBLIC|UNCONDITIONAL)) != 0
1644                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, this.prevLookupClass, allowedModes)) {
1645                 // The requested class it not accessible from the lookup class.
1646                 // No permissions.
1647                 newModes = 0;
1648             }
1649             return newLookup(requestedLookupClass, plc, newModes);
1650         }
1651 
1652         /**
1653          * Creates a lookup on the same lookup class which this lookup object
1654          * finds members, but with a lookup mode that has lost the given lookup mode.
1655          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
1656          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED},
1657          * {@link #PRIVATE PRIVATE}, {@link #ORIGINAL ORIGINAL}, or
1658          * {@link #UNCONDITIONAL UNCONDITIONAL}.
1659          *
1660          * <p> If this lookup is a {@linkplain MethodHandles#publicLookup() public lookup},
1661          * this lookup has {@code UNCONDITIONAL} mode set and it has no other mode set.
1662          * When dropping {@code UNCONDITIONAL} on a public lookup then the resulting
1663          * lookup has no access.
1664          *
1665          * <p> If this lookup is not a public lookup, then the following applies
1666          * regardless of its {@linkplain #lookupModes() lookup modes}.
1667          * {@link #PROTECTED PROTECTED} and {@link #ORIGINAL ORIGINAL} are always
1668          * dropped and so the resulting lookup mode will never have these access
1669          * capabilities. When dropping {@code PACKAGE}
1670          * then the resulting lookup will not have {@code PACKAGE} or {@code PRIVATE}
1671          * access. When dropping {@code MODULE} then the resulting lookup will not
1672          * have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access.
1673          * When dropping {@code PUBLIC} then the resulting lookup has no access.
1674          *
1675          * @apiNote
1676          * A lookup with {@code PACKAGE} but not {@code PRIVATE} mode can safely
1677          * delegate non-public access within the package of the lookup class without
1678          * conferring  <a href="MethodHandles.Lookup.html#privacc">private access</a>.
1679          * A lookup with {@code MODULE} but not
1680          * {@code PACKAGE} mode can safely delegate {@code PUBLIC} access within
1681          * the module of the lookup class without conferring package access.
1682          * A lookup with a {@linkplain #previousLookupClass() previous lookup class}
1683          * (and {@code PUBLIC} but not {@code MODULE} mode) can safely delegate access
1684          * to public classes accessible to both the module of the lookup class
1685          * and the module of the previous lookup class.
1686          *
1687          * @param modeToDrop the lookup mode to drop
1688          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
1689          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
1690          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE}, {@code ORIGINAL}
1691          * or {@code UNCONDITIONAL}
1692          * @see MethodHandles#privateLookupIn
1693          * @since 9
1694          */
1695         public Lookup dropLookupMode(int modeToDrop) {
1696             int oldModes = lookupModes();
1697             int newModes = oldModes & ~(modeToDrop | PROTECTED | ORIGINAL);
1698             switch (modeToDrop) {
1699                 case PUBLIC: newModes &= ~(FULL_POWER_MODES); break;
1700                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
1701                 case PACKAGE: newModes &= ~(PRIVATE); break;
1702                 case PROTECTED:
1703                 case PRIVATE:
1704                 case ORIGINAL:
1705                 case UNCONDITIONAL: break;
1706                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
1707             }
1708             if (newModes == oldModes) return this;  // return self if no change
1709             return newLookup(lookupClass(), previousLookupClass(), newModes);
1710         }
1711 
1712         /**
1713          * Creates and links a class or interface from {@code bytes}
1714          * with the same class loader and in the same runtime package and
1715          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
1716          * {@linkplain #lookupClass() lookup class} as if calling
1717          * {@link ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
1718          * ClassLoader::defineClass}.
1719          *
1720          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
1721          * {@link #PACKAGE PACKAGE} access as default (package) members will be
1722          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
1723          * that the lookup object was created by a caller in the runtime package (or derived
1724          * from a lookup originally created by suitably privileged code to a target class in
1725          * the runtime package). </p>
1726          *
1727          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
1728          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
1729          * same package as the lookup class. </p>
1730          *
1731          * <p> This method does not run the class initializer. The class initializer may
1732          * run at a later time, as detailed in section 12.4 of the <em>The Java Language
1733          * Specification</em>. </p>
1734          *
1735          * @param bytes the class bytes
1736          * @return the {@code Class} object for the class
1737          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
1738          * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure
1739          * @throws IllegalArgumentException if {@code bytes} denotes a class in a different package
1740          * than the lookup class or {@code bytes} is not a class or interface
1741          * ({@code ACC_MODULE} flag is set in the value of the {@code access_flags} item)
1742          * @throws VerifyError if the newly created class cannot be verified
1743          * @throws LinkageError if the newly created class cannot be linked for any other reason
1744          * @throws NullPointerException if {@code bytes} is {@code null}
1745          * @since 9
1746          * @see MethodHandles#privateLookupIn
1747          * @see Lookup#dropLookupMode
1748          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
1749          */
1750         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
1751             if ((lookupModes() & PACKAGE) == 0)
1752                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
1753             return makeClassDefiner(bytes.clone()).defineClass(false);
1754         }
1755 
1756         /**
1757          * The set of class options that specify whether a hidden class created by
1758          * {@link Lookup#defineHiddenClass(byte[], boolean, ClassOption...)
1759          * Lookup::defineHiddenClass} method is dynamically added as a new member
1760          * to the nest of a lookup class and/or whether a hidden class has
1761          * a strong relationship with the class loader marked as its defining loader.
1762          *
1763          * @since 15
1764          */
1765         public enum ClassOption {
1766             /**
1767              * Specifies that a hidden class be added to {@linkplain Class#getNestHost nest}
1768              * of a lookup class as a nestmate.
1769              *
1770              * <p> A hidden nestmate class has access to the private members of all
1771              * classes and interfaces in the same nest.
1772              *
1773              * @see Class#getNestHost()
1774              */
1775             NESTMATE(NESTMATE_CLASS),
1776 
1777             /**
1778              * Specifies that a hidden class has a <em>strong</em>
1779              * relationship with the class loader marked as its defining loader,
1780              * as a normal class or interface has with its own defining loader.
1781              * This means that the hidden class may be unloaded if and only if
1782              * its defining loader is not reachable and thus may be reclaimed
1783              * by a garbage collector (JLS {@jls 12.7}).
1784              *
1785              * <p> By default, a hidden class or interface may be unloaded
1786              * even if the class loader that is marked as its defining loader is
1787              * <a href="../ref/package-summary.html#reachability">reachable</a>.
1788 
1789              *
1790              * @jls 12.7 Unloading of Classes and Interfaces
1791              */
1792             STRONG(STRONG_LOADER_LINK);
1793 
1794             /* the flag value is used by VM at define class time */
1795             private final int flag;
1796             ClassOption(int flag) {
1797                 this.flag = flag;
1798             }
1799 
1800             static int optionsToFlag(ClassOption[] options) {
1801                 int flags = 0;
1802                 for (ClassOption cp : options) {
1803                     if ((flags & cp.flag) != 0) {
1804                         throw new IllegalArgumentException("Duplicate ClassOption " + cp);
1805                     }
1806                     flags |= cp.flag;
1807                 }
1808                 return flags;
1809             }
1810         }
1811 
1812         /**
1813          * Creates a <em>hidden</em> class or interface from {@code bytes},
1814          * returning a {@code Lookup} on the newly created class or interface.
1815          *
1816          * <p> Ordinarily, a class or interface {@code C} is created by a class loader,
1817          * which either defines {@code C} directly or delegates to another class loader.
1818          * A class loader defines {@code C} directly by invoking
1819          * {@link ClassLoader#defineClass(String, byte[], int, int, ProtectionDomain)
1820          * ClassLoader::defineClass}, which causes the Java Virtual Machine
1821          * to derive {@code C} from a purported representation in {@code class} file format.
1822          * In situations where use of a class loader is undesirable, a class or interface
1823          * {@code C} can be created by this method instead. This method is capable of
1824          * defining {@code C}, and thereby creating it, without invoking
1825          * {@code ClassLoader::defineClass}.
1826          * Instead, this method defines {@code C} as if by arranging for
1827          * the Java Virtual Machine to derive a nonarray class or interface {@code C}
1828          * from a purported representation in {@code class} file format
1829          * using the following rules:
1830          *
1831          * <ol>
1832          * <li> The {@linkplain #lookupModes() lookup modes} for this {@code Lookup}
1833          * must include {@linkplain #hasFullPrivilegeAccess() full privilege} access.
1834          * This level of access is needed to create {@code C} in the module
1835          * of the lookup class of this {@code Lookup}.</li>
1836          *
1837          * <li> The purported representation in {@code bytes} must be a {@code ClassFile}
1838          * structure (JVMS {@jvms 4.1}) of a supported major and minor version.
1839          * The major and minor version may differ from the {@code class} file version
1840          * of the lookup class of this {@code Lookup}.</li>
1841          *
1842          * <li> The value of {@code this_class} must be a valid index in the
1843          * {@code constant_pool} table, and the entry at that index must be a valid
1844          * {@code CONSTANT_Class_info} structure. Let {@code N} be the binary name
1845          * encoded in internal form that is specified by this structure. {@code N} must
1846          * denote a class or interface in the same package as the lookup class.</li>
1847          *
1848          * <li> Let {@code CN} be the string {@code N + "." + <suffix>},
1849          * where {@code <suffix>} is an unqualified name.
1850          *
1851          * <p> Let {@code newBytes} be the {@code ClassFile} structure given by
1852          * {@code bytes} with an additional entry in the {@code constant_pool} table,
1853          * indicating a {@code CONSTANT_Utf8_info} structure for {@code CN}, and
1854          * where the {@code CONSTANT_Class_info} structure indicated by {@code this_class}
1855          * refers to the new {@code CONSTANT_Utf8_info} structure.
1856          *
1857          * <p> Let {@code L} be the defining class loader of the lookup class of this {@code Lookup}.
1858          *
1859          * <p> {@code C} is derived with name {@code CN}, class loader {@code L}, and
1860          * purported representation {@code newBytes} as if by the rules of JVMS {@jvms 5.3.5},
1861          * with the following adjustments:
1862          * <ul>
1863          * <li> The constant indicated by {@code this_class} is permitted to specify a name
1864          * that includes a single {@code "."} character, even though this is not a valid
1865          * binary class or interface name in internal form.</li>
1866          *
1867          * <li> The Java Virtual Machine marks {@code L} as the defining class loader of {@code C},
1868          * but no class loader is recorded as an initiating class loader of {@code C}.</li>
1869          *
1870          * <li> {@code C} is considered to have the same runtime
1871          * {@linkplain Class#getPackage() package}, {@linkplain Class#getModule() module}
1872          * and {@linkplain java.security.ProtectionDomain protection domain}
1873          * as the lookup class of this {@code Lookup}.
1874          * <li> Let {@code GN} be the binary name obtained by taking {@code N}
1875          * (a binary name encoded in internal form) and replacing ASCII forward slashes with
1876          * ASCII periods. For the instance of {@link java.lang.Class} representing {@code C}:
1877          * <ul>
1878          * <li> {@link Class#getName()} returns the string {@code GN + "/" + <suffix>},
1879          *      even though this is not a valid binary class or interface name.</li>
1880          * <li> {@link Class#descriptorString()} returns the string
1881          *      {@code "L" + N + "." + <suffix> + ";"},
1882          *      even though this is not a valid type descriptor name.</li>
1883          * <li> {@link Class#describeConstable()} returns an empty optional as {@code C}
1884          *      cannot be described in {@linkplain java.lang.constant.ClassDesc nominal form}.</li>
1885          * </ul>
1886          * </ul>
1887          * </li>
1888          * </ol>
1889          *
1890          * <p> After {@code C} is derived, it is linked by the Java Virtual Machine.
1891          * Linkage occurs as specified in JVMS {@jvms 5.4.3}, with the following adjustments:
1892          * <ul>
1893          * <li> During verification, whenever it is necessary to load the class named
1894          * {@code CN}, the attempt succeeds, producing class {@code C}. No request is
1895          * made of any class loader.</li>
1896          *
1897          * <li> On any attempt to resolve the entry in the run-time constant pool indicated
1898          * by {@code this_class}, the symbolic reference is considered to be resolved to
1899          * {@code C} and resolution always succeeds immediately.</li>
1900          * </ul>
1901          *
1902          * <p> If the {@code initialize} parameter is {@code true},
1903          * then {@code C} is initialized by the Java Virtual Machine.
1904          *
1905          * <p> The newly created class or interface {@code C} serves as the
1906          * {@linkplain #lookupClass() lookup class} of the {@code Lookup} object
1907          * returned by this method. {@code C} is <em>hidden</em> in the sense that
1908          * no other class or interface can refer to {@code C} via a constant pool entry.
1909          * That is, a hidden class or interface cannot be named as a supertype, a field type,
1910          * a method parameter type, or a method return type by any other class.
1911          * This is because a hidden class or interface does not have a binary name, so
1912          * there is no internal form available to record in any class's constant pool.
1913          * A hidden class or interface is not discoverable by {@link Class#forName(String, boolean, ClassLoader)},
1914          * {@link ClassLoader#loadClass(String, boolean)}, or {@link #findClass(String)}, and
1915          * is not {@linkplain java.instrument/java.lang.instrument.Instrumentation#isModifiableClass(Class)
1916          * modifiable} by Java agents or tool agents using the <a href="{@docRoot}/../specs/jvmti.html">
1917          * JVM Tool Interface</a>.
1918          *
1919          * <p> A class or interface created by
1920          * {@linkplain ClassLoader#defineClass(String, byte[], int, int, ProtectionDomain)
1921          * a class loader} has a strong relationship with that class loader.
1922          * That is, every {@code Class} object contains a reference to the {@code ClassLoader}
1923          * that {@linkplain Class#getClassLoader() defined it}.
1924          * This means that a class created by a class loader may be unloaded if and
1925          * only if its defining loader is not reachable and thus may be reclaimed
1926          * by a garbage collector (JLS {@jls 12.7}).
1927          *
1928          * By default, however, a hidden class or interface may be unloaded even if
1929          * the class loader that is marked as its defining loader is
1930          * <a href="../ref/package-summary.html#reachability">reachable</a>.
1931          * This behavior is useful when a hidden class or interface serves multiple
1932          * classes defined by arbitrary class loaders.  In other cases, a hidden
1933          * class or interface may be linked to a single class (or a small number of classes)
1934          * with the same defining loader as the hidden class or interface.
1935          * In such cases, where the hidden class or interface must be coterminous
1936          * with a normal class or interface, the {@link ClassOption#STRONG STRONG}
1937          * option may be passed in {@code options}.
1938          * This arranges for a hidden class to have the same strong relationship
1939          * with the class loader marked as its defining loader,
1940          * as a normal class or interface has with its own defining loader.
1941          *
1942          * If {@code STRONG} is not used, then the invoker of {@code defineHiddenClass}
1943          * may still prevent a hidden class or interface from being
1944          * unloaded by ensuring that the {@code Class} object is reachable.
1945          *
1946          * <p> The unloading characteristics are set for each hidden class when it is
1947          * defined, and cannot be changed later.  An advantage of allowing hidden classes
1948          * to be unloaded independently of the class loader marked as their defining loader
1949          * is that a very large number of hidden classes may be created by an application.
1950          * In contrast, if {@code STRONG} is used, then the JVM may run out of memory,
1951          * just as if normal classes were created by class loaders.
1952          *
1953          * <p> Classes and interfaces in a nest are allowed to have mutual access to
1954          * their private members.  The nest relationship is determined by
1955          * the {@code NestHost} attribute (JVMS {@jvms 4.7.28}) and
1956          * the {@code NestMembers} attribute (JVMS {@jvms 4.7.29}) in a {@code class} file.
1957          * By default, a hidden class belongs to a nest consisting only of itself
1958          * because a hidden class has no binary name.
1959          * The {@link ClassOption#NESTMATE NESTMATE} option can be passed in {@code options}
1960          * to create a hidden class or interface {@code C} as a member of a nest.
1961          * The nest to which {@code C} belongs is not based on any {@code NestHost} attribute
1962          * in the {@code ClassFile} structure from which {@code C} was derived.
1963          * Instead, the following rules determine the nest host of {@code C}:
1964          * <ul>
1965          * <li>If the nest host of the lookup class of this {@code Lookup} has previously
1966          *     been determined, then let {@code H} be the nest host of the lookup class.
1967          *     Otherwise, the nest host of the lookup class is determined using the
1968          *     algorithm in JVMS {@jvms 5.4.4}, yielding {@code H}.</li>
1969          * <li>The nest host of {@code C} is determined to be {@code H},
1970          *     the nest host of the lookup class.</li>
1971          * </ul>
1972          *
1973          * <p> A hidden class or interface may be serializable, but this requires a custom
1974          * serialization mechanism in order to ensure that instances are properly serialized
1975          * and deserialized. The default serialization mechanism supports only classes and
1976          * interfaces that are discoverable by their class name.
1977          *
1978          * @param bytes the bytes that make up the class data,
1979          * in the format of a valid {@code class} file as defined by
1980          * <cite>The Java Virtual Machine Specification</cite>.
1981          * @param initialize if {@code true} the class will be initialized.
1982          * @param options {@linkplain ClassOption class options}
1983          * @return the {@code Lookup} object on the hidden class,
1984          * with {@linkplain #ORIGINAL original} and
1985          * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege} access
1986          *
1987          * @throws IllegalAccessException if this {@code Lookup} does not have
1988          * {@linkplain #hasFullPrivilegeAccess() full privilege} access
1989          * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure
1990          * @throws UnsupportedClassVersionError if {@code bytes} is not of a supported major or minor version
1991          * @throws IllegalArgumentException if {@code bytes} denotes a class in a different package
1992          * than the lookup class or {@code bytes} is not a class or interface
1993          * ({@code ACC_MODULE} flag is set in the value of the {@code access_flags} item)
1994          * @throws IncompatibleClassChangeError if the class or interface named as
1995          * the direct superclass of {@code C} is in fact an interface, or if any of the classes
1996          * or interfaces named as direct superinterfaces of {@code C} are not in fact interfaces
1997          * @throws ClassCircularityError if any of the superclasses or superinterfaces of
1998          * {@code C} is {@code C} itself
1999          * @throws VerifyError if the newly created class cannot be verified
2000          * @throws LinkageError if the newly created class cannot be linked for any other reason
2001          * @throws NullPointerException if any parameter is {@code null}
2002          *
2003          * @since 15
2004          * @see Class#isHidden()
2005          * @jvms 4.2.1 Binary Class and Interface Names
2006          * @jvms 4.2.2 Unqualified Names
2007          * @jvms 4.7.28 The {@code NestHost} Attribute
2008          * @jvms 4.7.29 The {@code NestMembers} Attribute
2009          * @jvms 5.4.3.1 Class and Interface Resolution
2010          * @jvms 5.4.4 Access Control
2011          * @jvms 5.3.5 Deriving a {@code Class} from a {@code class} File Representation
2012          * @jvms 5.4 Linking
2013          * @jvms 5.5 Initialization
2014          * @jls 12.7 Unloading of Classes and Interfaces
2015          */
2016         @SuppressWarnings("doclint:reference") // cross-module links
2017         public Lookup defineHiddenClass(byte[] bytes, boolean initialize, ClassOption... options)
2018                 throws IllegalAccessException
2019         {
2020             Objects.requireNonNull(bytes);
2021             int flags = ClassOption.optionsToFlag(options);
2022             if (!hasFullPrivilegeAccess()) {
2023                 throw new IllegalAccessException(this + " does not have full privilege access");
2024             }
2025 
2026             return makeHiddenClassDefiner(bytes.clone(), false, flags).defineClassAsLookup(initialize);
2027         }
2028 
2029         /**
2030          * Creates a <em>hidden</em> class or interface from {@code bytes} with associated
2031          * {@linkplain MethodHandles#classData(Lookup, String, Class) class data},
2032          * returning a {@code Lookup} on the newly created class or interface.
2033          *
2034          * <p> This method is equivalent to calling
2035          * {@link #defineHiddenClass(byte[], boolean, ClassOption...) defineHiddenClass(bytes, initialize, options)}
2036          * as if the hidden class is injected with a private static final <i>unnamed</i>
2037          * field which is initialized with the given {@code classData} at
2038          * the first instruction of the class initializer.
2039          * The newly created class is linked by the Java Virtual Machine.
2040          *
2041          * <p> The {@link MethodHandles#classData(Lookup, String, Class) MethodHandles::classData}
2042          * and {@link MethodHandles#classDataAt(Lookup, String, Class, int) MethodHandles::classDataAt}
2043          * methods can be used to retrieve the {@code classData}.
2044          *
2045          * @apiNote
2046          * A framework can create a hidden class with class data with one or more
2047          * objects and load the class data as dynamically-computed constant(s)
2048          * via a bootstrap method.  {@link MethodHandles#classData(Lookup, String, Class)
2049          * Class data} is accessible only to the lookup object created by the newly
2050          * defined hidden class but inaccessible to other members in the same nest
2051          * (unlike private static fields that are accessible to nestmates).
2052          * Care should be taken w.r.t. mutability for example when passing
2053          * an array or other mutable structure through the class data.
2054          * Changing any value stored in the class data at runtime may lead to
2055          * unpredictable behavior.
2056          * If the class data is a {@code List}, it is good practice to make it
2057          * unmodifiable for example via {@link List#of List::of}.
2058          *
2059          * @param bytes     the class bytes
2060          * @param classData pre-initialized class data
2061          * @param initialize if {@code true} the class will be initialized.
2062          * @param options   {@linkplain ClassOption class options}
2063          * @return the {@code Lookup} object on the hidden class,
2064          * with {@linkplain #ORIGINAL original} and
2065          * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege} access
2066          *
2067          * @throws IllegalAccessException if this {@code Lookup} does not have
2068          * {@linkplain #hasFullPrivilegeAccess() full privilege} access
2069          * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure
2070          * @throws UnsupportedClassVersionError if {@code bytes} is not of a supported major or minor version
2071          * @throws IllegalArgumentException if {@code bytes} denotes a class in a different package
2072          * than the lookup class or {@code bytes} is not a class or interface
2073          * ({@code ACC_MODULE} flag is set in the value of the {@code access_flags} item)
2074          * @throws IncompatibleClassChangeError if the class or interface named as
2075          * the direct superclass of {@code C} is in fact an interface, or if any of the classes
2076          * or interfaces named as direct superinterfaces of {@code C} are not in fact interfaces
2077          * @throws ClassCircularityError if any of the superclasses or superinterfaces of
2078          * {@code C} is {@code C} itself
2079          * @throws VerifyError if the newly created class cannot be verified
2080          * @throws LinkageError if the newly created class cannot be linked for any other reason
2081          * @throws NullPointerException if any parameter is {@code null}
2082          *
2083          * @since 16
2084          * @see Lookup#defineHiddenClass(byte[], boolean, ClassOption...)
2085          * @see Class#isHidden()
2086          * @see MethodHandles#classData(Lookup, String, Class)
2087          * @see MethodHandles#classDataAt(Lookup, String, Class, int)
2088          * @jvms 4.2.1 Binary Class and Interface Names
2089          * @jvms 4.2.2 Unqualified Names
2090          * @jvms 4.7.28 The {@code NestHost} Attribute
2091          * @jvms 4.7.29 The {@code NestMembers} Attribute
2092          * @jvms 5.4.3.1 Class and Interface Resolution
2093          * @jvms 5.4.4 Access Control
2094          * @jvms 5.3.5 Deriving a {@code Class} from a {@code class} File Representation
2095          * @jvms 5.4 Linking
2096          * @jvms 5.5 Initialization
2097          * @jls 12.7 Unloading of Classes and Interfaces
2098          */
2099         public Lookup defineHiddenClassWithClassData(byte[] bytes, Object classData, boolean initialize, ClassOption... options)
2100                 throws IllegalAccessException
2101         {
2102             Objects.requireNonNull(bytes);
2103             Objects.requireNonNull(classData);
2104 
2105             int flags = ClassOption.optionsToFlag(options);
2106 
2107             if (!hasFullPrivilegeAccess()) {
2108                 throw new IllegalAccessException(this + " does not have full privilege access");
2109             }
2110 
2111             return makeHiddenClassDefiner(bytes.clone(), false, flags)
2112                        .defineClassAsLookup(initialize, classData);
2113         }
2114 
2115         // A default dumper for writing class files passed to Lookup::defineClass
2116         // and Lookup::defineHiddenClass to disk for debugging purposes.  To enable,
2117         // set -Djdk.invoke.MethodHandle.dumpHiddenClassFiles or
2118         //     -Djdk.invoke.MethodHandle.dumpHiddenClassFiles=true
2119         //
2120         // This default dumper does not dump hidden classes defined by LambdaMetafactory
2121         // and LambdaForms and method handle internals.  They are dumped via
2122         // different ClassFileDumpers.
2123         private static ClassFileDumper defaultDumper() {
2124             return DEFAULT_DUMPER;
2125         }
2126 
2127         private static final ClassFileDumper DEFAULT_DUMPER = ClassFileDumper.getInstance(
2128                 "jdk.invoke.MethodHandle.dumpClassFiles", "DUMP_CLASS_FILES");
2129 
2130         /**
2131          * This method checks the class file version and the structure of `this_class`.
2132          * and checks if the bytes is a class or interface (ACC_MODULE flag not set)
2133          * that is in the named package.
2134          *
2135          * @throws IllegalArgumentException if ACC_MODULE flag is set in access flags
2136          * or the class is not in the given package name.
2137          */
2138         static String validateAndFindInternalName(byte[] bytes, String pkgName) {
2139             int magic = readInt(bytes, 0);
2140             if (magic != ClassFile.MAGIC_NUMBER) {
2141                 throw new ClassFormatError("Incompatible magic value: " + magic);
2142             }
2143             // We have to read major and minor this way as ClassFile API throws IAE
2144             // yet we want distinct ClassFormatError and UnsupportedClassVersionError
2145             int minor = readUnsignedShort(bytes, 4);
2146             int major = readUnsignedShort(bytes, 6);
2147 
2148             if (!VM.isSupportedClassFileVersion(major, minor)) {
2149                 throw new UnsupportedClassVersionError("Unsupported class file version " + major + "." + minor);
2150             }
2151 
2152             String name;
2153             ClassDesc sym;
2154             int accessFlags;
2155             try {
2156                 ClassModel cm = ClassFile.of().parse(bytes);
2157                 var thisClass = cm.thisClass();
2158                 name = thisClass.asInternalName();
2159                 sym = thisClass.asSymbol();
2160                 accessFlags = cm.flags().flagsMask();
2161             } catch (IllegalArgumentException e) {
2162                 ClassFormatError cfe = new ClassFormatError();
2163                 cfe.initCause(e);
2164                 throw cfe;
2165             }
2166             // must be a class or interface
2167             if ((accessFlags & ACC_MODULE) != 0) {
2168                 throw newIllegalArgumentException("Not a class or interface: ACC_MODULE flag is set");
2169             }
2170 
2171             String pn = sym.packageName();
2172             if (!pn.equals(pkgName)) {
2173                 throw newIllegalArgumentException(name + " not in same package as lookup class");
2174             }
2175 
2176             return name;
2177         }
2178 
2179         private static int readInt(byte[] bytes, int offset) {
2180             if ((offset + 4) > bytes.length) {
2181                 throw new ClassFormatError("Invalid ClassFile structure");
2182             }
2183             return ((bytes[offset] & 0xFF) << 24)
2184                     | ((bytes[offset + 1] & 0xFF) << 16)
2185                     | ((bytes[offset + 2] & 0xFF) << 8)
2186                     | (bytes[offset + 3] & 0xFF);
2187         }
2188 
2189         private static int readUnsignedShort(byte[] bytes, int offset) {
2190             if ((offset+2) > bytes.length) {
2191                 throw new ClassFormatError("Invalid ClassFile structure");
2192             }
2193             return ((bytes[offset] & 0xFF) << 8) | (bytes[offset + 1] & 0xFF);
2194         }
2195 
2196         /*
2197          * Returns a ClassDefiner that creates a {@code Class} object of a normal class
2198          * from the given bytes.
2199          *
2200          * Caller should make a defensive copy of the arguments if needed
2201          * before calling this factory method.
2202          *
2203          * @throws IllegalArgumentException if {@code bytes} is not a class or interface or
2204          * {@code bytes} denotes a class in a different package than the lookup class
2205          */
2206         private ClassDefiner makeClassDefiner(byte[] bytes) {
2207             var internalName = validateAndFindInternalName(bytes, lookupClass().getPackageName());
2208             return new ClassDefiner(this, internalName, bytes, STRONG_LOADER_LINK, defaultDumper());
2209         }
2210 
2211         /**
2212          * Returns a ClassDefiner that creates a {@code Class} object of a normal class
2213          * from the given bytes.  No package name check on the given bytes.
2214          *
2215          * @param internalName internal name
2216          * @param bytes   class bytes
2217          * @param dumper  dumper to write the given bytes to the dumper's output directory
2218          * @return ClassDefiner that defines a normal class of the given bytes.
2219          */
2220         ClassDefiner makeClassDefiner(String internalName, byte[] bytes, ClassFileDumper dumper) {
2221             // skip package name validation
2222             return new ClassDefiner(this, internalName, bytes, STRONG_LOADER_LINK, dumper);
2223         }
2224 
2225         /**
2226          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2227          * from the given bytes.  The name must be in the same package as the lookup class.
2228          *
2229          * Caller should make a defensive copy of the arguments if needed
2230          * before calling this factory method.
2231          *
2232          * @param bytes   class bytes
2233          * @param dumper dumper to write the given bytes to the dumper's output directory
2234          * @return ClassDefiner that defines a hidden class of the given bytes.
2235          *
2236          * @throws IllegalArgumentException if {@code bytes} is not a class or interface or
2237          * {@code bytes} denotes a class in a different package than the lookup class
2238          */
2239         ClassDefiner makeHiddenClassDefiner(byte[] bytes, ClassFileDumper dumper) {
2240             var internalName = validateAndFindInternalName(bytes, lookupClass().getPackageName());
2241             return makeHiddenClassDefiner(internalName, bytes, false, dumper, 0);
2242         }
2243 
2244         /**
2245          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2246          * from the given bytes and options.
2247          * The name must be in the same package as the lookup class.
2248          *
2249          * Caller should make a defensive copy of the arguments if needed
2250          * before calling this factory method.
2251          *
2252          * @param bytes   class bytes
2253          * @param flags   class option flag mask
2254          * @param accessVmAnnotations true to give the hidden class access to VM annotations
2255          * @return ClassDefiner that defines a hidden class of the given bytes and options
2256          *
2257          * @throws IllegalArgumentException if {@code bytes} is not a class or interface or
2258          * {@code bytes} denotes a class in a different package than the lookup class
2259          */
2260         private ClassDefiner makeHiddenClassDefiner(byte[] bytes,
2261                                                     boolean accessVmAnnotations,
2262                                                     int flags) {
2263             var internalName = validateAndFindInternalName(bytes, lookupClass().getPackageName());
2264             return makeHiddenClassDefiner(internalName, bytes, accessVmAnnotations, defaultDumper(), flags);
2265         }
2266 
2267         /**
2268          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2269          * from the given bytes and the given options.  No package name check on the given bytes.
2270          *
2271          * @param internalName internal name that specifies the prefix of the hidden class
2272          * @param bytes   class bytes
2273          * @param dumper  dumper to write the given bytes to the dumper's output directory
2274          * @return ClassDefiner that defines a hidden class of the given bytes and options.
2275          */
2276         ClassDefiner makeHiddenClassDefiner(String internalName, byte[] bytes, ClassFileDumper dumper) {
2277             Objects.requireNonNull(dumper);
2278             // skip name and access flags validation
2279             return makeHiddenClassDefiner(internalName, bytes, false, dumper, 0);
2280         }
2281 
2282         /**
2283          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2284          * from the given bytes and the given options.  No package name check on the given bytes.
2285          *
2286          * @param internalName internal name that specifies the prefix of the hidden class
2287          * @param bytes   class bytes
2288          * @param flags   class options flag mask
2289          * @param dumper  dumper to write the given bytes to the dumper's output directory
2290          * @return ClassDefiner that defines a hidden class of the given bytes and options.
2291          */
2292         ClassDefiner makeHiddenClassDefiner(String internalName, byte[] bytes, ClassFileDumper dumper, int flags) {
2293             Objects.requireNonNull(dumper);
2294             // skip name and access flags validation
2295             return makeHiddenClassDefiner(internalName, bytes, false, dumper, flags);
2296         }
2297 
2298         /**
2299          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
2300          * from the given class file and options.
2301          *
2302          * @param internalName internal name
2303          * @param bytes Class byte array
2304          * @param flags class option flag mask
2305          * @param accessVmAnnotations true to give the hidden class access to VM annotations
2306          * @param dumper dumper to write the given bytes to the dumper's output directory
2307          */
2308         private ClassDefiner makeHiddenClassDefiner(String internalName,
2309                                                     byte[] bytes,
2310                                                     boolean accessVmAnnotations,
2311                                                     ClassFileDumper dumper,
2312                                                     int flags) {
2313             flags |= HIDDEN_CLASS;
2314             if (accessVmAnnotations | VM.isSystemDomainLoader(lookupClass.getClassLoader())) {
2315                 // jdk.internal.vm.annotations are permitted for classes
2316                 // defined to boot loader and platform loader
2317                 flags |= ACCESS_VM_ANNOTATIONS;
2318             }
2319 
2320             return new ClassDefiner(this, internalName, bytes, flags, dumper);
2321         }
2322 
2323         record ClassDefiner(Lookup lookup, String internalName, byte[] bytes, int classFlags, ClassFileDumper dumper) {
2324             ClassDefiner {
2325                 assert ((classFlags & HIDDEN_CLASS) != 0 || (classFlags & STRONG_LOADER_LINK) == STRONG_LOADER_LINK);
2326             }
2327 
2328             Class<?> defineClass(boolean initialize) {
2329                 return defineClass(initialize, null);
2330             }
2331 
2332             Lookup defineClassAsLookup(boolean initialize) {
2333                 Class<?> c = defineClass(initialize, null);
2334                 return new Lookup(c, null, FULL_POWER_MODES);
2335             }
2336 
2337             /**
2338              * Defines the class of the given bytes and the given classData.
2339              * If {@code initialize} parameter is true, then the class will be initialized.
2340              *
2341              * @param initialize true if the class to be initialized
2342              * @param classData classData or null
2343              * @return the class
2344              *
2345              * @throws LinkageError linkage error
2346              */
2347             Class<?> defineClass(boolean initialize, Object classData) {
2348                 Class<?> lookupClass = lookup.lookupClass();
2349                 ClassLoader loader = lookupClass.getClassLoader();
2350                 ProtectionDomain pd = (loader != null) ? lookup.lookupClassProtectionDomain() : null;
2351                 Class<?> c = null;
2352                 try {
2353                     c = SharedSecrets.getJavaLangAccess()
2354                             .defineClass(loader, lookupClass, internalName, bytes, pd, initialize, classFlags, classData);
2355                     assert !isNestmate() || c.getNestHost() == lookupClass.getNestHost();
2356                     return c;
2357                 } finally {
2358                     // dump the classfile for debugging
2359                     if (dumper.isEnabled()) {
2360                         String name = internalName();
2361                         if (c != null) {
2362                             dumper.dumpClass(name, c, bytes);
2363                         } else {
2364                             dumper.dumpFailedClass(name, bytes);
2365                         }
2366                     }
2367                 }
2368             }
2369 
2370             /**
2371              * Defines the class of the given bytes and the given classData.
2372              * If {@code initialize} parameter is true, then the class will be initialized.
2373              *
2374              * @param initialize true if the class to be initialized
2375              * @param classData classData or null
2376              * @return a Lookup for the defined class
2377              *
2378              * @throws LinkageError linkage error
2379              */
2380             Lookup defineClassAsLookup(boolean initialize, Object classData) {
2381                 Class<?> c = defineClass(initialize, classData);
2382                 return new Lookup(c, null, FULL_POWER_MODES);
2383             }
2384 
2385             private boolean isNestmate() {
2386                 return (classFlags & NESTMATE_CLASS) != 0;
2387             }
2388         }
2389 
2390         private ProtectionDomain lookupClassProtectionDomain() {
2391             ProtectionDomain pd = cachedProtectionDomain;
2392             if (pd == null) {
2393                 cachedProtectionDomain = pd = SharedSecrets.getJavaLangAccess().protectionDomain(lookupClass);
2394             }
2395             return pd;
2396         }
2397 
2398         // cached protection domain
2399         private volatile ProtectionDomain cachedProtectionDomain;
2400 
2401         // Make sure outer class is initialized first.
2402         static { IMPL_NAMES.getClass(); }
2403 
2404         /** Package-private version of lookup which is trusted. */
2405         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, null, TRUSTED);
2406 
2407         /** Version of lookup which is trusted minimally.
2408          *  It can only be used to create method handles to publicly accessible
2409          *  members in packages that are exported unconditionally.
2410          */
2411         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, null, UNCONDITIONAL);
2412 
2413         private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
2414             String name = lookupClass.getName();
2415             if (name.startsWith("java.lang.invoke."))
2416                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
2417         }
2418 
2419         /**
2420          * Displays the name of the class from which lookups are to be made,
2421          * followed by "/" and the name of the {@linkplain #previousLookupClass()
2422          * previous lookup class} if present.
2423          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
2424          * If there are restrictions on the access permitted to this lookup,
2425          * this is indicated by adding a suffix to the class name, consisting
2426          * of a slash and a keyword.  The keyword represents the strongest
2427          * allowed access, and is chosen as follows:
2428          * <ul>
2429          * <li>If no access is allowed, the suffix is "/noaccess".
2430          * <li>If only unconditional access is allowed, the suffix is "/publicLookup".
2431          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
2432          * <li>If only public and module access are allowed, the suffix is "/module".
2433          * <li>If public and package access are allowed, the suffix is "/package".
2434          * <li>If public, package, and private access are allowed, the suffix is "/private".
2435          * </ul>
2436          * If none of the above cases apply, it is the case that
2437          * {@linkplain #hasFullPrivilegeAccess() full privilege access}
2438          * (public, module, package, private, and protected) is allowed.
2439          * In this case, no suffix is added.
2440          * This is true only of an object obtained originally from
2441          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
2442          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
2443          * always have restricted access, and will display a suffix.
2444          * <p>
2445          * (It may seem strange that protected access should be
2446          * stronger than private access.  Viewed independently from
2447          * package access, protected access is the first to be lost,
2448          * because it requires a direct subclass relationship between
2449          * caller and callee.)
2450          * @see #in
2451          */
2452         @Override
2453         public String toString() {
2454             String cname = lookupClass.getName();
2455             if (prevLookupClass != null)
2456                 cname += "/" + prevLookupClass.getName();
2457             switch (allowedModes) {
2458             case 0:  // no privileges
2459                 return cname + "/noaccess";
2460             case UNCONDITIONAL:
2461                 return cname + "/publicLookup";
2462             case PUBLIC:
2463                 return cname + "/public";
2464             case PUBLIC|MODULE:
2465                 return cname + "/module";
2466             case PUBLIC|PACKAGE:
2467             case PUBLIC|MODULE|PACKAGE:
2468                 return cname + "/package";
2469             case PUBLIC|PACKAGE|PRIVATE:
2470             case PUBLIC|MODULE|PACKAGE|PRIVATE:
2471                     return cname + "/private";
2472             case PUBLIC|PACKAGE|PRIVATE|PROTECTED:
2473             case PUBLIC|MODULE|PACKAGE|PRIVATE|PROTECTED:
2474             case FULL_POWER_MODES:
2475                     return cname;
2476             case TRUSTED:
2477                 return "/trusted";  // internal only; not exported
2478             default:  // Should not happen, but it's a bitfield...
2479                 cname = cname + "/" + Integer.toHexString(allowedModes);
2480                 assert(false) : cname;
2481                 return cname;
2482             }
2483         }
2484 
2485         /**
2486          * Produces a method handle for a static method.
2487          * The type of the method handle will be that of the method.
2488          * (Since static methods do not take receivers, there is no
2489          * additional receiver argument inserted into the method handle type,
2490          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
2491          * The method and all its argument types must be accessible to the lookup object.
2492          * <p>
2493          * The returned method handle will have
2494          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2495          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2496          * <p>
2497          * If the returned method handle is invoked, the method's class will
2498          * be initialized, if it has not already been initialized.
2499          * <p><b>Example:</b>
2500          * {@snippet lang="java" :
2501 import static java.lang.invoke.MethodHandles.*;
2502 import static java.lang.invoke.MethodType.*;
2503 ...
2504 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
2505   "asList", methodType(List.class, Object[].class));
2506 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
2507          * }
2508          * @param refc the class from which the method is accessed
2509          * @param name the name of the method
2510          * @param type the type of the method
2511          * @return the desired method handle
2512          * @throws NoSuchMethodException if the method does not exist
2513          * @throws IllegalAccessException if access checking fails,
2514          *                                or if the method is not {@code static},
2515          *                                or if the method's variable arity modifier bit
2516          *                                is set and {@code asVarargsCollector} fails
2517          * @throws NullPointerException if any argument is null
2518          */
2519         public MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2520             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
2521             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerLookup(method));
2522         }
2523 
2524         /**
2525          * Produces a method handle for a virtual method.
2526          * The type of the method handle will be that of the method,
2527          * with the receiver type (usually {@code refc}) prepended.
2528          * The method and all its argument types must be accessible to the lookup object.
2529          * <p>
2530          * When called, the handle will treat the first argument as a receiver
2531          * and, for non-private methods, dispatch on the receiver's type to determine which method
2532          * implementation to enter.
2533          * For private methods the named method in {@code refc} will be invoked on the receiver.
2534          * (The dispatching action is identical with that performed by an
2535          * {@code invokevirtual} or {@code invokeinterface} instruction.)
2536          * <p>
2537          * The first argument will be of type {@code refc} if the lookup
2538          * class has full privileges to access the member.  Otherwise
2539          * the member must be {@code protected} and the first argument
2540          * will be restricted in type to the lookup class.
2541          * <p>
2542          * The returned method handle will have
2543          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2544          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2545          * <p>
2546          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
2547          * instructions and method handles produced by {@code findVirtual},
2548          * if the class is {@code MethodHandle} and the name string is
2549          * {@code invokeExact} or {@code invoke}, the resulting
2550          * method handle is equivalent to one produced by
2551          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
2552          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
2553          * with the same {@code type} argument.
2554          * <p>
2555          * If the class is {@code VarHandle} and the name string corresponds to
2556          * the name of a signature-polymorphic access mode method, the resulting
2557          * method handle is equivalent to one produced by
2558          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
2559          * the access mode corresponding to the name string and with the same
2560          * {@code type} arguments.
2561          * <p>
2562          * <b>Example:</b>
2563          * {@snippet lang="java" :
2564 import static java.lang.invoke.MethodHandles.*;
2565 import static java.lang.invoke.MethodType.*;
2566 ...
2567 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
2568   "concat", methodType(String.class, String.class));
2569 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
2570   "hashCode", methodType(int.class));
2571 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
2572   "hashCode", methodType(int.class));
2573 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
2574 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
2575 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
2576 // interface method:
2577 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
2578   "subSequence", methodType(CharSequence.class, int.class, int.class));
2579 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
2580 // constructor "internal method" must be accessed differently:
2581 MethodType MT_newString = methodType(void.class); //()V for new String()
2582 try { assertEquals("impossible", lookup()
2583         .findVirtual(String.class, "<init>", MT_newString));
2584  } catch (NoSuchMethodException ex) { } // OK
2585 MethodHandle MH_newString = publicLookup()
2586   .findConstructor(String.class, MT_newString);
2587 assertEquals("", (String) MH_newString.invokeExact());
2588          * }
2589          *
2590          * @param refc the class or interface from which the method is accessed
2591          * @param name the name of the method
2592          * @param type the type of the method, with the receiver argument omitted
2593          * @return the desired method handle
2594          * @throws NoSuchMethodException if the method does not exist
2595          * @throws IllegalAccessException if access checking fails,
2596          *                                or if the method is {@code static},
2597          *                                or if the method's variable arity modifier bit
2598          *                                is set and {@code asVarargsCollector} fails
2599          * @throws NullPointerException if any argument is null
2600          */
2601         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2602             if (refc == MethodHandle.class) {
2603                 MethodHandle mh = findVirtualForMH(name, type);
2604                 if (mh != null)  return mh;
2605             } else if (refc == VarHandle.class) {
2606                 MethodHandle mh = findVirtualForVH(name, type);
2607                 if (mh != null)  return mh;
2608             }
2609             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
2610             MemberName method = resolveOrFail(refKind, refc, name, type);
2611             return getDirectMethod(refKind, refc, method, findBoundCallerLookup(method));
2612         }
2613         private MethodHandle findVirtualForMH(String name, MethodType type) {
2614             // these names require special lookups because of the implicit MethodType argument
2615             if ("invoke".equals(name))
2616                 return invoker(type);
2617             if ("invokeExact".equals(name))
2618                 return exactInvoker(type);
2619             assert(!MemberName.isMethodHandleInvokeName(name));
2620             return null;
2621         }
2622         private MethodHandle findVirtualForVH(String name, MethodType type) {
2623             try {
2624                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
2625             } catch (IllegalArgumentException e) {
2626                 return null;
2627             }
2628         }
2629 
2630         /**
2631          * Produces a method handle which creates an object and initializes it, using
2632          * the constructor of the specified type.
2633          * The parameter types of the method handle will be those of the constructor,
2634          * while the return type will be a reference to the constructor's class.
2635          * The constructor and all its argument types must be accessible to the lookup object.
2636          * <p>
2637          * The requested type must have a return type of {@code void}.
2638          * (This is consistent with the JVM's treatment of constructor type descriptors.)
2639          * <p>
2640          * The returned method handle will have
2641          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2642          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
2643          * <p>
2644          * If the returned method handle is invoked, the constructor's class will
2645          * be initialized, if it has not already been initialized.
2646          * <p><b>Example:</b>
2647          * {@snippet lang="java" :
2648 import static java.lang.invoke.MethodHandles.*;
2649 import static java.lang.invoke.MethodType.*;
2650 ...
2651 MethodHandle MH_newArrayList = publicLookup().findConstructor(
2652   ArrayList.class, methodType(void.class, Collection.class));
2653 Collection orig = Arrays.asList("x", "y");
2654 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
2655 assert(orig != copy);
2656 assertEquals(orig, copy);
2657 // a variable-arity constructor:
2658 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
2659   ProcessBuilder.class, methodType(void.class, String[].class));
2660 ProcessBuilder pb = (ProcessBuilder)
2661   MH_newProcessBuilder.invoke("x", "y", "z");
2662 assertEquals("[x, y, z]", pb.command().toString());
2663          * }
2664          * @param refc the class or interface from which the method is accessed
2665          * @param type the type of the method, with the receiver argument omitted, and a void return type
2666          * @return the desired method handle
2667          * @throws NoSuchMethodException if the constructor does not exist
2668          * @throws IllegalAccessException if access checking fails
2669          *                                or if the method's variable arity modifier bit
2670          *                                is set and {@code asVarargsCollector} fails
2671          * @throws NullPointerException if any argument is null
2672          */
2673         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2674             if (refc.isArray()) {
2675                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
2676             }
2677             String name = ConstantDescs.INIT_NAME;
2678             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
2679             return getDirectConstructor(refc, ctor);
2680         }
2681 
2682         /**
2683          * Looks up a class by name from the lookup context defined by this {@code Lookup} object,
2684          * <a href="MethodHandles.Lookup.html#equiv">as if resolved</a> by an {@code ldc} instruction.
2685          * Such a resolution, as specified in JVMS {@jvms 5.4.3.1}, attempts to locate and load the class,
2686          * and then determines whether the class is accessible to this lookup object.
2687          * <p>
2688          * For a class or an interface, the name is the {@linkplain ClassLoader##binary-name binary name}.
2689          * For an array class of {@code n} dimensions, the name begins with {@code n} occurrences
2690          * of {@code '['} and followed by the element type as encoded in the
2691          * {@linkplain Class##nameFormat table} specified in {@link Class#getName}.
2692          * <p>
2693          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class},
2694          * its class loader, and the {@linkplain #lookupModes() lookup modes}.
2695          *
2696          * @param targetName the {@linkplain ClassLoader##binary-name binary name} of the class
2697          *                   or the string representing an array class
2698          * @return the requested class.
2699          * @throws LinkageError if the linkage fails
2700          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
2701          * @throws IllegalAccessException if the class is not accessible, using the allowed access
2702          * modes.
2703          * @throws NullPointerException if {@code targetName} is null
2704          * @since 9
2705          * @jvms 5.4.3.1 Class and Interface Resolution
2706          */
2707         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
2708             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
2709             return accessClass(targetClass);
2710         }
2711 
2712         /**
2713          * Ensures that {@code targetClass} has been initialized. The class
2714          * to be initialized must be {@linkplain #accessClass accessible}
2715          * to this {@code Lookup} object.  This method causes {@code targetClass}
2716          * to be initialized if it has not been already initialized,
2717          * as specified in JVMS {@jvms 5.5}.
2718          *
2719          * <p>
2720          * This method returns when {@code targetClass} is fully initialized, or
2721          * when {@code targetClass} is being initialized by the current thread.
2722          *
2723          * @param <T> the type of the class to be initialized
2724          * @param targetClass the class to be initialized
2725          * @return {@code targetClass} that has been initialized, or that is being
2726          *         initialized by the current thread.
2727          *
2728          * @throws  IllegalArgumentException if {@code targetClass} is a primitive type or {@code void}
2729          *          or array class
2730          * @throws  IllegalAccessException if {@code targetClass} is not
2731          *          {@linkplain #accessClass accessible} to this lookup
2732          * @throws  ExceptionInInitializerError if the class initialization provoked
2733          *          by this method fails
2734          * @since 15
2735          * @jvms 5.5 Initialization
2736          */
2737         public <T> Class<T> ensureInitialized(Class<T> targetClass) throws IllegalAccessException {
2738             if (targetClass.isPrimitive())
2739                 throw new IllegalArgumentException(targetClass + " is a primitive class");
2740             if (targetClass.isArray())
2741                 throw new IllegalArgumentException(targetClass + " is an array class");
2742 
2743             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, prevLookupClass, allowedModes)) {
2744                 throw makeAccessException(targetClass);
2745             }
2746 
2747             // ensure class initialization
2748             Unsafe.getUnsafe().ensureClassInitialized(targetClass);
2749             return targetClass;
2750         }
2751 
2752         /*
2753          * Returns IllegalAccessException due to access violation to the given targetClass.
2754          *
2755          * This method is called by {@link Lookup#accessClass} and {@link Lookup#ensureInitialized}
2756          * which verifies access to a class rather a member.
2757          */
2758         private IllegalAccessException makeAccessException(Class<?> targetClass) {
2759             String message = "access violation: "+ targetClass;
2760             if (this == MethodHandles.publicLookup()) {
2761                 message += ", from public Lookup";
2762             } else {
2763                 Module m = lookupClass().getModule();
2764                 message += ", from " + lookupClass() + " (" + m + ")";
2765                 if (prevLookupClass != null) {
2766                     message += ", previous lookup " +
2767                             prevLookupClass.getName() + " (" + prevLookupClass.getModule() + ")";
2768                 }
2769             }
2770             return new IllegalAccessException(message);
2771         }
2772 
2773         /**
2774          * Determines if a class can be accessed from the lookup context defined by
2775          * this {@code Lookup} object. The static initializer of the class is not run.
2776          * If {@code targetClass} is an array class, {@code targetClass} is accessible
2777          * if the element type of the array class is accessible.  Otherwise,
2778          * {@code targetClass} is determined as accessible as follows.
2779          *
2780          * <p>
2781          * If {@code targetClass} is in the same module as the lookup class,
2782          * the lookup class is {@code LC} in module {@code M1} and
2783          * the previous lookup class is in module {@code M0} or
2784          * {@code null} if not present,
2785          * {@code targetClass} is accessible if and only if one of the following is true:
2786          * <ul>
2787          * <li>If this lookup has {@link #PRIVATE} access, {@code targetClass} is
2788          *     {@code LC} or other class in the same nest of {@code LC}.</li>
2789          * <li>If this lookup has {@link #PACKAGE} access, {@code targetClass} is
2790          *     in the same runtime package of {@code LC}.</li>
2791          * <li>If this lookup has {@link #MODULE} access, {@code targetClass} is
2792          *     a public type in {@code M1}.</li>
2793          * <li>If this lookup has {@link #PUBLIC} access, {@code targetClass} is
2794          *     a public type in a package exported by {@code M1} to at least  {@code M0}
2795          *     if the previous lookup class is present; otherwise, {@code targetClass}
2796          *     is a public type in a package exported by {@code M1} unconditionally.</li>
2797          * </ul>
2798          *
2799          * <p>
2800          * Otherwise, if this lookup has {@link #UNCONDITIONAL} access, this lookup
2801          * can access public types in all modules when the type is in a package
2802          * that is exported unconditionally.
2803          * <p>
2804          * Otherwise, {@code targetClass} is in a different module from {@code lookupClass},
2805          * and if this lookup does not have {@code PUBLIC} access, {@code lookupClass}
2806          * is inaccessible.
2807          * <p>
2808          * Otherwise, if this lookup has no {@linkplain #previousLookupClass() previous lookup class},
2809          * {@code M1} is the module containing {@code lookupClass} and
2810          * {@code M2} is the module containing {@code targetClass},
2811          * then {@code targetClass} is accessible if and only if
2812          * <ul>
2813          * <li>{@code M1} reads {@code M2}, and
2814          * <li>{@code targetClass} is public and in a package exported by
2815          *     {@code M2} at least to {@code M1}.
2816          * </ul>
2817          * <p>
2818          * Otherwise, if this lookup has a {@linkplain #previousLookupClass() previous lookup class},
2819          * {@code M1} and {@code M2} are as before, and {@code M0} is the module
2820          * containing the previous lookup class, then {@code targetClass} is accessible
2821          * if and only if one of the following is true:
2822          * <ul>
2823          * <li>{@code targetClass} is in {@code M0} and {@code M1}
2824          *     {@linkplain Module#reads reads} {@code M0} and the type is
2825          *     in a package that is exported to at least {@code M1}.
2826          * <li>{@code targetClass} is in {@code M1} and {@code M0}
2827          *     {@linkplain Module#reads reads} {@code M1} and the type is
2828          *     in a package that is exported to at least {@code M0}.
2829          * <li>{@code targetClass} is in a third module {@code M2} and both {@code M0}
2830          *     and {@code M1} reads {@code M2} and the type is in a package
2831          *     that is exported to at least both {@code M0} and {@code M2}.
2832          * </ul>
2833          * <p>
2834          * Otherwise, {@code targetClass} is not accessible.
2835          *
2836          * @param <T> the type of the class to be access-checked
2837          * @param targetClass the class to be access-checked
2838          * @return {@code targetClass} that has been access-checked
2839          * @throws IllegalAccessException if the class is not accessible from the lookup class
2840          * and previous lookup class, if present, using the allowed access modes.
2841          * @throws NullPointerException if {@code targetClass} is {@code null}
2842          * @since 9
2843          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
2844          */
2845         public <T> Class<T> accessClass(Class<T> targetClass) throws IllegalAccessException {
2846             if (!isClassAccessible(targetClass)) {
2847                 throw makeAccessException(targetClass);
2848             }
2849             return targetClass;
2850         }
2851 
2852         /**
2853          * Produces an early-bound method handle for a virtual method.
2854          * It will bypass checks for overriding methods on the receiver,
2855          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2856          * instruction from within the explicitly specified {@code specialCaller}.
2857          * The type of the method handle will be that of the method,
2858          * with a suitably restricted receiver type prepended.
2859          * (The receiver type will be {@code specialCaller} or a subtype.)
2860          * The method and all its argument types must be accessible
2861          * to the lookup object.
2862          * <p>
2863          * Before method resolution,
2864          * if the explicitly specified caller class is not identical with the
2865          * lookup class, or if this lookup object does not have
2866          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2867          * privileges, the access fails.
2868          * <p>
2869          * The returned method handle will have
2870          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2871          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2872          * <p style="font-size:smaller;">
2873          * <em>(Note:  JVM internal methods named {@value ConstantDescs#INIT_NAME}
2874          * are not visible to this API,
2875          * even though the {@code invokespecial} instruction can refer to them
2876          * in special circumstances.  Use {@link #findConstructor findConstructor}
2877          * to access instance initialization methods in a safe manner.)</em>
2878          * <p><b>Example:</b>
2879          * {@snippet lang="java" :
2880 import static java.lang.invoke.MethodHandles.*;
2881 import static java.lang.invoke.MethodType.*;
2882 ...
2883 static class Listie extends ArrayList {
2884   public String toString() { return "[wee Listie]"; }
2885   static Lookup lookup() { return MethodHandles.lookup(); }
2886 }
2887 ...
2888 // no access to constructor via invokeSpecial:
2889 MethodHandle MH_newListie = Listie.lookup()
2890   .findConstructor(Listie.class, methodType(void.class));
2891 Listie l = (Listie) MH_newListie.invokeExact();
2892 try { assertEquals("impossible", Listie.lookup().findSpecial(
2893         Listie.class, "<init>", methodType(void.class), Listie.class));
2894  } catch (NoSuchMethodException ex) { } // OK
2895 // access to super and self methods via invokeSpecial:
2896 MethodHandle MH_super = Listie.lookup().findSpecial(
2897   ArrayList.class, "toString" , methodType(String.class), Listie.class);
2898 MethodHandle MH_this = Listie.lookup().findSpecial(
2899   Listie.class, "toString" , methodType(String.class), Listie.class);
2900 MethodHandle MH_duper = Listie.lookup().findSpecial(
2901   Object.class, "toString" , methodType(String.class), Listie.class);
2902 assertEquals("[]", (String) MH_super.invokeExact(l));
2903 assertEquals(""+l, (String) MH_this.invokeExact(l));
2904 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
2905 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
2906         String.class, "toString", methodType(String.class), Listie.class));
2907  } catch (IllegalAccessException ex) { } // OK
2908 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
2909 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
2910          * }
2911          *
2912          * @param refc the class or interface from which the method is accessed
2913          * @param name the name of the method (which must not be "&lt;init&gt;")
2914          * @param type the type of the method, with the receiver argument omitted
2915          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
2916          * @return the desired method handle
2917          * @throws NoSuchMethodException if the method does not exist
2918          * @throws IllegalAccessException if access checking fails,
2919          *                                or if the method is {@code static},
2920          *                                or if the method's variable arity modifier bit
2921          *                                is set and {@code asVarargsCollector} fails
2922          * @throws NullPointerException if any argument is null
2923          */
2924         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
2925                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
2926             checkSpecialCaller(specialCaller, refc);
2927             Lookup specialLookup = this.in(specialCaller);
2928             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
2929             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerLookup(method));
2930         }
2931 
2932         /**
2933          * Produces a method handle giving read access to a non-static field.
2934          * The type of the method handle will have a return type of the field's
2935          * value type.
2936          * The method handle's single argument will be the instance containing
2937          * the field.
2938          * Access checking is performed immediately on behalf of the lookup class.
2939          * @param refc the class or interface from which the method is accessed
2940          * @param name the field's name
2941          * @param type the field's type
2942          * @return a method handle which can load values from the field
2943          * @throws NoSuchFieldException if the field does not exist
2944          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2945          * @throws NullPointerException if any argument is null
2946          * @see #findVarHandle(Class, String, Class)
2947          */
2948         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2949             MemberName field = resolveOrFail(REF_getField, refc, name, type);
2950             return getDirectField(REF_getField, refc, field);
2951         }
2952 
2953         /**
2954          * Produces a method handle giving write access to a non-static field.
2955          * The type of the method handle will have a void return type.
2956          * The method handle will take two arguments, the instance containing
2957          * the field, and the value to be stored.
2958          * The second argument will be of the field's value type.
2959          * Access checking is performed immediately on behalf of the lookup class.
2960          * @param refc the class or interface from which the method is accessed
2961          * @param name the field's name
2962          * @param type the field's type
2963          * @return a method handle which can store values into the field
2964          * @throws NoSuchFieldException if the field does not exist
2965          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2966          *                                or {@code final}
2967          * @throws NullPointerException if any argument is null
2968          * @see #findVarHandle(Class, String, Class)
2969          */
2970         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2971             MemberName field = resolveOrFail(REF_putField, refc, name, type);
2972             return getDirectField(REF_putField, refc, field);
2973         }
2974 
2975         /**
2976          * Produces a VarHandle giving access to a non-static field {@code name}
2977          * of type {@code type} declared in a class of type {@code recv}.
2978          * The VarHandle's variable type is {@code type} and it has one
2979          * coordinate type, {@code recv}.
2980          * <p>
2981          * Access checking is performed immediately on behalf of the lookup
2982          * class.
2983          * <p>
2984          * Certain access modes of the returned VarHandle are unsupported under
2985          * the following conditions:
2986          * <ul>
2987          * <li>if the field is declared {@code final}, then the write, atomic
2988          *     update, numeric atomic update, and bitwise atomic update access
2989          *     modes are unsupported.
2990          * <li>if the field type is anything other than {@code byte},
2991          *     {@code short}, {@code char}, {@code int}, {@code long},
2992          *     {@code float}, or {@code double} then numeric atomic update
2993          *     access modes are unsupported.
2994          * <li>if the field type is anything other than {@code boolean},
2995          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2996          *     {@code long} then bitwise atomic update access modes are
2997          *     unsupported.
2998          * </ul>
2999          * <p>
3000          * If the field is declared {@code volatile} then the returned VarHandle
3001          * will override access to the field (effectively ignore the
3002          * {@code volatile} declaration) in accordance to its specified
3003          * access modes.
3004          * <p>
3005          * If the field type is {@code float} or {@code double} then numeric
3006          * and atomic update access modes compare values using their bitwise
3007          * representation (see {@link Float#floatToRawIntBits} and
3008          * {@link Double#doubleToRawLongBits}, respectively).
3009          * @apiNote
3010          * Bitwise comparison of {@code float} values or {@code double} values,
3011          * as performed by the numeric and atomic update access modes, differ
3012          * from the primitive {@code ==} operator and the {@link Float#equals}
3013          * and {@link Double#equals} methods, specifically with respect to
3014          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3015          * Care should be taken when performing a compare and set or a compare
3016          * and exchange operation with such values since the operation may
3017          * unexpectedly fail.
3018          * There are many possible NaN values that are considered to be
3019          * {@code NaN} in Java, although no IEEE 754 floating-point operation
3020          * provided by Java can distinguish between them.  Operation failure can
3021          * occur if the expected or witness value is a NaN value and it is
3022          * transformed (perhaps in a platform specific manner) into another NaN
3023          * value, and thus has a different bitwise representation (see
3024          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3025          * details).
3026          * The values {@code -0.0} and {@code +0.0} have different bitwise
3027          * representations but are considered equal when using the primitive
3028          * {@code ==} operator.  Operation failure can occur if, for example, a
3029          * numeric algorithm computes an expected value to be say {@code -0.0}
3030          * and previously computed the witness value to be say {@code +0.0}.
3031          * @param recv the receiver class, of type {@code R}, that declares the
3032          * non-static field
3033          * @param name the field's name
3034          * @param type the field's type, of type {@code T}
3035          * @return a VarHandle giving access to non-static fields.
3036          * @throws NoSuchFieldException if the field does not exist
3037          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
3038          * @throws NullPointerException if any argument is null
3039          * @since 9
3040          */
3041         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3042             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
3043             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
3044             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
3045         }
3046 
3047         /**
3048          * Produces a method handle giving read access to a static field.
3049          * The type of the method handle will have a return type of the field's
3050          * value type.
3051          * The method handle will take no arguments.
3052          * Access checking is performed immediately on behalf of the lookup class.
3053          * <p>
3054          * If the returned method handle is invoked, the field's class will
3055          * be initialized, if it has not already been initialized.
3056          * @param refc the class or interface from which the method is accessed
3057          * @param name the field's name
3058          * @param type the field's type
3059          * @return a method handle which can load values from the field
3060          * @throws NoSuchFieldException if the field does not exist
3061          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
3062          * @throws NullPointerException if any argument is null
3063          */
3064         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3065             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
3066             return getDirectField(REF_getStatic, refc, field);
3067         }
3068 
3069         /**
3070          * Produces a method handle giving write access to a static field.
3071          * The type of the method handle will have a void return type.
3072          * The method handle will take a single
3073          * argument, of the field's value type, the value to be stored.
3074          * Access checking is performed immediately on behalf of the lookup class.
3075          * <p>
3076          * If the returned method handle is invoked, the field's class will
3077          * be initialized, if it has not already been initialized.
3078          * @param refc the class or interface from which the method is accessed
3079          * @param name the field's name
3080          * @param type the field's type
3081          * @return a method handle which can store values into the field
3082          * @throws NoSuchFieldException if the field does not exist
3083          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
3084          *                                or is {@code final}
3085          * @throws NullPointerException if any argument is null
3086          */
3087         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3088             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
3089             return getDirectField(REF_putStatic, refc, field);
3090         }
3091 
3092         /**
3093          * Produces a VarHandle giving access to a static field {@code name} of
3094          * type {@code type} declared in a class of type {@code decl}.
3095          * The VarHandle's variable type is {@code type} and it has no
3096          * coordinate types.
3097          * <p>
3098          * Access checking is performed immediately on behalf of the lookup
3099          * class.
3100          * <p>
3101          * If the returned VarHandle is operated on, the declaring class will be
3102          * initialized, if it has not already been initialized.
3103          * <p>
3104          * Certain access modes of the returned VarHandle are unsupported under
3105          * the following conditions:
3106          * <ul>
3107          * <li>if the field is declared {@code final}, then the write, atomic
3108          *     update, numeric atomic update, and bitwise atomic update access
3109          *     modes are unsupported.
3110          * <li>if the field type is anything other than {@code byte},
3111          *     {@code short}, {@code char}, {@code int}, {@code long},
3112          *     {@code float}, or {@code double}, then numeric atomic update
3113          *     access modes are unsupported.
3114          * <li>if the field type is anything other than {@code boolean},
3115          *     {@code byte}, {@code short}, {@code char}, {@code int} or
3116          *     {@code long} then bitwise atomic update access modes are
3117          *     unsupported.
3118          * </ul>
3119          * <p>
3120          * If the field is declared {@code volatile} then the returned VarHandle
3121          * will override access to the field (effectively ignore the
3122          * {@code volatile} declaration) in accordance to its specified
3123          * access modes.
3124          * <p>
3125          * If the field type is {@code float} or {@code double} then numeric
3126          * and atomic update access modes compare values using their bitwise
3127          * representation (see {@link Float#floatToRawIntBits} and
3128          * {@link Double#doubleToRawLongBits}, respectively).
3129          * @apiNote
3130          * Bitwise comparison of {@code float} values or {@code double} values,
3131          * as performed by the numeric and atomic update access modes, differ
3132          * from the primitive {@code ==} operator and the {@link Float#equals}
3133          * and {@link Double#equals} methods, specifically with respect to
3134          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3135          * Care should be taken when performing a compare and set or a compare
3136          * and exchange operation with such values since the operation may
3137          * unexpectedly fail.
3138          * There are many possible NaN values that are considered to be
3139          * {@code NaN} in Java, although no IEEE 754 floating-point operation
3140          * provided by Java can distinguish between them.  Operation failure can
3141          * occur if the expected or witness value is a NaN value and it is
3142          * transformed (perhaps in a platform specific manner) into another NaN
3143          * value, and thus has a different bitwise representation (see
3144          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3145          * details).
3146          * The values {@code -0.0} and {@code +0.0} have different bitwise
3147          * representations but are considered equal when using the primitive
3148          * {@code ==} operator.  Operation failure can occur if, for example, a
3149          * numeric algorithm computes an expected value to be say {@code -0.0}
3150          * and previously computed the witness value to be say {@code +0.0}.
3151          * @param decl the class that declares the static field
3152          * @param name the field's name
3153          * @param type the field's type, of type {@code T}
3154          * @return a VarHandle giving access to a static field
3155          * @throws NoSuchFieldException if the field does not exist
3156          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
3157          * @throws NullPointerException if any argument is null
3158          * @since 9
3159          */
3160         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3161             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
3162             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
3163             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
3164         }
3165 
3166         /**
3167          * Produces an early-bound method handle for a non-static method.
3168          * The receiver must have a supertype {@code defc} in which a method
3169          * of the given name and type is accessible to the lookup class.
3170          * The method and all its argument types must be accessible to the lookup object.
3171          * The type of the method handle will be that of the method,
3172          * without any insertion of an additional receiver parameter.
3173          * The given receiver will be bound into the method handle,
3174          * so that every call to the method handle will invoke the
3175          * requested method on the given receiver.
3176          * <p>
3177          * The returned method handle will have
3178          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3179          * the method's variable arity modifier bit ({@code 0x0080}) is set
3180          * <em>and</em> the trailing array argument is not the only argument.
3181          * (If the trailing array argument is the only argument,
3182          * the given receiver value will be bound to it.)
3183          * <p>
3184          * This is almost equivalent to the following code, with some differences noted below:
3185          * {@snippet lang="java" :
3186 import static java.lang.invoke.MethodHandles.*;
3187 import static java.lang.invoke.MethodType.*;
3188 ...
3189 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
3190 MethodHandle mh1 = mh0.bindTo(receiver);
3191 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
3192 return mh1;
3193          * }
3194          * where {@code defc} is either {@code receiver.getClass()} or a super
3195          * type of that class, in which the requested method is accessible
3196          * to the lookup class.
3197          * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity.
3198          * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would
3199          * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and
3200          * the receiver is restricted by {@code findVirtual} to the lookup class.)
3201          * @param receiver the object from which the method is accessed
3202          * @param name the name of the method
3203          * @param type the type of the method, with the receiver argument omitted
3204          * @return the desired method handle
3205          * @throws NoSuchMethodException if the method does not exist
3206          * @throws IllegalAccessException if access checking fails
3207          *                                or if the method's variable arity modifier bit
3208          *                                is set and {@code asVarargsCollector} fails
3209          * @throws NullPointerException if any argument is null
3210          * @see MethodHandle#bindTo
3211          * @see #findVirtual
3212          */
3213         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
3214             Class<? extends Object> refc = receiver.getClass(); // may get NPE
3215             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
3216             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerLookup(method));
3217             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
3218                 throw new IllegalAccessException("The restricted defining class " +
3219                                                  mh.type().leadingReferenceParameter().getName() +
3220                                                  " is not assignable from receiver class " +
3221                                                  receiver.getClass().getName());
3222             }
3223             return mh.bindArgumentL(0, receiver).setVarargs(method);
3224         }
3225 
3226         /**
3227          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
3228          * to <i>m</i>, if the lookup class has permission.
3229          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
3230          * If <i>m</i> is virtual, overriding is respected on every call.
3231          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
3232          * The type of the method handle will be that of the method,
3233          * with the receiver type prepended (but only if it is non-static).
3234          * If the method's {@code accessible} flag is not set,
3235          * access checking is performed immediately on behalf of the lookup class.
3236          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
3237          * <p>
3238          * The returned method handle will have
3239          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3240          * the method's variable arity modifier bit ({@code 0x0080}) is set.
3241          * <p>
3242          * If <i>m</i> is static, and
3243          * if the returned method handle is invoked, the method's class will
3244          * be initialized, if it has not already been initialized.
3245          * @param m the reflected method
3246          * @return a method handle which can invoke the reflected method
3247          * @throws IllegalAccessException if access checking fails
3248          *                                or if the method's variable arity modifier bit
3249          *                                is set and {@code asVarargsCollector} fails
3250          * @throws NullPointerException if the argument is null
3251          */
3252         public MethodHandle unreflect(Method m) throws IllegalAccessException {
3253             if (m.getDeclaringClass() == MethodHandle.class) {
3254                 MethodHandle mh = unreflectForMH(m);
3255                 if (mh != null)  return mh;
3256             }
3257             if (m.getDeclaringClass() == VarHandle.class) {
3258                 MethodHandle mh = unreflectForVH(m);
3259                 if (mh != null)  return mh;
3260             }
3261             MemberName method = new MemberName(m);
3262             byte refKind = method.getReferenceKind();
3263             if (refKind == REF_invokeSpecial)
3264                 refKind = REF_invokeVirtual;
3265             assert(method.isMethod());
3266             @SuppressWarnings("deprecation")
3267             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
3268             return lookup.getDirectMethod(refKind, method.getDeclaringClass(), method, findBoundCallerLookup(method));
3269         }
3270         private MethodHandle unreflectForMH(Method m) {
3271             // these names require special lookups because they throw UnsupportedOperationException
3272             if (MemberName.isMethodHandleInvokeName(m.getName()))
3273                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
3274             return null;
3275         }
3276         private MethodHandle unreflectForVH(Method m) {
3277             // these names require special lookups because they throw UnsupportedOperationException
3278             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
3279                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
3280             return null;
3281         }
3282 
3283         /**
3284          * Produces a method handle for a reflected method.
3285          * It will bypass checks for overriding methods on the receiver,
3286          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
3287          * instruction from within the explicitly specified {@code specialCaller}.
3288          * The type of the method handle will be that of the method,
3289          * with a suitably restricted receiver type prepended.
3290          * (The receiver type will be {@code specialCaller} or a subtype.)
3291          * If the method's {@code accessible} flag is not set,
3292          * access checking is performed immediately on behalf of the lookup class,
3293          * as if {@code invokespecial} instruction were being linked.
3294          * <p>
3295          * Before method resolution,
3296          * if the explicitly specified caller class is not identical with the
3297          * lookup class, or if this lookup object does not have
3298          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
3299          * privileges, the access fails.
3300          * <p>
3301          * The returned method handle will have
3302          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3303          * the method's variable arity modifier bit ({@code 0x0080}) is set.
3304          * @param m the reflected method
3305          * @param specialCaller the class nominally calling the method
3306          * @return a method handle which can invoke the reflected method
3307          * @throws IllegalAccessException if access checking fails,
3308          *                                or if the method is {@code static},
3309          *                                or if the method's variable arity modifier bit
3310          *                                is set and {@code asVarargsCollector} fails
3311          * @throws NullPointerException if any argument is null
3312          */
3313         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
3314             checkSpecialCaller(specialCaller, m.getDeclaringClass());
3315             Lookup specialLookup = this.in(specialCaller);
3316             MemberName method = new MemberName(m, true);
3317             assert(method.isMethod());
3318             // ignore m.isAccessible:  this is a new kind of access
3319             return specialLookup.getDirectMethod(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerLookup(method));
3320         }
3321 
3322         /**
3323          * Produces a method handle for a reflected constructor.
3324          * The type of the method handle will be that of the constructor,
3325          * with the return type changed to the declaring class.
3326          * The method handle will perform a {@code newInstance} operation,
3327          * creating a new instance of the constructor's class on the
3328          * arguments passed to the method handle.
3329          * <p>
3330          * If the constructor's {@code accessible} flag is not set,
3331          * access checking is performed immediately on behalf of the lookup class.
3332          * <p>
3333          * The returned method handle will have
3334          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
3335          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
3336          * <p>
3337          * If the returned method handle is invoked, the constructor's class will
3338          * be initialized, if it has not already been initialized.
3339          * @param c the reflected constructor
3340          * @return a method handle which can invoke the reflected constructor
3341          * @throws IllegalAccessException if access checking fails
3342          *                                or if the method's variable arity modifier bit
3343          *                                is set and {@code asVarargsCollector} fails
3344          * @throws NullPointerException if the argument is null
3345          */
3346         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
3347             MemberName ctor = new MemberName(c);
3348             assert(ctor.isConstructor());
3349             @SuppressWarnings("deprecation")
3350             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
3351             return lookup.getDirectConstructor(ctor.getDeclaringClass(), ctor);
3352         }
3353 
3354         /*
3355          * Produces a method handle that is capable of creating instances of the given class
3356          * and instantiated by the given constructor.
3357          *
3358          * This method should only be used by ReflectionFactory::newConstructorForSerialization.
3359          */
3360         /* package-private */ MethodHandle serializableConstructor(Class<?> decl, Constructor<?> c) throws IllegalAccessException {
3361             MemberName ctor = new MemberName(c);
3362             assert(ctor.isConstructor() && constructorInSuperclass(decl, c));
3363             checkAccess(REF_newInvokeSpecial, decl, ctor);
3364             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
3365             return DirectMethodHandle.makeAllocator(decl, ctor).setVarargs(ctor);
3366         }
3367 
3368         private static boolean constructorInSuperclass(Class<?> decl, Constructor<?> ctor) {
3369             if (decl == ctor.getDeclaringClass())
3370                 return true;
3371 
3372             Class<?> cl = decl;
3373             while ((cl = cl.getSuperclass()) != null) {
3374                 if (cl == ctor.getDeclaringClass()) {
3375                     return true;
3376                 }
3377             }
3378             return false;
3379         }
3380 
3381         /**
3382          * Produces a method handle giving read access to a reflected field.
3383          * The type of the method handle will have a return type of the field's
3384          * value type.
3385          * If the field is {@code static}, the method handle will take no arguments.
3386          * Otherwise, its single argument will be the instance containing
3387          * the field.
3388          * If the {@code Field} object's {@code accessible} flag is not set,
3389          * access checking is performed immediately on behalf of the lookup class.
3390          * <p>
3391          * If the field is static, and
3392          * if the returned method handle is invoked, the field's class will
3393          * be initialized, if it has not already been initialized.
3394          * @param f the reflected field
3395          * @return a method handle which can load values from the reflected field
3396          * @throws IllegalAccessException if access checking fails
3397          * @throws NullPointerException if the argument is null
3398          */
3399         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
3400             return unreflectField(f, false);
3401         }
3402 
3403         /**
3404          * Produces a method handle giving write access to a reflected field.
3405          * The type of the method handle will have a void return type.
3406          * If the field is {@code static}, the method handle will take a single
3407          * argument, of the field's value type, the value to be stored.
3408          * Otherwise, the two arguments will be the instance containing
3409          * the field, and the value to be stored.
3410          * If the {@code Field} object's {@code accessible} flag is not set,
3411          * access checking is performed immediately on behalf of the lookup class.
3412          * <p>
3413          * If the field is {@code final}, write access will not be
3414          * allowed and access checking will fail, except under certain
3415          * narrow circumstances documented for {@link Field#set Field.set}.
3416          * A method handle is returned only if a corresponding call to
3417          * the {@code Field} object's {@code set} method could return
3418          * normally.  In particular, fields which are both {@code static}
3419          * and {@code final} may never be set.
3420          * <p>
3421          * If the field is {@code static}, and
3422          * if the returned method handle is invoked, the field's class will
3423          * be initialized, if it has not already been initialized.
3424          * @param f the reflected field
3425          * @return a method handle which can store values into the reflected field
3426          * @throws IllegalAccessException if access checking fails,
3427          *         or if the field is {@code final} and write access
3428          *         is not enabled on the {@code Field} object
3429          * @throws NullPointerException if the argument is null
3430          */
3431         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
3432             return unreflectField(f, true);
3433         }
3434 
3435         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
3436             MemberName field = new MemberName(f, isSetter);
3437             if (isSetter && field.isFinal()) {
3438                 if (field.isTrustedFinalField()) {
3439                     String msg = field.isStatic() ? "static final field has no write access"
3440                                                   : "final field has no write access";
3441                     throw field.makeAccessException(msg, this);
3442                 }
3443             }
3444             assert(isSetter
3445                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
3446                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
3447             @SuppressWarnings("deprecation")
3448             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
3449             return lookup.getDirectField(field.getReferenceKind(), f.getDeclaringClass(), field);
3450         }
3451 
3452         /**
3453          * Produces a VarHandle giving access to a reflected field {@code f}
3454          * of type {@code T} declared in a class of type {@code R}.
3455          * The VarHandle's variable type is {@code T}.
3456          * If the field is non-static the VarHandle has one coordinate type,
3457          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
3458          * coordinate types.
3459          * <p>
3460          * Access checking is performed immediately on behalf of the lookup
3461          * class, regardless of the value of the field's {@code accessible}
3462          * flag.
3463          * <p>
3464          * If the field is static, and if the returned VarHandle is operated
3465          * on, the field's declaring class will be initialized, if it has not
3466          * already been initialized.
3467          * <p>
3468          * Certain access modes of the returned VarHandle are unsupported under
3469          * the following conditions:
3470          * <ul>
3471          * <li>if the field is declared {@code final}, then the write, atomic
3472          *     update, numeric atomic update, and bitwise atomic update access
3473          *     modes are unsupported.
3474          * <li>if the field type is anything other than {@code byte},
3475          *     {@code short}, {@code char}, {@code int}, {@code long},
3476          *     {@code float}, or {@code double} then numeric atomic update
3477          *     access modes are unsupported.
3478          * <li>if the field type is anything other than {@code boolean},
3479          *     {@code byte}, {@code short}, {@code char}, {@code int} or
3480          *     {@code long} then bitwise atomic update access modes are
3481          *     unsupported.
3482          * </ul>
3483          * <p>
3484          * If the field is declared {@code volatile} then the returned VarHandle
3485          * will override access to the field (effectively ignore the
3486          * {@code volatile} declaration) in accordance to its specified
3487          * access modes.
3488          * <p>
3489          * If the field type is {@code float} or {@code double} then numeric
3490          * and atomic update access modes compare values using their bitwise
3491          * representation (see {@link Float#floatToRawIntBits} and
3492          * {@link Double#doubleToRawLongBits}, respectively).
3493          * @apiNote
3494          * Bitwise comparison of {@code float} values or {@code double} values,
3495          * as performed by the numeric and atomic update access modes, differ
3496          * from the primitive {@code ==} operator and the {@link Float#equals}
3497          * and {@link Double#equals} methods, specifically with respect to
3498          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3499          * Care should be taken when performing a compare and set or a compare
3500          * and exchange operation with such values since the operation may
3501          * unexpectedly fail.
3502          * There are many possible NaN values that are considered to be
3503          * {@code NaN} in Java, although no IEEE 754 floating-point operation
3504          * provided by Java can distinguish between them.  Operation failure can
3505          * occur if the expected or witness value is a NaN value and it is
3506          * transformed (perhaps in a platform specific manner) into another NaN
3507          * value, and thus has a different bitwise representation (see
3508          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3509          * details).
3510          * The values {@code -0.0} and {@code +0.0} have different bitwise
3511          * representations but are considered equal when using the primitive
3512          * {@code ==} operator.  Operation failure can occur if, for example, a
3513          * numeric algorithm computes an expected value to be say {@code -0.0}
3514          * and previously computed the witness value to be say {@code +0.0}.
3515          * @param f the reflected field, with a field of type {@code T}, and
3516          * a declaring class of type {@code R}
3517          * @return a VarHandle giving access to non-static fields or a static
3518          * field
3519          * @throws IllegalAccessException if access checking fails
3520          * @throws NullPointerException if the argument is null
3521          * @since 9
3522          */
3523         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
3524             MemberName getField = new MemberName(f, false);
3525             MemberName putField = new MemberName(f, true);
3526             return getFieldVarHandle(getField.getReferenceKind(), putField.getReferenceKind(),
3527                                      f.getDeclaringClass(), getField, putField);
3528         }
3529 
3530         /**
3531          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
3532          * created by this lookup object or a similar one.
3533          * Security and access checks are performed to ensure that this lookup object
3534          * is capable of reproducing the target method handle.
3535          * This means that the cracking may fail if target is a direct method handle
3536          * but was created by an unrelated lookup object.
3537          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
3538          * and was created by a lookup object for a different class.
3539          * @param target a direct method handle to crack into symbolic reference components
3540          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
3541          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
3542          * @throws    NullPointerException if the target is {@code null}
3543          * @see MethodHandleInfo
3544          * @since 1.8
3545          */
3546         public MethodHandleInfo revealDirect(MethodHandle target) {
3547             if (!target.isCrackable()) {
3548                 throw newIllegalArgumentException("not a direct method handle");
3549             }
3550             MemberName member = target.internalMemberName();
3551             Class<?> defc = member.getDeclaringClass();
3552             byte refKind = member.getReferenceKind();
3553             assert(MethodHandleNatives.refKindIsValid(refKind));
3554             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
3555                 // Devirtualized method invocation is usually formally virtual.
3556                 // To avoid creating extra MemberName objects for this common case,
3557                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
3558                 refKind = REF_invokeVirtual;
3559             if (refKind == REF_invokeVirtual && defc.isInterface())
3560                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
3561                 refKind = REF_invokeInterface;
3562             // Check member access before cracking.
3563             try {
3564                 checkAccess(refKind, defc, member);
3565             } catch (IllegalAccessException ex) {
3566                 throw new IllegalArgumentException(ex);
3567             }
3568             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
3569                 Class<?> callerClass = target.internalCallerClass();
3570                 if ((lookupModes() & ORIGINAL) == 0 || callerClass != lookupClass())
3571                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
3572             }
3573             // Produce the handle to the results.
3574             return new InfoFromMemberName(this, member, refKind);
3575         }
3576 
3577         //--- Helper methods, all package-private.
3578 
3579         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3580             checkSymbolicClass(refc);  // do this before attempting to resolve
3581             Objects.requireNonNull(name);
3582             Objects.requireNonNull(type);
3583             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), allowedModes,
3584                                             NoSuchFieldException.class);
3585         }
3586 
3587         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
3588             checkSymbolicClass(refc);  // do this before attempting to resolve
3589             Objects.requireNonNull(type);
3590             checkMethodName(refKind, name);  // implicit null-check of name
3591             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), allowedModes,
3592                                             NoSuchMethodException.class);
3593         }
3594 
3595         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
3596             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
3597             Objects.requireNonNull(member.getName());
3598             Objects.requireNonNull(member.getType());
3599             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(), allowedModes,
3600                                             ReflectiveOperationException.class);
3601         }
3602 
3603         MemberName resolveOrNull(byte refKind, MemberName member) {
3604             // do this before attempting to resolve
3605             if (!isClassAccessible(member.getDeclaringClass())) {
3606                 return null;
3607             }
3608             Objects.requireNonNull(member.getName());
3609             Objects.requireNonNull(member.getType());
3610             return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull(), allowedModes);
3611         }
3612 
3613         MemberName resolveOrNull(byte refKind, Class<?> refc, String name, MethodType type) {
3614             // do this before attempting to resolve
3615             if (!isClassAccessible(refc)) {
3616                 return null;
3617             }
3618             Objects.requireNonNull(type);
3619             // implicit null-check of name
3620             if (name.startsWith("<") && refKind != REF_newInvokeSpecial) {
3621                 return null;
3622             }
3623             return IMPL_NAMES.resolveOrNull(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(), allowedModes);
3624         }
3625 
3626         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
3627             if (!isClassAccessible(refc)) {
3628                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
3629             }
3630         }
3631 
3632         boolean isClassAccessible(Class<?> refc) {
3633             Objects.requireNonNull(refc);
3634             Class<?> caller = lookupClassOrNull();
3635             Class<?> type = refc;
3636             while (type.isArray()) {
3637                 type = type.getComponentType();
3638             }
3639             return caller == null || VerifyAccess.isClassAccessible(type, caller, prevLookupClass, allowedModes);
3640         }
3641 
3642         /** Check name for an illegal leading "&lt;" character. */
3643         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
3644             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
3645                 throw new NoSuchMethodException("illegal method name: "+name);
3646         }
3647 
3648         /**
3649          * Find my trustable caller class if m is a caller sensitive method.
3650          * If this lookup object has original full privilege access, then the caller class is the lookupClass.
3651          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
3652          */
3653         Lookup findBoundCallerLookup(MemberName m) throws IllegalAccessException {
3654             if (MethodHandleNatives.isCallerSensitive(m) && (lookupModes() & ORIGINAL) == 0) {
3655                 // Only lookups with full privilege access are allowed to resolve caller-sensitive methods
3656                 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
3657             }
3658             return this;
3659         }
3660 
3661         /**
3662          * Returns {@code true} if this lookup has {@code PRIVATE} and {@code MODULE} access.
3663          * @return {@code true} if this lookup has {@code PRIVATE} and {@code MODULE} access.
3664          *
3665          * @deprecated This method was originally designed to test {@code PRIVATE} access
3666          * that implies full privilege access but {@code MODULE} access has since become
3667          * independent of {@code PRIVATE} access.  It is recommended to call
3668          * {@link #hasFullPrivilegeAccess()} instead.
3669          * @since 9
3670          */
3671         @Deprecated(since="14")
3672         public boolean hasPrivateAccess() {
3673             return hasFullPrivilegeAccess();
3674         }
3675 
3676         /**
3677          * Returns {@code true} if this lookup has <em>full privilege access</em>,
3678          * i.e. {@code PRIVATE} and {@code MODULE} access.
3679          * A {@code Lookup} object must have full privilege access in order to
3680          * access all members that are allowed to the
3681          * {@linkplain #lookupClass() lookup class}.
3682          *
3683          * @return {@code true} if this lookup has full privilege access.
3684          * @since 14
3685          * @see <a href="MethodHandles.Lookup.html#privacc">private and module access</a>
3686          */
3687         public boolean hasFullPrivilegeAccess() {
3688             return (allowedModes & (PRIVATE|MODULE)) == (PRIVATE|MODULE);
3689         }
3690 
3691         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3692             boolean wantStatic = (refKind == REF_invokeStatic);
3693             String message;
3694             if (m.isConstructor())
3695                 message = "expected a method, not a constructor";
3696             else if (!m.isMethod())
3697                 message = "expected a method";
3698             else if (wantStatic != m.isStatic())
3699                 message = wantStatic ? "expected a static method" : "expected a non-static method";
3700             else
3701                 { checkAccess(refKind, refc, m); return; }
3702             throw m.makeAccessException(message, this);
3703         }
3704 
3705         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3706             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
3707             String message;
3708             if (wantStatic != m.isStatic())
3709                 message = wantStatic ? "expected a static field" : "expected a non-static field";
3710             else
3711                 { checkAccess(refKind, refc, m); return; }
3712             throw m.makeAccessException(message, this);
3713         }
3714 
3715         private boolean isArrayClone(byte refKind, Class<?> refc, MemberName m) {
3716             return Modifier.isProtected(m.getModifiers()) &&
3717                     refKind == REF_invokeVirtual &&
3718                     m.getDeclaringClass() == Object.class &&
3719                     m.getName().equals("clone") &&
3720                     refc.isArray();
3721         }
3722 
3723         /** Check public/protected/private bits on the symbolic reference class and its member. */
3724         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3725             assert(m.referenceKindIsConsistentWith(refKind) &&
3726                    MethodHandleNatives.refKindIsValid(refKind) &&
3727                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
3728             int allowedModes = this.allowedModes;
3729             if (allowedModes == TRUSTED)  return;
3730             int mods = m.getModifiers();
3731             if (isArrayClone(refKind, refc, m)) {
3732                 // The JVM does this hack also.
3733                 // (See ClassVerifier::verify_invoke_instructions
3734                 // and LinkResolver::check_method_accessability.)
3735                 // Because the JVM does not allow separate methods on array types,
3736                 // there is no separate method for int[].clone.
3737                 // All arrays simply inherit Object.clone.
3738                 // But for access checking logic, we make Object.clone
3739                 // (normally protected) appear to be public.
3740                 // Later on, when the DirectMethodHandle is created,
3741                 // its leading argument will be restricted to the
3742                 // requested array type.
3743                 // N.B. The return type is not adjusted, because
3744                 // that is *not* the bytecode behavior.
3745                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
3746             }
3747             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
3748                 // cannot "new" a protected ctor in a different package
3749                 mods ^= Modifier.PROTECTED;
3750             }
3751             if (Modifier.isFinal(mods) &&
3752                     MethodHandleNatives.refKindIsSetter(refKind))
3753                 throw m.makeAccessException("unexpected set of a final field", this);
3754             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
3755             if ((requestedModes & allowedModes) != 0) {
3756                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
3757                                                     mods, lookupClass(), previousLookupClass(), allowedModes))
3758                     return;
3759             } else {
3760                 // Protected members can also be checked as if they were package-private.
3761                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
3762                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
3763                     return;
3764             }
3765             throw m.makeAccessException(accessFailedMessage(refc, m), this);
3766         }
3767 
3768         String accessFailedMessage(Class<?> refc, MemberName m) {
3769             Class<?> defc = m.getDeclaringClass();
3770             int mods = m.getModifiers();
3771             // check the class first:
3772             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
3773                                (defc == refc ||
3774                                 Modifier.isPublic(refc.getModifiers())));
3775             if (!classOK && (allowedModes & PACKAGE) != 0) {
3776                 // ignore previous lookup class to check if default package access
3777                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), null, FULL_POWER_MODES) &&
3778                            (defc == refc ||
3779                             VerifyAccess.isClassAccessible(refc, lookupClass(), null, FULL_POWER_MODES)));
3780             }
3781             if (!classOK)
3782                 return "class is not public";
3783             if (Modifier.isPublic(mods))
3784                 return "access to public member failed";  // (how?, module not readable?)
3785             if (Modifier.isPrivate(mods))
3786                 return "member is private";
3787             if (Modifier.isProtected(mods))
3788                 return "member is protected";
3789             return "member is private to package";
3790         }
3791 
3792         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
3793             int allowedModes = this.allowedModes;
3794             if (allowedModes == TRUSTED)  return;
3795             if ((lookupModes() & PRIVATE) == 0
3796                 || (specialCaller != lookupClass()
3797                        // ensure non-abstract methods in superinterfaces can be special-invoked
3798                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))))
3799                 throw new MemberName(specialCaller).
3800                     makeAccessException("no private access for invokespecial", this);
3801         }
3802 
3803         private boolean restrictProtectedReceiver(MemberName method) {
3804             // The accessing class only has the right to use a protected member
3805             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
3806             if (!method.isProtected() || method.isStatic()
3807                 || allowedModes == TRUSTED
3808                 || method.getDeclaringClass() == lookupClass()
3809                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()))
3810                 return false;
3811             return true;
3812         }
3813         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
3814             assert(!method.isStatic());
3815             // receiver type of mh is too wide; narrow to caller
3816             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
3817                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
3818             }
3819             MethodType rawType = mh.type();
3820             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
3821             MethodType narrowType = rawType.changeParameterType(0, caller);
3822             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
3823             assert(mh.viewAsTypeChecks(narrowType, true));
3824             return mh.copyWith(narrowType, mh.form);
3825         }
3826 
3827         /** Check access and get the requested method. */
3828         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
3829             final boolean doRestrict    = true;
3830             return getDirectMethodCommon(refKind, refc, method, doRestrict, callerLookup);
3831         }
3832         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
3833         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
3834             final boolean doRestrict    = false;
3835             return getDirectMethodCommon(REF_invokeSpecial, refc, method, doRestrict, callerLookup);
3836         }
3837         /** Common code for all methods; do not call directly except from immediately above. */
3838         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
3839                                                    boolean doRestrict,
3840                                                    Lookup boundCaller) throws IllegalAccessException {
3841             checkMethod(refKind, refc, method);
3842             assert(!method.isMethodHandleInvoke());
3843 
3844             if (refKind == REF_invokeSpecial &&
3845                 refc != lookupClass() &&
3846                 !refc.isInterface() && !lookupClass().isInterface() &&
3847                 refc != lookupClass().getSuperclass() &&
3848                 refc.isAssignableFrom(lookupClass())) {
3849                 assert(!method.getName().equals(ConstantDescs.INIT_NAME));  // not this code path
3850 
3851                 // Per JVMS 6.5, desc. of invokespecial instruction:
3852                 // If the method is in a superclass of the LC,
3853                 // and if our original search was above LC.super,
3854                 // repeat the search (symbolic lookup) from LC.super
3855                 // and continue with the direct superclass of that class,
3856                 // and so forth, until a match is found or no further superclasses exist.
3857                 // FIXME: MemberName.resolve should handle this instead.
3858                 Class<?> refcAsSuper = lookupClass();
3859                 MemberName m2;
3860                 do {
3861                     refcAsSuper = refcAsSuper.getSuperclass();
3862                     m2 = new MemberName(refcAsSuper,
3863                                         method.getName(),
3864                                         method.getMethodType(),
3865                                         REF_invokeSpecial);
3866                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull(), allowedModes);
3867                 } while (m2 == null &&         // no method is found yet
3868                          refc != refcAsSuper); // search up to refc
3869                 if (m2 == null)  throw new InternalError(method.toString());
3870                 method = m2;
3871                 refc = refcAsSuper;
3872                 // redo basic checks
3873                 checkMethod(refKind, refc, method);
3874             }
3875             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass());
3876             MethodHandle mh = dmh;
3877             // Optionally narrow the receiver argument to lookupClass using restrictReceiver.
3878             if ((doRestrict && refKind == REF_invokeSpecial) ||
3879                     (MethodHandleNatives.refKindHasReceiver(refKind) &&
3880                             restrictProtectedReceiver(method) &&
3881                             // All arrays simply inherit the protected Object.clone method.
3882                             // The leading argument is already restricted to the requested
3883                             // array type (not the lookup class).
3884                             !isArrayClone(refKind, refc, method))) {
3885                 mh = restrictReceiver(method, dmh, lookupClass());
3886             }
3887             mh = maybeBindCaller(method, mh, boundCaller);
3888             mh = mh.setVarargs(method);
3889             return mh;
3890         }
3891         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh, Lookup boundCaller)
3892                                              throws IllegalAccessException {
3893             if (boundCaller.allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
3894                 return mh;
3895 
3896             // boundCaller must have full privilege access.
3897             // It should have been checked by findBoundCallerLookup. Safe to check this again.
3898             if ((boundCaller.lookupModes() & ORIGINAL) == 0)
3899                 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
3900 
3901             assert boundCaller.hasFullPrivilegeAccess();
3902 
3903             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, boundCaller.lookupClass);
3904             // Note: caller will apply varargs after this step happens.
3905             return cbmh;
3906         }
3907 
3908         /** Check access and get the requested field. */
3909         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3910             return getDirectFieldCommon(refKind, refc, field);
3911         }
3912         /** Common code for all fields; do not call directly except from immediately above. */
3913         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3914             checkField(refKind, refc, field);
3915             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
3916             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
3917                                     restrictProtectedReceiver(field));
3918             if (doRestrict)
3919                 return restrictReceiver(field, dmh, lookupClass());
3920             return dmh;
3921         }
3922         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
3923                                             Class<?> refc, MemberName getField, MemberName putField)
3924                 throws IllegalAccessException {
3925             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField);
3926         }
3927         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
3928                                                   Class<?> refc, MemberName getField,
3929                                                   MemberName putField) throws IllegalAccessException {
3930             assert getField.isStatic() == putField.isStatic();
3931             assert getField.isGetter() && putField.isSetter();
3932             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
3933             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
3934 
3935             checkField(getRefKind, refc, getField);
3936 
3937             if (!putField.isFinal()) {
3938                 // A VarHandle does not support updates to final fields, any
3939                 // such VarHandle to a final field will be read-only and
3940                 // therefore the following write-based accessibility checks are
3941                 // only required for non-final fields
3942                 checkField(putRefKind, refc, putField);
3943             }
3944 
3945             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
3946                                   restrictProtectedReceiver(getField));
3947             if (doRestrict) {
3948                 assert !getField.isStatic();
3949                 // receiver type of VarHandle is too wide; narrow to caller
3950                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
3951                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
3952                 }
3953                 refc = lookupClass();
3954             }
3955             return VarHandles.makeFieldHandle(getField, refc,
3956                                               this.allowedModes == TRUSTED && !getField.isTrustedFinalField());
3957         }
3958         /** Check access and get the requested constructor. */
3959         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3960             return getDirectConstructorCommon(refc, ctor);
3961         }
3962         /** Common code for all constructors; do not call directly except from immediately above. */
3963         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3964             assert(ctor.isConstructor());
3965             checkAccess(REF_newInvokeSpecial, refc, ctor);
3966             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
3967             return DirectMethodHandle.make(ctor).setVarargs(ctor);
3968         }
3969 
3970         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
3971          */
3972         /*non-public*/
3973         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type)
3974                 throws ReflectiveOperationException {
3975             if (!(type instanceof Class || type instanceof MethodType))
3976                 throw new InternalError("unresolved MemberName");
3977             MemberName member = new MemberName(refKind, defc, name, type);
3978             MethodHandle mh = LOOKASIDE_TABLE.get(member);
3979             if (mh != null) {
3980                 checkSymbolicClass(defc);
3981                 return mh;
3982             }
3983             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
3984                 // Treat MethodHandle.invoke and invokeExact specially.
3985                 mh = findVirtualForMH(member.getName(), member.getMethodType());
3986                 if (mh != null) {
3987                     return mh;
3988                 }
3989             } else if (defc == VarHandle.class && refKind == REF_invokeVirtual) {
3990                 // Treat signature-polymorphic methods on VarHandle specially.
3991                 mh = findVirtualForVH(member.getName(), member.getMethodType());
3992                 if (mh != null) {
3993                     return mh;
3994                 }
3995             }
3996             MemberName resolved = resolveOrFail(refKind, member);
3997             mh = getDirectMethodForConstant(refKind, defc, resolved);
3998             if (mh instanceof DirectMethodHandle dmh
3999                     && canBeCached(refKind, defc, resolved)) {
4000                 MemberName key = mh.internalMemberName();
4001                 if (key != null) {
4002                     key = key.asNormalOriginal();
4003                 }
4004                 if (member.equals(key)) {  // better safe than sorry
4005                     LOOKASIDE_TABLE.put(key, dmh);
4006                 }
4007             }
4008             return mh;
4009         }
4010         private boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
4011             if (refKind == REF_invokeSpecial) {
4012                 return false;
4013             }
4014             if (!Modifier.isPublic(defc.getModifiers()) ||
4015                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
4016                     !member.isPublic() ||
4017                     member.isCallerSensitive()) {
4018                 return false;
4019             }
4020             ClassLoader loader = defc.getClassLoader();
4021             if (loader != null) {
4022                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
4023                 boolean found = false;
4024                 while (sysl != null) {
4025                     if (loader == sysl) { found = true; break; }
4026                     sysl = sysl.getParent();
4027                 }
4028                 if (!found) {
4029                     return false;
4030                 }
4031             }
4032             MemberName resolved2 = publicLookup().resolveOrNull(refKind,
4033                     new MemberName(refKind, defc, member.getName(), member.getType()));
4034             if (resolved2 == null) {
4035                 return false;
4036             }
4037             return true;
4038         }
4039         private MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
4040                 throws ReflectiveOperationException {
4041             if (MethodHandleNatives.refKindIsField(refKind)) {
4042                 return getDirectField(refKind, defc, member);
4043             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
4044                 return getDirectMethod(refKind, defc, member, findBoundCallerLookup(member));
4045             } else if (refKind == REF_newInvokeSpecial) {
4046                 return getDirectConstructor(defc, member);
4047             }
4048             // oops
4049             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
4050         }
4051 
4052         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
4053     }
4054 
4055     /**
4056      * Produces a method handle constructing arrays of a desired type,
4057      * as if by the {@code anewarray} bytecode.
4058      * The return type of the method handle will be the array type.
4059      * The type of its sole argument will be {@code int}, which specifies the size of the array.
4060      *
4061      * <p> If the returned method handle is invoked with a negative
4062      * array size, a {@code NegativeArraySizeException} will be thrown.
4063      *
4064      * @param arrayClass an array type
4065      * @return a method handle which can create arrays of the given type
4066      * @throws NullPointerException if the argument is {@code null}
4067      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
4068      * @see java.lang.reflect.Array#newInstance(Class, int)
4069      * @jvms 6.5 {@code anewarray} Instruction
4070      * @since 9
4071      */
4072     public static MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
4073         if (!arrayClass.isArray()) {
4074             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
4075         }
4076         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
4077                 bindTo(arrayClass.getComponentType());
4078         return ani.asType(ani.type().changeReturnType(arrayClass));
4079     }
4080 
4081     /**
4082      * Produces a method handle returning the length of an array,
4083      * as if by the {@code arraylength} bytecode.
4084      * The type of the method handle will have {@code int} as return type,
4085      * and its sole argument will be the array type.
4086      *
4087      * <p> If the returned method handle is invoked with a {@code null}
4088      * array reference, a {@code NullPointerException} will be thrown.
4089      *
4090      * @param arrayClass an array type
4091      * @return a method handle which can retrieve the length of an array of the given array type
4092      * @throws NullPointerException if the argument is {@code null}
4093      * @throws IllegalArgumentException if arrayClass is not an array type
4094      * @jvms 6.5 {@code arraylength} Instruction
4095      * @since 9
4096      */
4097     public static MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
4098         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
4099     }
4100 
4101     /**
4102      * Produces a method handle giving read access to elements of an array,
4103      * as if by the {@code aaload} bytecode.
4104      * The type of the method handle will have a return type of the array's
4105      * element type.  Its first argument will be the array type,
4106      * and the second will be {@code int}.
4107      *
4108      * <p> When the returned method handle is invoked,
4109      * the array reference and array index are checked.
4110      * A {@code NullPointerException} will be thrown if the array reference
4111      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
4112      * thrown if the index is negative or if it is greater than or equal to
4113      * the length of the array.
4114      *
4115      * @param arrayClass an array type
4116      * @return a method handle which can load values from the given array type
4117      * @throws NullPointerException if the argument is null
4118      * @throws  IllegalArgumentException if arrayClass is not an array type
4119      * @jvms 6.5 {@code aaload} Instruction
4120      */
4121     public static MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
4122         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
4123     }
4124 
4125     /**
4126      * Produces a method handle giving write access to elements of an array,
4127      * as if by the {@code astore} bytecode.
4128      * The type of the method handle will have a void return type.
4129      * Its last argument will be the array's element type.
4130      * The first and second arguments will be the array type and int.
4131      *
4132      * <p> When the returned method handle is invoked,
4133      * the array reference and array index are checked.
4134      * A {@code NullPointerException} will be thrown if the array reference
4135      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
4136      * thrown if the index is negative or if it is greater than or equal to
4137      * the length of the array.
4138      *
4139      * @param arrayClass the class of an array
4140      * @return a method handle which can store values into the array type
4141      * @throws NullPointerException if the argument is null
4142      * @throws IllegalArgumentException if arrayClass is not an array type
4143      * @jvms 6.5 {@code aastore} Instruction
4144      */
4145     public static MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
4146         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
4147     }
4148 
4149     /**
4150      * Produces a VarHandle giving access to elements of an array of type
4151      * {@code arrayClass}.  The VarHandle's variable type is the component type
4152      * of {@code arrayClass} and the list of coordinate types is
4153      * {@code (arrayClass, int)}, where the {@code int} coordinate type
4154      * corresponds to an argument that is an index into an array.
4155      * <p>
4156      * Certain access modes of the returned VarHandle are unsupported under
4157      * the following conditions:
4158      * <ul>
4159      * <li>if the component type is anything other than {@code byte},
4160      *     {@code short}, {@code char}, {@code int}, {@code long},
4161      *     {@code float}, or {@code double} then numeric atomic update access
4162      *     modes are unsupported.
4163      * <li>if the component type is anything other than {@code boolean},
4164      *     {@code byte}, {@code short}, {@code char}, {@code int} or
4165      *     {@code long} then bitwise atomic update access modes are
4166      *     unsupported.
4167      * </ul>
4168      * <p>
4169      * If the component type is {@code float} or {@code double} then numeric
4170      * and atomic update access modes compare values using their bitwise
4171      * representation (see {@link Float#floatToRawIntBits} and
4172      * {@link Double#doubleToRawLongBits}, respectively).
4173      *
4174      * <p> When the returned {@code VarHandle} is invoked,
4175      * the array reference and array index are checked.
4176      * A {@code NullPointerException} will be thrown if the array reference
4177      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
4178      * thrown if the index is negative or if it is greater than or equal to
4179      * the length of the array.
4180      *
4181      * @apiNote
4182      * Bitwise comparison of {@code float} values or {@code double} values,
4183      * as performed by the numeric and atomic update access modes, differ
4184      * from the primitive {@code ==} operator and the {@link Float#equals}
4185      * and {@link Double#equals} methods, specifically with respect to
4186      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
4187      * Care should be taken when performing a compare and set or a compare
4188      * and exchange operation with such values since the operation may
4189      * unexpectedly fail.
4190      * There are many possible NaN values that are considered to be
4191      * {@code NaN} in Java, although no IEEE 754 floating-point operation
4192      * provided by Java can distinguish between them.  Operation failure can
4193      * occur if the expected or witness value is a NaN value and it is
4194      * transformed (perhaps in a platform specific manner) into another NaN
4195      * value, and thus has a different bitwise representation (see
4196      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
4197      * details).
4198      * The values {@code -0.0} and {@code +0.0} have different bitwise
4199      * representations but are considered equal when using the primitive
4200      * {@code ==} operator.  Operation failure can occur if, for example, a
4201      * numeric algorithm computes an expected value to be say {@code -0.0}
4202      * and previously computed the witness value to be say {@code +0.0}.
4203      * @param arrayClass the class of an array, of type {@code T[]}
4204      * @return a VarHandle giving access to elements of an array
4205      * @throws NullPointerException if the arrayClass is null
4206      * @throws IllegalArgumentException if arrayClass is not an array type
4207      * @since 9
4208      */
4209     public static VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
4210         return VarHandles.makeArrayElementHandle(arrayClass);
4211     }
4212 
4213     /**
4214      * Produces a VarHandle giving access to elements of a {@code byte[]} array
4215      * viewed as if it were a different primitive array type, such as
4216      * {@code int[]} or {@code long[]}.
4217      * The VarHandle's variable type is the component type of
4218      * {@code viewArrayClass} and the list of coordinate types is
4219      * {@code (byte[], int)}, where the {@code int} coordinate type
4220      * corresponds to an argument that is an index into a {@code byte[]} array.
4221      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
4222      * array, composing bytes to or from a value of the component type of
4223      * {@code viewArrayClass} according to the given endianness.
4224      * <p>
4225      * The supported component types (variables types) are {@code short},
4226      * {@code char}, {@code int}, {@code long}, {@code float} and
4227      * {@code double}.
4228      * <p>
4229      * Access of bytes at a given index will result in an
4230      * {@code ArrayIndexOutOfBoundsException} if the index is less than {@code 0}
4231      * or greater than the {@code byte[]} array length minus the size (in bytes)
4232      * of {@code T}.
4233      * <p>
4234      * Only plain {@linkplain VarHandle.AccessMode#GET get} and {@linkplain VarHandle.AccessMode#SET set}
4235      * access modes are supported by the returned var handle. For all other access modes, an
4236      * {@link UnsupportedOperationException} will be thrown.
4237      *
4238      * @apiNote if access modes other than plain access are required, clients should
4239      * consider using off-heap memory through
4240      * {@linkplain java.nio.ByteBuffer#allocateDirect(int) direct byte buffers} or
4241      * off-heap {@linkplain java.lang.foreign.MemorySegment memory segments},
4242      * or memory segments backed by a
4243      * {@linkplain java.lang.foreign.MemorySegment#ofArray(long[]) {@code long[]}},
4244      * for which stronger alignment guarantees can be made.
4245      *
4246      * @param viewArrayClass the view array class, with a component type of
4247      * type {@code T}
4248      * @param byteOrder the endianness of the view array elements, as
4249      * stored in the underlying {@code byte} array
4250      * @return a VarHandle giving access to elements of a {@code byte[]} array
4251      * viewed as if elements corresponding to the components type of the view
4252      * array class
4253      * @throws NullPointerException if viewArrayClass or byteOrder is null
4254      * @throws IllegalArgumentException if viewArrayClass is not an array type
4255      * @throws UnsupportedOperationException if the component type of
4256      * viewArrayClass is not supported as a variable type
4257      * @since 9
4258      */
4259     public static VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
4260                                      ByteOrder byteOrder) throws IllegalArgumentException {
4261         Objects.requireNonNull(byteOrder);
4262         return VarHandles.byteArrayViewHandle(viewArrayClass,
4263                                               byteOrder == ByteOrder.BIG_ENDIAN);
4264     }
4265 
4266     /**
4267      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
4268      * viewed as if it were an array of elements of a different primitive
4269      * component type to that of {@code byte}, such as {@code int[]} or
4270      * {@code long[]}.
4271      * The VarHandle's variable type is the component type of
4272      * {@code viewArrayClass} and the list of coordinate types is
4273      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
4274      * corresponds to an argument that is an index into a {@code byte[]} array.
4275      * The returned VarHandle accesses bytes at an index in a
4276      * {@code ByteBuffer}, composing bytes to or from a value of the component
4277      * type of {@code viewArrayClass} according to the given endianness.
4278      * <p>
4279      * The supported component types (variables types) are {@code short},
4280      * {@code char}, {@code int}, {@code long}, {@code float} and
4281      * {@code double}.
4282      * <p>
4283      * Access will result in a {@code ReadOnlyBufferException} for anything
4284      * other than the read access modes if the {@code ByteBuffer} is read-only.
4285      * <p>
4286      * Access of bytes at a given index will result in an
4287      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
4288      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
4289      * {@code T}.
4290      * <p>
4291      * For heap byte buffers, access is always unaligned. As a result, only the plain
4292      * {@linkplain VarHandle.AccessMode#GET get}
4293      * and {@linkplain VarHandle.AccessMode#SET set} access modes are supported by the
4294      * returned var handle. For all other access modes, an {@link IllegalStateException}
4295      * will be thrown.
4296      * <p>
4297      * For direct buffers only, access of bytes at an index may be aligned or misaligned for {@code T},
4298      * with respect to the underlying memory address, {@code A} say, associated
4299      * with the {@code ByteBuffer} and index.
4300      * If access is misaligned then access for anything other than the
4301      * {@code get} and {@code set} access modes will result in an
4302      * {@code IllegalStateException}.  In such cases atomic access is only
4303      * guaranteed with respect to the largest power of two that divides the GCD
4304      * of {@code A} and the size (in bytes) of {@code T}.
4305      * If access is aligned then following access modes are supported and are
4306      * guaranteed to support atomic access:
4307      * <ul>
4308      * <li>read write access modes for all {@code T}, with the exception of
4309      *     access modes {@code get} and {@code set} for {@code long} and
4310      *     {@code double} on 32-bit platforms.
4311      * <li>atomic update access modes for {@code int}, {@code long},
4312      *     {@code float} or {@code double}.
4313      *     (Future major platform releases of the JDK may support additional
4314      *     types for certain currently unsupported access modes.)
4315      * <li>numeric atomic update access modes for {@code int} and {@code long}.
4316      *     (Future major platform releases of the JDK may support additional
4317      *     numeric types for certain currently unsupported access modes.)
4318      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
4319      *     (Future major platform releases of the JDK may support additional
4320      *     numeric types for certain currently unsupported access modes.)
4321      * </ul>
4322      * <p>
4323      * Misaligned access, and therefore atomicity guarantees, may be determined
4324      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
4325      * {@code index}, {@code T} and its corresponding boxed type,
4326      * {@code T_BOX}, as follows:
4327      * <pre>{@code
4328      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
4329      * ByteBuffer bb = ...
4330      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
4331      * boolean isMisaligned = misalignedAtIndex != 0;
4332      * }</pre>
4333      * <p>
4334      * If the variable type is {@code float} or {@code double} then atomic
4335      * update access modes compare values using their bitwise representation
4336      * (see {@link Float#floatToRawIntBits} and
4337      * {@link Double#doubleToRawLongBits}, respectively).
4338      * @param viewArrayClass the view array class, with a component type of
4339      * type {@code T}
4340      * @param byteOrder the endianness of the view array elements, as
4341      * stored in the underlying {@code ByteBuffer} (Note this overrides the
4342      * endianness of a {@code ByteBuffer})
4343      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
4344      * viewed as if elements corresponding to the components type of the view
4345      * array class
4346      * @throws NullPointerException if viewArrayClass or byteOrder is null
4347      * @throws IllegalArgumentException if viewArrayClass is not an array type
4348      * @throws UnsupportedOperationException if the component type of
4349      * viewArrayClass is not supported as a variable type
4350      * @since 9
4351      */
4352     public static VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
4353                                       ByteOrder byteOrder) throws IllegalArgumentException {
4354         Objects.requireNonNull(byteOrder);
4355         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
4356                                                    byteOrder == ByteOrder.BIG_ENDIAN);
4357     }
4358 
4359 
4360     //--- method handle invocation (reflective style)
4361 
4362     /**
4363      * Produces a method handle which will invoke any method handle of the
4364      * given {@code type}, with a given number of trailing arguments replaced by
4365      * a single trailing {@code Object[]} array.
4366      * The resulting invoker will be a method handle with the following
4367      * arguments:
4368      * <ul>
4369      * <li>a single {@code MethodHandle} target
4370      * <li>zero or more leading values (counted by {@code leadingArgCount})
4371      * <li>an {@code Object[]} array containing trailing arguments
4372      * </ul>
4373      * <p>
4374      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
4375      * the indicated {@code type}.
4376      * That is, if the target is exactly of the given {@code type}, it will behave
4377      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
4378      * is used to convert the target to the required {@code type}.
4379      * <p>
4380      * The type of the returned invoker will not be the given {@code type}, but rather
4381      * will have all parameters except the first {@code leadingArgCount}
4382      * replaced by a single array of type {@code Object[]}, which will be
4383      * the final parameter.
4384      * <p>
4385      * Before invoking its target, the invoker will spread the final array, apply
4386      * reference casts as necessary, and unbox and widen primitive arguments.
4387      * If, when the invoker is called, the supplied array argument does
4388      * not have the correct number of elements, the invoker will throw
4389      * an {@link IllegalArgumentException} instead of invoking the target.
4390      * <p>
4391      * This method is equivalent to the following code (though it may be more efficient):
4392      * {@snippet lang="java" :
4393 MethodHandle invoker = MethodHandles.invoker(type);
4394 int spreadArgCount = type.parameterCount() - leadingArgCount;
4395 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
4396 return invoker;
4397      * }
4398      * This method throws no reflective exceptions.
4399      * @param type the desired target type
4400      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
4401      * @return a method handle suitable for invoking any method handle of the given type
4402      * @throws NullPointerException if {@code type} is null
4403      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
4404      *                  the range from 0 to {@code type.parameterCount()} inclusive,
4405      *                  or if the resulting method handle's type would have
4406      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4407      */
4408     public static MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
4409         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
4410             throw newIllegalArgumentException("bad argument count", leadingArgCount);
4411         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
4412         return type.invokers().spreadInvoker(leadingArgCount);
4413     }
4414 
4415     /**
4416      * Produces a special <em>invoker method handle</em> which can be used to
4417      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
4418      * The resulting invoker will have a type which is
4419      * exactly equal to the desired type, except that it will accept
4420      * an additional leading argument of type {@code MethodHandle}.
4421      * <p>
4422      * This method is equivalent to the following code (though it may be more efficient):
4423      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
4424      *
4425      * <p style="font-size:smaller;">
4426      * <em>Discussion:</em>
4427      * Invoker method handles can be useful when working with variable method handles
4428      * of unknown types.
4429      * For example, to emulate an {@code invokeExact} call to a variable method
4430      * handle {@code M}, extract its type {@code T},
4431      * look up the invoker method {@code X} for {@code T},
4432      * and call the invoker method, as {@code X.invoke(T, A...)}.
4433      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
4434      * is unknown.)
4435      * If spreading, collecting, or other argument transformations are required,
4436      * they can be applied once to the invoker {@code X} and reused on many {@code M}
4437      * method handle values, as long as they are compatible with the type of {@code X}.
4438      * <p style="font-size:smaller;">
4439      * <em>(Note:  The invoker method is not available via the Core Reflection API.
4440      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
4441      * on the declared {@code invokeExact} or {@code invoke} method will raise an
4442      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
4443      * <p>
4444      * This method throws no reflective exceptions.
4445      * @param type the desired target type
4446      * @return a method handle suitable for invoking any method handle of the given type
4447      * @throws IllegalArgumentException if the resulting method handle's type would have
4448      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4449      */
4450     public static MethodHandle exactInvoker(MethodType type) {
4451         return type.invokers().exactInvoker();
4452     }
4453 
4454     /**
4455      * Produces a special <em>invoker method handle</em> which can be used to
4456      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
4457      * The resulting invoker will have a type which is
4458      * exactly equal to the desired type, except that it will accept
4459      * an additional leading argument of type {@code MethodHandle}.
4460      * <p>
4461      * Before invoking its target, if the target differs from the expected type,
4462      * the invoker will apply reference casts as
4463      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
4464      * Similarly, the return value will be converted as necessary.
4465      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
4466      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
4467      * <p>
4468      * This method is equivalent to the following code (though it may be more efficient):
4469      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
4470      * <p style="font-size:smaller;">
4471      * <em>Discussion:</em>
4472      * A {@linkplain MethodType#genericMethodType general method type} is one which
4473      * mentions only {@code Object} arguments and return values.
4474      * An invoker for such a type is capable of calling any method handle
4475      * of the same arity as the general type.
4476      * <p style="font-size:smaller;">
4477      * <em>(Note:  The invoker method is not available via the Core Reflection API.
4478      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
4479      * on the declared {@code invokeExact} or {@code invoke} method will raise an
4480      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
4481      * <p>
4482      * This method throws no reflective exceptions.
4483      * @param type the desired target type
4484      * @return a method handle suitable for invoking any method handle convertible to the given type
4485      * @throws IllegalArgumentException if the resulting method handle's type would have
4486      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4487      */
4488     public static MethodHandle invoker(MethodType type) {
4489         return type.invokers().genericInvoker();
4490     }
4491 
4492     /**
4493      * Produces a special <em>invoker method handle</em> which can be used to
4494      * invoke a signature-polymorphic access mode method on any VarHandle whose
4495      * associated access mode type is compatible with the given type.
4496      * The resulting invoker will have a type which is exactly equal to the
4497      * desired given type, except that it will accept an additional leading
4498      * argument of type {@code VarHandle}.
4499      *
4500      * @param accessMode the VarHandle access mode
4501      * @param type the desired target type
4502      * @return a method handle suitable for invoking an access mode method of
4503      *         any VarHandle whose access mode type is of the given type.
4504      * @since 9
4505      */
4506     public static MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
4507         return type.invokers().varHandleMethodExactInvoker(accessMode);
4508     }
4509 
4510     /**
4511      * Produces a special <em>invoker method handle</em> which can be used to
4512      * invoke a signature-polymorphic access mode method on any VarHandle whose
4513      * associated access mode type is compatible with the given type.
4514      * The resulting invoker will have a type which is exactly equal to the
4515      * desired given type, except that it will accept an additional leading
4516      * argument of type {@code VarHandle}.
4517      * <p>
4518      * Before invoking its target, if the access mode type differs from the
4519      * desired given type, the invoker will apply reference casts as necessary
4520      * and box, unbox, or widen primitive values, as if by
4521      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
4522      * converted as necessary.
4523      * <p>
4524      * This method is equivalent to the following code (though it may be more
4525      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
4526      *
4527      * @param accessMode the VarHandle access mode
4528      * @param type the desired target type
4529      * @return a method handle suitable for invoking an access mode method of
4530      *         any VarHandle whose access mode type is convertible to the given
4531      *         type.
4532      * @since 9
4533      */
4534     public static MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
4535         return type.invokers().varHandleMethodInvoker(accessMode);
4536     }
4537 
4538     /*non-public*/
4539     static MethodHandle basicInvoker(MethodType type) {
4540         return type.invokers().basicInvoker();
4541     }
4542 
4543      //--- method handle modification (creation from other method handles)
4544 
4545     /**
4546      * Produces a method handle which adapts the type of the
4547      * given method handle to a new type by pairwise argument and return type conversion.
4548      * The original type and new type must have the same number of arguments.
4549      * The resulting method handle is guaranteed to report a type
4550      * which is equal to the desired new type.
4551      * <p>
4552      * If the original type and new type are equal, returns target.
4553      * <p>
4554      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
4555      * and some additional conversions are also applied if those conversions fail.
4556      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
4557      * if possible, before or instead of any conversions done by {@code asType}:
4558      * <ul>
4559      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
4560      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
4561      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
4562      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
4563      *     the boolean is converted to a byte value, 1 for true, 0 for false.
4564      *     (This treatment follows the usage of the bytecode verifier.)
4565      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
4566      *     <em>T0</em> is converted to byte via Java casting conversion (JLS {@jls 5.5}),
4567      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
4568      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
4569      *     then a Java casting conversion (JLS {@jls 5.5}) is applied.
4570      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
4571      *     widening and/or narrowing.)
4572      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
4573      *     conversion will be applied at runtime, possibly followed
4574      *     by a Java casting conversion (JLS {@jls 5.5}) on the primitive value,
4575      *     possibly followed by a conversion from byte to boolean by testing
4576      *     the low-order bit.
4577      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
4578      *     and if the reference is null at runtime, a zero value is introduced.
4579      * </ul>
4580      * @param target the method handle to invoke after arguments are retyped
4581      * @param newType the expected type of the new method handle
4582      * @return a method handle which delegates to the target after performing
4583      *           any necessary argument conversions, and arranges for any
4584      *           necessary return value conversions
4585      * @throws NullPointerException if either argument is null
4586      * @throws WrongMethodTypeException if the conversion cannot be made
4587      * @see MethodHandle#asType
4588      */
4589     public static MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
4590         explicitCastArgumentsChecks(target, newType);
4591         // use the asTypeCache when possible:
4592         MethodType oldType = target.type();
4593         if (oldType == newType)  return target;
4594         if (oldType.explicitCastEquivalentToAsType(newType)) {
4595             return target.asFixedArity().asType(newType);
4596         }
4597         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
4598     }
4599 
4600     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
4601         if (target.type().parameterCount() != newType.parameterCount()) {
4602             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
4603         }
4604     }
4605 
4606     /**
4607      * Produces a method handle which adapts the calling sequence of the
4608      * given method handle to a new type, by reordering the arguments.
4609      * The resulting method handle is guaranteed to report a type
4610      * which is equal to the desired new type.
4611      * <p>
4612      * The given array controls the reordering.
4613      * Call {@code #I} the number of incoming parameters (the value
4614      * {@code newType.parameterCount()}, and call {@code #O} the number
4615      * of outgoing parameters (the value {@code target.type().parameterCount()}).
4616      * Then the length of the reordering array must be {@code #O},
4617      * and each element must be a non-negative number less than {@code #I}.
4618      * For every {@code N} less than {@code #O}, the {@code N}-th
4619      * outgoing argument will be taken from the {@code I}-th incoming
4620      * argument, where {@code I} is {@code reorder[N]}.
4621      * <p>
4622      * No argument or return value conversions are applied.
4623      * The type of each incoming argument, as determined by {@code newType},
4624      * must be identical to the type of the corresponding outgoing parameter
4625      * or parameters in the target method handle.
4626      * The return type of {@code newType} must be identical to the return
4627      * type of the original target.
4628      * <p>
4629      * The reordering array need not specify an actual permutation.
4630      * An incoming argument will be duplicated if its index appears
4631      * more than once in the array, and an incoming argument will be dropped
4632      * if its index does not appear in the array.
4633      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
4634      * incoming arguments which are not mentioned in the reordering array
4635      * may be of any type, as determined only by {@code newType}.
4636      * {@snippet lang="java" :
4637 import static java.lang.invoke.MethodHandles.*;
4638 import static java.lang.invoke.MethodType.*;
4639 ...
4640 MethodType intfn1 = methodType(int.class, int.class);
4641 MethodType intfn2 = methodType(int.class, int.class, int.class);
4642 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
4643 assert(sub.type().equals(intfn2));
4644 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
4645 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
4646 assert((int)rsub.invokeExact(1, 100) == 99);
4647 MethodHandle add = ... (int x, int y) -> (x+y) ...;
4648 assert(add.type().equals(intfn2));
4649 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
4650 assert(twice.type().equals(intfn1));
4651 assert((int)twice.invokeExact(21) == 42);
4652      * }
4653      * <p>
4654      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4655      * variable-arity method handle}, even if the original target method handle was.
4656      * @param target the method handle to invoke after arguments are reordered
4657      * @param newType the expected type of the new method handle
4658      * @param reorder an index array which controls the reordering
4659      * @return a method handle which delegates to the target after it
4660      *           drops unused arguments and moves and/or duplicates the other arguments
4661      * @throws NullPointerException if any argument is null
4662      * @throws IllegalArgumentException if the index array length is not equal to
4663      *                  the arity of the target, or if any index array element
4664      *                  not a valid index for a parameter of {@code newType},
4665      *                  or if two corresponding parameter types in
4666      *                  {@code target.type()} and {@code newType} are not identical,
4667      */
4668     public static MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
4669         reorder = reorder.clone();  // get a private copy
4670         MethodType oldType = target.type();
4671         permuteArgumentChecks(reorder, newType, oldType);
4672         // first detect dropped arguments and handle them separately
4673         int[] originalReorder = reorder;
4674         BoundMethodHandle result = target.rebind();
4675         LambdaForm form = result.form;
4676         int newArity = newType.parameterCount();
4677         // Normalize the reordering into a real permutation,
4678         // by removing duplicates and adding dropped elements.
4679         // This somewhat improves lambda form caching, as well
4680         // as simplifying the transform by breaking it up into steps.
4681         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
4682             if (ddIdx > 0) {
4683                 // We found a duplicated entry at reorder[ddIdx].
4684                 // Example:  (x,y,z)->asList(x,y,z)
4685                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
4686                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
4687                 // The starred element corresponds to the argument
4688                 // deleted by the dupArgumentForm transform.
4689                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
4690                 boolean killFirst = false;
4691                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
4692                     // Set killFirst if the dup is larger than an intervening position.
4693                     // This will remove at least one inversion from the permutation.
4694                     if (dupVal > val) killFirst = true;
4695                 }
4696                 if (!killFirst) {
4697                     srcPos = dstPos;
4698                     dstPos = ddIdx;
4699                 }
4700                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
4701                 assert (reorder[srcPos] == reorder[dstPos]);
4702                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
4703                 // contract the reordering by removing the element at dstPos
4704                 int tailPos = dstPos + 1;
4705                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
4706                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
4707             } else {
4708                 int dropVal = ~ddIdx, insPos = 0;
4709                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
4710                     // Find first element of reorder larger than dropVal.
4711                     // This is where we will insert the dropVal.
4712                     insPos += 1;
4713                 }
4714                 Class<?> ptype = newType.parameterType(dropVal);
4715                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
4716                 oldType = oldType.insertParameterTypes(insPos, ptype);
4717                 // expand the reordering by inserting an element at insPos
4718                 int tailPos = insPos + 1;
4719                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
4720                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
4721                 reorder[insPos] = dropVal;
4722             }
4723             assert (permuteArgumentChecks(reorder, newType, oldType));
4724         }
4725         assert (reorder.length == newArity);  // a perfect permutation
4726         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
4727         form = form.editor().permuteArgumentsForm(1, reorder);
4728         if (newType == result.type() && form == result.internalForm())
4729             return result;
4730         return result.copyWith(newType, form);
4731     }
4732 
4733     /**
4734      * Return an indication of any duplicate or omission in reorder.
4735      * If the reorder contains a duplicate entry, return the index of the second occurrence.
4736      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
4737      * Otherwise, return zero.
4738      * If an element not in [0..newArity-1] is encountered, return reorder.length.
4739      */
4740     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
4741         final int BIT_LIMIT = 63;  // max number of bits in bit mask
4742         if (newArity < BIT_LIMIT) {
4743             long mask = 0;
4744             for (int i = 0; i < reorder.length; i++) {
4745                 int arg = reorder[i];
4746                 if (arg >= newArity) {
4747                     return reorder.length;
4748                 }
4749                 long bit = 1L << arg;
4750                 if ((mask & bit) != 0) {
4751                     return i;  // >0 indicates a dup
4752                 }
4753                 mask |= bit;
4754             }
4755             if (mask == (1L << newArity) - 1) {
4756                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
4757                 return 0;
4758             }
4759             // find first zero
4760             long zeroBit = Long.lowestOneBit(~mask);
4761             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
4762             assert(zeroPos <= newArity);
4763             if (zeroPos == newArity) {
4764                 return 0;
4765             }
4766             return ~zeroPos;
4767         } else {
4768             // same algorithm, different bit set
4769             BitSet mask = new BitSet(newArity);
4770             for (int i = 0; i < reorder.length; i++) {
4771                 int arg = reorder[i];
4772                 if (arg >= newArity) {
4773                     return reorder.length;
4774                 }
4775                 if (mask.get(arg)) {
4776                     return i;  // >0 indicates a dup
4777                 }
4778                 mask.set(arg);
4779             }
4780             int zeroPos = mask.nextClearBit(0);
4781             assert(zeroPos <= newArity);
4782             if (zeroPos == newArity) {
4783                 return 0;
4784             }
4785             return ~zeroPos;
4786         }
4787     }
4788 
4789     static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
4790         if (newType.returnType() != oldType.returnType())
4791             throw newIllegalArgumentException("return types do not match",
4792                     oldType, newType);
4793         if (reorder.length != oldType.parameterCount())
4794             throw newIllegalArgumentException("old type parameter count and reorder array length do not match",
4795                     oldType, Arrays.toString(reorder));
4796 
4797         int limit = newType.parameterCount();
4798         for (int j = 0; j < reorder.length; j++) {
4799             int i = reorder[j];
4800             if (i < 0 || i >= limit) {
4801                 throw newIllegalArgumentException("index is out of bounds for new type",
4802                         i, newType);
4803             }
4804             Class<?> src = newType.parameterType(i);
4805             Class<?> dst = oldType.parameterType(j);
4806             if (src != dst)
4807                 throw newIllegalArgumentException("parameter types do not match after reorder",
4808                         oldType, newType);
4809         }
4810         return true;
4811     }
4812 
4813     /**
4814      * Produces a method handle of the requested return type which returns the given
4815      * constant value every time it is invoked.
4816      * <p>
4817      * Before the method handle is returned, the passed-in value is converted to the requested type.
4818      * If the requested type is primitive, widening primitive conversions are attempted,
4819      * else reference conversions are attempted.
4820      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
4821      * @param type the return type of the desired method handle
4822      * @param value the value to return
4823      * @return a method handle of the given return type and no arguments, which always returns the given value
4824      * @throws NullPointerException if the {@code type} argument is null
4825      * @throws ClassCastException if the value cannot be converted to the required return type
4826      * @throws IllegalArgumentException if the given type is {@code void.class}
4827      */
4828     public static MethodHandle constant(Class<?> type, Object value) {
4829         if (Objects.requireNonNull(type) == void.class)
4830             throw newIllegalArgumentException("void type");
4831         return MethodHandleImpl.makeConstantReturning(type, value);
4832     }
4833 
4834     /**
4835      * Produces a method handle which returns its sole argument when invoked.
4836      * @param type the type of the sole parameter and return value of the desired method handle
4837      * @return a unary method handle which accepts and returns the given type
4838      * @throws NullPointerException if the argument is null
4839      * @throws IllegalArgumentException if the given type is {@code void.class}
4840      */
4841     public static MethodHandle identity(Class<?> type) {
4842         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
4843         int pos = btw.ordinal();
4844         MethodHandle ident = IDENTITY_MHS[pos];
4845         if (ident == null) {
4846             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
4847         }
4848         if (ident.type().returnType() == type)
4849             return ident;
4850         // something like identity(Foo.class); do not bother to intern these
4851         assert (btw == Wrapper.OBJECT);
4852         return makeIdentity(type);
4853     }
4854 
4855     /**
4856      * Produces a constant method handle of the requested return type which
4857      * returns the default value for that type every time it is invoked.
4858      * The resulting constant method handle will have no side effects.
4859      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
4860      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
4861      * since {@code explicitCastArguments} converts {@code null} to default values.
4862      * @param type the expected return type of the desired method handle
4863      * @return a constant method handle that takes no arguments
4864      *         and returns the default value of the given type (or void, if the type is void)
4865      * @throws NullPointerException if the argument is null
4866      * @see MethodHandles#constant
4867      * @see MethodHandles#empty
4868      * @see MethodHandles#explicitCastArguments
4869      * @since 9
4870      */
4871     public static MethodHandle zero(Class<?> type) {
4872         Objects.requireNonNull(type);
4873         return type.isPrimitive() ? primitiveZero(Wrapper.forPrimitiveType(type))
4874                 : MethodHandleImpl.makeConstantReturning(type, null);
4875     }
4876 
4877     private static MethodHandle identityOrVoid(Class<?> type) {
4878         return type == void.class ? zero(type) : identity(type);
4879     }
4880 
4881     /**
4882      * Produces a method handle of the requested type which ignores any arguments, does nothing,
4883      * and returns a suitable default depending on the return type.
4884      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
4885      * <p>The returned method handle is equivalent to
4886      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
4887      *
4888      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
4889      * {@code guardWithTest(pred, target, empty(target.type())}.
4890      * @param type the type of the desired method handle
4891      * @return a constant method handle of the given type, which returns a default value of the given return type
4892      * @throws NullPointerException if the argument is null
4893      * @see MethodHandles#primitiveZero
4894      * @see MethodHandles#constant
4895      * @since 9
4896      */
4897     public static  MethodHandle empty(MethodType type) {
4898         Objects.requireNonNull(type);
4899         return dropArgumentsTrusted(zero(type.returnType()), 0, type.ptypes());
4900     }
4901 
4902     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
4903     private static MethodHandle makeIdentity(Class<?> ptype) {
4904         MethodType mtype = methodType(ptype, ptype); // throws IAE for void
4905         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
4906         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
4907     }
4908 
4909     private static MethodHandle primitiveZero(Wrapper w) {
4910         assert w != Wrapper.OBJECT : w;
4911         int pos = w.ordinal();
4912         MethodHandle mh = PRIMITIVE_ZERO_MHS[pos];
4913         if (mh == null) {
4914             mh = setCachedMethodHandle(PRIMITIVE_ZERO_MHS, pos, makePrimitiveZero(w));
4915         }
4916         assert (mh.type().returnType() == w.primitiveType()) : mh;
4917         return mh;
4918     }
4919 
4920     private static MethodHandle makePrimitiveZero(Wrapper w) {
4921         if (w == Wrapper.VOID) {
4922             var lf = LambdaForm.identityForm(V_TYPE); // ensures BMH & SimpleMH are initialized
4923             return SimpleMethodHandle.make(MethodType.methodType(void.class), lf);
4924         } else {
4925             return MethodHandleImpl.makeConstantReturning(w.primitiveType(), w.zero());
4926         }
4927     }
4928 
4929     private static final @Stable MethodHandle[] PRIMITIVE_ZERO_MHS = new MethodHandle[Wrapper.COUNT];
4930 
4931     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
4932         // Simulate a CAS, to avoid racy duplication of results.
4933         MethodHandle prev = cache[pos];
4934         if (prev != null) return prev;
4935         return cache[pos] = value;
4936     }
4937 
4938     /**
4939      * Provides a target method handle with one or more <em>bound arguments</em>
4940      * in advance of the method handle's invocation.
4941      * The formal parameters to the target corresponding to the bound
4942      * arguments are called <em>bound parameters</em>.
4943      * Returns a new method handle which saves away the bound arguments.
4944      * When it is invoked, it receives arguments for any non-bound parameters,
4945      * binds the saved arguments to their corresponding parameters,
4946      * and calls the original target.
4947      * <p>
4948      * The type of the new method handle will drop the types for the bound
4949      * parameters from the original target type, since the new method handle
4950      * will no longer require those arguments to be supplied by its callers.
4951      * <p>
4952      * Each given argument object must match the corresponding bound parameter type.
4953      * If a bound parameter type is a primitive, the argument object
4954      * must be a wrapper, and will be unboxed to produce the primitive value.
4955      * <p>
4956      * The {@code pos} argument selects which parameters are to be bound.
4957      * It may range between zero and <i>N-L</i> (inclusively),
4958      * where <i>N</i> is the arity of the target method handle
4959      * and <i>L</i> is the length of the values array.
4960      * <p>
4961      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4962      * variable-arity method handle}, even if the original target method handle was.
4963      * @param target the method handle to invoke after the argument is inserted
4964      * @param pos where to insert the argument (zero for the first)
4965      * @param values the series of arguments to insert
4966      * @return a method handle which inserts an additional argument,
4967      *         before calling the original method handle
4968      * @throws NullPointerException if the target or the {@code values} array is null
4969      * @throws IllegalArgumentException if {@code pos} is less than {@code 0} or greater than
4970      *         {@code N - L} where {@code N} is the arity of the target method handle and {@code L}
4971      *         is the length of the values array.
4972      * @throws ClassCastException if an argument does not match the corresponding bound parameter
4973      *         type.
4974      * @see MethodHandle#bindTo
4975      */
4976     public static MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
4977         int insCount = values.length;
4978         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
4979         if (insCount == 0)  return target;
4980         BoundMethodHandle result = target.rebind();
4981         for (int i = 0; i < insCount; i++) {
4982             Object value = values[i];
4983             Class<?> ptype = ptypes[pos+i];
4984             if (ptype.isPrimitive()) {
4985                 result = insertArgumentPrimitive(result, pos, ptype, value);
4986             } else {
4987                 value = ptype.cast(value);  // throw CCE if needed
4988                 result = result.bindArgumentL(pos, value);
4989             }
4990         }
4991         return result;
4992     }
4993 
4994     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
4995                                                              Class<?> ptype, Object value) {
4996         Wrapper w = Wrapper.forPrimitiveType(ptype);
4997         // perform unboxing and/or primitive conversion
4998         value = w.convert(value, ptype);
4999         return switch (w) {
5000             case INT    -> result.bindArgumentI(pos, (int) value);
5001             case LONG   -> result.bindArgumentJ(pos, (long) value);
5002             case FLOAT  -> result.bindArgumentF(pos, (float) value);
5003             case DOUBLE -> result.bindArgumentD(pos, (double) value);
5004             default -> result.bindArgumentI(pos, ValueConversions.widenSubword(value));
5005         };
5006     }
5007 
5008     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
5009         MethodType oldType = target.type();
5010         int outargs = oldType.parameterCount();
5011         int inargs  = outargs - insCount;
5012         if (inargs < 0)
5013             throw newIllegalArgumentException("too many values to insert");
5014         if (pos < 0 || pos > inargs)
5015             throw newIllegalArgumentException("no argument type to append");
5016         return oldType.ptypes();
5017     }
5018 
5019     /**
5020      * Produces a method handle which will discard some dummy arguments
5021      * before calling some other specified <i>target</i> method handle.
5022      * The type of the new method handle will be the same as the target's type,
5023      * except it will also include the dummy argument types,
5024      * at some given position.
5025      * <p>
5026      * The {@code pos} argument may range between zero and <i>N</i>,
5027      * where <i>N</i> is the arity of the target.
5028      * If {@code pos} is zero, the dummy arguments will precede
5029      * the target's real arguments; if {@code pos} is <i>N</i>
5030      * they will come after.
5031      * <p>
5032      * <b>Example:</b>
5033      * {@snippet lang="java" :
5034 import static java.lang.invoke.MethodHandles.*;
5035 import static java.lang.invoke.MethodType.*;
5036 ...
5037 MethodHandle cat = lookup().findVirtual(String.class,
5038   "concat", methodType(String.class, String.class));
5039 assertEquals("xy", (String) cat.invokeExact("x", "y"));
5040 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
5041 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
5042 assertEquals(bigType, d0.type());
5043 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
5044      * }
5045      * <p>
5046      * This method is also equivalent to the following code:
5047      * <blockquote><pre>
5048      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
5049      * </pre></blockquote>
5050      * @param target the method handle to invoke after the arguments are dropped
5051      * @param pos position of first argument to drop (zero for the leftmost)
5052      * @param valueTypes the type(s) of the argument(s) to drop
5053      * @return a method handle which drops arguments of the given types,
5054      *         before calling the original method handle
5055      * @throws NullPointerException if the target is null,
5056      *                              or if the {@code valueTypes} list or any of its elements is null
5057      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
5058      *                  or if {@code pos} is negative or greater than the arity of the target,
5059      *                  or if the new method handle's type would have too many parameters
5060      */
5061     public static MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
5062         return dropArgumentsTrusted(target, pos, valueTypes.toArray(new Class<?>[0]).clone());
5063     }
5064 
5065     static MethodHandle dropArgumentsTrusted(MethodHandle target, int pos, Class<?>[] valueTypes) {
5066         MethodType oldType = target.type();  // get NPE
5067         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
5068         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
5069         if (dropped == 0)  return target;
5070         BoundMethodHandle result = target.rebind();
5071         LambdaForm lform = result.form;
5072         int insertFormArg = 1 + pos;
5073         for (Class<?> ptype : valueTypes) {
5074             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
5075         }
5076         result = result.copyWith(newType, lform);
5077         return result;
5078     }
5079 
5080     private static int dropArgumentChecks(MethodType oldType, int pos, Class<?>[] valueTypes) {
5081         int dropped = valueTypes.length;
5082         MethodType.checkSlotCount(dropped);
5083         int outargs = oldType.parameterCount();
5084         int inargs  = outargs + dropped;
5085         if (pos < 0 || pos > outargs)
5086             throw newIllegalArgumentException("no argument type to remove"
5087                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
5088                     );
5089         return dropped;
5090     }
5091 
5092     /**
5093      * Produces a method handle which will discard some dummy arguments
5094      * before calling some other specified <i>target</i> method handle.
5095      * The type of the new method handle will be the same as the target's type,
5096      * except it will also include the dummy argument types,
5097      * at some given position.
5098      * <p>
5099      * The {@code pos} argument may range between zero and <i>N</i>,
5100      * where <i>N</i> is the arity of the target.
5101      * If {@code pos} is zero, the dummy arguments will precede
5102      * the target's real arguments; if {@code pos} is <i>N</i>
5103      * they will come after.
5104      * @apiNote
5105      * {@snippet lang="java" :
5106 import static java.lang.invoke.MethodHandles.*;
5107 import static java.lang.invoke.MethodType.*;
5108 ...
5109 MethodHandle cat = lookup().findVirtual(String.class,
5110   "concat", methodType(String.class, String.class));
5111 assertEquals("xy", (String) cat.invokeExact("x", "y"));
5112 MethodHandle d0 = dropArguments(cat, 0, String.class);
5113 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
5114 MethodHandle d1 = dropArguments(cat, 1, String.class);
5115 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
5116 MethodHandle d2 = dropArguments(cat, 2, String.class);
5117 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
5118 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
5119 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
5120      * }
5121      * <p>
5122      * This method is also equivalent to the following code:
5123      * <blockquote><pre>
5124      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
5125      * </pre></blockquote>
5126      * @param target the method handle to invoke after the arguments are dropped
5127      * @param pos position of first argument to drop (zero for the leftmost)
5128      * @param valueTypes the type(s) of the argument(s) to drop
5129      * @return a method handle which drops arguments of the given types,
5130      *         before calling the original method handle
5131      * @throws NullPointerException if the target is null,
5132      *                              or if the {@code valueTypes} array or any of its elements is null
5133      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
5134      *                  or if {@code pos} is negative or greater than the arity of the target,
5135      *                  or if the new method handle's type would have
5136      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
5137      */
5138     public static MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
5139         return dropArgumentsTrusted(target, pos, valueTypes.clone());
5140     }
5141 
5142     /* Convenience overloads for trusting internal low-arity call-sites */
5143     static MethodHandle dropArguments(MethodHandle target, int pos, Class<?> valueType1) {
5144         return dropArgumentsTrusted(target, pos, new Class<?>[] { valueType1 });
5145     }
5146     static MethodHandle dropArguments(MethodHandle target, int pos, Class<?> valueType1, Class<?> valueType2) {
5147         return dropArgumentsTrusted(target, pos, new Class<?>[] { valueType1, valueType2 });
5148     }
5149 
5150     // private version which allows caller some freedom with error handling
5151     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, Class<?>[] newTypes, int pos,
5152                                       boolean nullOnFailure) {
5153         Class<?>[] oldTypes = target.type().ptypes();
5154         int match = oldTypes.length;
5155         if (skip != 0) {
5156             if (skip < 0 || skip > match) {
5157                 throw newIllegalArgumentException("illegal skip", skip, target);
5158             }
5159             oldTypes = Arrays.copyOfRange(oldTypes, skip, match);
5160             match -= skip;
5161         }
5162         Class<?>[] addTypes = newTypes;
5163         int add = addTypes.length;
5164         if (pos != 0) {
5165             if (pos < 0 || pos > add) {
5166                 throw newIllegalArgumentException("illegal pos", pos, Arrays.toString(newTypes));
5167             }
5168             addTypes = Arrays.copyOfRange(addTypes, pos, add);
5169             add -= pos;
5170             assert(addTypes.length == add);
5171         }
5172         // Do not add types which already match the existing arguments.
5173         if (match > add || !Arrays.equals(oldTypes, 0, oldTypes.length, addTypes, 0, match)) {
5174             if (nullOnFailure) {
5175                 return null;
5176             }
5177             throw newIllegalArgumentException("argument lists do not match",
5178                 Arrays.toString(oldTypes), Arrays.toString(newTypes));
5179         }
5180         addTypes = Arrays.copyOfRange(addTypes, match, add);
5181         add -= match;
5182         assert(addTypes.length == add);
5183         // newTypes:     (   P*[pos], M*[match], A*[add] )
5184         // target: ( S*[skip],        M*[match]  )
5185         MethodHandle adapter = target;
5186         if (add > 0) {
5187             adapter = dropArgumentsTrusted(adapter, skip+ match, addTypes);
5188         }
5189         // adapter: (S*[skip],        M*[match], A*[add] )
5190         if (pos > 0) {
5191             adapter = dropArgumentsTrusted(adapter, skip, Arrays.copyOfRange(newTypes, 0, pos));
5192         }
5193         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
5194         return adapter;
5195     }
5196 
5197     /**
5198      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
5199      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
5200      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
5201      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
5202      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
5203      * {@link #dropArguments(MethodHandle, int, Class[])}.
5204      * <p>
5205      * The resulting handle will have the same return type as the target handle.
5206      * <p>
5207      * In more formal terms, assume these two type lists:<ul>
5208      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
5209      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
5210      * {@code newTypes}.
5211      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
5212      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
5213      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
5214      * sub-list.
5215      * </ul>
5216      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
5217      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
5218      * {@link #dropArguments(MethodHandle, int, Class[])}.
5219      *
5220      * @apiNote
5221      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
5222      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
5223      * {@snippet lang="java" :
5224 import static java.lang.invoke.MethodHandles.*;
5225 import static java.lang.invoke.MethodType.*;
5226 ...
5227 ...
5228 MethodHandle h0 = constant(boolean.class, true);
5229 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
5230 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
5231 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
5232 if (h1.type().parameterCount() < h2.type().parameterCount())
5233     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
5234 else
5235     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
5236 MethodHandle h3 = guardWithTest(h0, h1, h2);
5237 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
5238      * }
5239      * @param target the method handle to adapt
5240      * @param skip number of targets parameters to disregard (they will be unchanged)
5241      * @param newTypes the list of types to match {@code target}'s parameter type list to
5242      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
5243      * @return a possibly adapted method handle
5244      * @throws NullPointerException if either argument is null
5245      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
5246      *         or if {@code skip} is negative or greater than the arity of the target,
5247      *         or if {@code pos} is negative or greater than the newTypes list size,
5248      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
5249      *         {@code pos}.
5250      * @since 9
5251      */
5252     public static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
5253         Objects.requireNonNull(target);
5254         Objects.requireNonNull(newTypes);
5255         return dropArgumentsToMatch(target, skip, newTypes.toArray(new Class<?>[0]).clone(), pos, false);
5256     }
5257 
5258     /**
5259      * Drop the return value of the target handle (if any).
5260      * The returned method handle will have a {@code void} return type.
5261      *
5262      * @param target the method handle to adapt
5263      * @return a possibly adapted method handle
5264      * @throws NullPointerException if {@code target} is null
5265      * @since 16
5266      */
5267     public static MethodHandle dropReturn(MethodHandle target) {
5268         Objects.requireNonNull(target);
5269         MethodType oldType = target.type();
5270         Class<?> oldReturnType = oldType.returnType();
5271         if (oldReturnType == void.class)
5272             return target;
5273         MethodType newType = oldType.changeReturnType(void.class);
5274         BoundMethodHandle result = target.rebind();
5275         LambdaForm lform = result.editor().filterReturnForm(V_TYPE, true);
5276         result = result.copyWith(newType, lform);
5277         return result;
5278     }
5279 
5280     /**
5281      * Adapts a target method handle by pre-processing
5282      * one or more of its arguments, each with its own unary filter function,
5283      * and then calling the target with each pre-processed argument
5284      * replaced by the result of its corresponding filter function.
5285      * <p>
5286      * The pre-processing is performed by one or more method handles,
5287      * specified in the elements of the {@code filters} array.
5288      * The first element of the filter array corresponds to the {@code pos}
5289      * argument of the target, and so on in sequence.
5290      * The filter functions are invoked in left to right order.
5291      * <p>
5292      * Null arguments in the array are treated as identity functions,
5293      * and the corresponding arguments left unchanged.
5294      * (If there are no non-null elements in the array, the original target is returned.)
5295      * Each filter is applied to the corresponding argument of the adapter.
5296      * <p>
5297      * If a filter {@code F} applies to the {@code N}th argument of
5298      * the target, then {@code F} must be a method handle which
5299      * takes exactly one argument.  The type of {@code F}'s sole argument
5300      * replaces the corresponding argument type of the target
5301      * in the resulting adapted method handle.
5302      * The return type of {@code F} must be identical to the corresponding
5303      * parameter type of the target.
5304      * <p>
5305      * It is an error if there are elements of {@code filters}
5306      * (null or not)
5307      * which do not correspond to argument positions in the target.
5308      * <p><b>Example:</b>
5309      * {@snippet lang="java" :
5310 import static java.lang.invoke.MethodHandles.*;
5311 import static java.lang.invoke.MethodType.*;
5312 ...
5313 MethodHandle cat = lookup().findVirtual(String.class,
5314   "concat", methodType(String.class, String.class));
5315 MethodHandle upcase = lookup().findVirtual(String.class,
5316   "toUpperCase", methodType(String.class));
5317 assertEquals("xy", (String) cat.invokeExact("x", "y"));
5318 MethodHandle f0 = filterArguments(cat, 0, upcase);
5319 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
5320 MethodHandle f1 = filterArguments(cat, 1, upcase);
5321 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
5322 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
5323 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
5324      * }
5325      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5326      * denotes the return type of both the {@code target} and resulting adapter.
5327      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
5328      * of the parameters and arguments that precede and follow the filter position
5329      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
5330      * values of the filtered parameters and arguments; they also represent the
5331      * return types of the {@code filter[i]} handles. The latter accept arguments
5332      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
5333      * the resulting adapter.
5334      * {@snippet lang="java" :
5335      * T target(P... p, A[i]... a[i], B... b);
5336      * A[i] filter[i](V[i]);
5337      * T adapter(P... p, V[i]... v[i], B... b) {
5338      *   return target(p..., filter[i](v[i])..., b...);
5339      * }
5340      * }
5341      * <p>
5342      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5343      * variable-arity method handle}, even if the original target method handle was.
5344      *
5345      * @param target the method handle to invoke after arguments are filtered
5346      * @param pos the position of the first argument to filter
5347      * @param filters method handles to call initially on filtered arguments
5348      * @return method handle which incorporates the specified argument filtering logic
5349      * @throws NullPointerException if the target is null
5350      *                              or if the {@code filters} array is null
5351      * @throws IllegalArgumentException if a non-null element of {@code filters}
5352      *          does not match a corresponding argument type of target as described above,
5353      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
5354      *          or if the resulting method handle's type would have
5355      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
5356      */
5357     public static MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
5358         // In method types arguments start at index 0, while the LF
5359         // editor have the MH receiver at position 0 - adjust appropriately.
5360         final int MH_RECEIVER_OFFSET = 1;
5361         filterArgumentsCheckArity(target, pos, filters);
5362         MethodHandle adapter = target;
5363 
5364         // keep track of currently matched filters, as to optimize repeated filters
5365         int index = 0;
5366         int[] positions = new int[filters.length];
5367         MethodHandle filter = null;
5368 
5369         // process filters in reverse order so that the invocation of
5370         // the resulting adapter will invoke the filters in left-to-right order
5371         for (int i = filters.length - 1; i >= 0; --i) {
5372             MethodHandle newFilter = filters[i];
5373             if (newFilter == null) continue;  // ignore null elements of filters
5374 
5375             // flush changes on update
5376             if (filter != newFilter) {
5377                 if (filter != null) {
5378                     if (index > 1) {
5379                         adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
5380                     } else {
5381                         adapter = filterArgument(adapter, positions[0] - 1, filter);
5382                     }
5383                 }
5384                 filter = newFilter;
5385                 index = 0;
5386             }
5387 
5388             filterArgumentChecks(target, pos + i, newFilter);
5389             positions[index++] = pos + i + MH_RECEIVER_OFFSET;
5390         }
5391         if (index > 1) {
5392             adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
5393         } else if (index == 1) {
5394             adapter = filterArgument(adapter, positions[0] - 1, filter);
5395         }
5396         return adapter;
5397     }
5398 
5399     private static MethodHandle filterRepeatedArgument(MethodHandle adapter, MethodHandle filter, int[] positions) {
5400         MethodType targetType = adapter.type();
5401         MethodType filterType = filter.type();
5402         BoundMethodHandle result = adapter.rebind();
5403         Class<?> newParamType = filterType.parameterType(0);
5404 
5405         Class<?>[] ptypes = targetType.ptypes().clone();
5406         for (int pos : positions) {
5407             ptypes[pos - 1] = newParamType;
5408         }
5409         MethodType newType = MethodType.methodType(targetType.rtype(), ptypes, true);
5410 
5411         LambdaForm lform = result.editor().filterRepeatedArgumentForm(BasicType.basicType(newParamType), positions);
5412         return result.copyWithExtendL(newType, lform, filter);
5413     }
5414 
5415     /*non-public*/
5416     static MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
5417         filterArgumentChecks(target, pos, filter);
5418         MethodType targetType = target.type();
5419         MethodType filterType = filter.type();
5420         BoundMethodHandle result = target.rebind();
5421         Class<?> newParamType = filterType.parameterType(0);
5422         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
5423         MethodType newType = targetType.changeParameterType(pos, newParamType);
5424         result = result.copyWithExtendL(newType, lform, filter);
5425         return result;
5426     }
5427 
5428     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
5429         MethodType targetType = target.type();
5430         int maxPos = targetType.parameterCount();
5431         if (pos + filters.length > maxPos)
5432             throw newIllegalArgumentException("too many filters");
5433     }
5434 
5435     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
5436         MethodType targetType = target.type();
5437         MethodType filterType = filter.type();
5438         if (filterType.parameterCount() != 1
5439             || filterType.returnType() != targetType.parameterType(pos))
5440             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5441     }
5442 
5443     /**
5444      * Adapts a target method handle by pre-processing
5445      * a sub-sequence of its arguments with a filter (another method handle).
5446      * The pre-processed arguments are replaced by the result (if any) of the
5447      * filter function.
5448      * The target is then called on the modified (usually shortened) argument list.
5449      * <p>
5450      * If the filter returns a value, the target must accept that value as
5451      * its argument in position {@code pos}, preceded and/or followed by
5452      * any arguments not passed to the filter.
5453      * If the filter returns void, the target must accept all arguments
5454      * not passed to the filter.
5455      * No arguments are reordered, and a result returned from the filter
5456      * replaces (in order) the whole subsequence of arguments originally
5457      * passed to the adapter.
5458      * <p>
5459      * The argument types (if any) of the filter
5460      * replace zero or one argument types of the target, at position {@code pos},
5461      * in the resulting adapted method handle.
5462      * The return type of the filter (if any) must be identical to the
5463      * argument type of the target at position {@code pos}, and that target argument
5464      * is supplied by the return value of the filter.
5465      * <p>
5466      * In all cases, {@code pos} must be greater than or equal to zero, and
5467      * {@code pos} must also be less than or equal to the target's arity.
5468      * <p><b>Example:</b>
5469      * {@snippet lang="java" :
5470 import static java.lang.invoke.MethodHandles.*;
5471 import static java.lang.invoke.MethodType.*;
5472 ...
5473 MethodHandle deepToString = publicLookup()
5474   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
5475 
5476 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
5477 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
5478 
5479 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
5480 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
5481 
5482 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
5483 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
5484 assertEquals("[top, [up, down], strange]",
5485              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
5486 
5487 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
5488 assertEquals("[top, [up, down], [strange]]",
5489              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
5490 
5491 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
5492 assertEquals("[top, [[up, down, strange], charm], bottom]",
5493              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
5494      * }
5495      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5496      * represents the return type of the {@code target} and resulting adapter.
5497      * {@code V}/{@code v} stand for the return type and value of the
5498      * {@code filter}, which are also found in the signature and arguments of
5499      * the {@code target}, respectively, unless {@code V} is {@code void}.
5500      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
5501      * and values preceding and following the collection position, {@code pos},
5502      * in the {@code target}'s signature. They also turn up in the resulting
5503      * adapter's signature and arguments, where they surround
5504      * {@code B}/{@code b}, which represent the parameter types and arguments
5505      * to the {@code filter} (if any).
5506      * {@snippet lang="java" :
5507      * T target(A...,V,C...);
5508      * V filter(B...);
5509      * T adapter(A... a,B... b,C... c) {
5510      *   V v = filter(b...);
5511      *   return target(a...,v,c...);
5512      * }
5513      * // and if the filter has no arguments:
5514      * T target2(A...,V,C...);
5515      * V filter2();
5516      * T adapter2(A... a,C... c) {
5517      *   V v = filter2();
5518      *   return target2(a...,v,c...);
5519      * }
5520      * // and if the filter has a void return:
5521      * T target3(A...,C...);
5522      * void filter3(B...);
5523      * T adapter3(A... a,B... b,C... c) {
5524      *   filter3(b...);
5525      *   return target3(a...,c...);
5526      * }
5527      * }
5528      * <p>
5529      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
5530      * one which first "folds" the affected arguments, and then drops them, in separate
5531      * steps as follows:
5532      * {@snippet lang="java" :
5533      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
5534      * mh = MethodHandles.foldArguments(mh, coll); //step 1
5535      * }
5536      * If the target method handle consumes no arguments besides than the result
5537      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
5538      * is equivalent to {@code filterReturnValue(coll, mh)}.
5539      * If the filter method handle {@code coll} consumes one argument and produces
5540      * a non-void result, then {@code collectArguments(mh, N, coll)}
5541      * is equivalent to {@code filterArguments(mh, N, coll)}.
5542      * Other equivalences are possible but would require argument permutation.
5543      * <p>
5544      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5545      * variable-arity method handle}, even if the original target method handle was.
5546      *
5547      * @param target the method handle to invoke after filtering the subsequence of arguments
5548      * @param pos the position of the first adapter argument to pass to the filter,
5549      *            and/or the target argument which receives the result of the filter
5550      * @param filter method handle to call on the subsequence of arguments
5551      * @return method handle which incorporates the specified argument subsequence filtering logic
5552      * @throws NullPointerException if either argument is null
5553      * @throws IllegalArgumentException if the return type of {@code filter}
5554      *          is non-void and is not the same as the {@code pos} argument of the target,
5555      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
5556      *          or if the resulting method handle's type would have
5557      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
5558      * @see MethodHandles#foldArguments
5559      * @see MethodHandles#filterArguments
5560      * @see MethodHandles#filterReturnValue
5561      */
5562     public static MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
5563         MethodType newType = collectArgumentsChecks(target, pos, filter);
5564         MethodType collectorType = filter.type();
5565         BoundMethodHandle result = target.rebind();
5566         LambdaForm lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
5567         return result.copyWithExtendL(newType, lform, filter);
5568     }
5569 
5570     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
5571         MethodType targetType = target.type();
5572         MethodType filterType = filter.type();
5573         Class<?> rtype = filterType.returnType();
5574         Class<?>[] filterArgs = filterType.ptypes();
5575         if (pos < 0 || (rtype == void.class && pos > targetType.parameterCount()) ||
5576                        (rtype != void.class && pos >= targetType.parameterCount())) {
5577             throw newIllegalArgumentException("position is out of range for target", target, pos);
5578         }
5579         if (rtype == void.class) {
5580             return targetType.insertParameterTypes(pos, filterArgs);
5581         }
5582         if (rtype != targetType.parameterType(pos)) {
5583             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5584         }
5585         return targetType.dropParameterTypes(pos, pos + 1).insertParameterTypes(pos, filterArgs);
5586     }
5587 
5588     /**
5589      * Adapts a target method handle by post-processing
5590      * its return value (if any) with a filter (another method handle).
5591      * The result of the filter is returned from the adapter.
5592      * <p>
5593      * If the target returns a value, the filter must accept that value as
5594      * its only argument.
5595      * If the target returns void, the filter must accept no arguments.
5596      * <p>
5597      * The return type of the filter
5598      * replaces the return type of the target
5599      * in the resulting adapted method handle.
5600      * The argument type of the filter (if any) must be identical to the
5601      * return type of the target.
5602      * <p><b>Example:</b>
5603      * {@snippet lang="java" :
5604 import static java.lang.invoke.MethodHandles.*;
5605 import static java.lang.invoke.MethodType.*;
5606 ...
5607 MethodHandle cat = lookup().findVirtual(String.class,
5608   "concat", methodType(String.class, String.class));
5609 MethodHandle length = lookup().findVirtual(String.class,
5610   "length", methodType(int.class));
5611 System.out.println((String) cat.invokeExact("x", "y")); // xy
5612 MethodHandle f0 = filterReturnValue(cat, length);
5613 System.out.println((int) f0.invokeExact("x", "y")); // 2
5614      * }
5615      * <p>Here is pseudocode for the resulting adapter. In the code,
5616      * {@code T}/{@code t} represent the result type and value of the
5617      * {@code target}; {@code V}, the result type of the {@code filter}; and
5618      * {@code A}/{@code a}, the types and values of the parameters and arguments
5619      * of the {@code target} as well as the resulting adapter.
5620      * {@snippet lang="java" :
5621      * T target(A...);
5622      * V filter(T);
5623      * V adapter(A... a) {
5624      *   T t = target(a...);
5625      *   return filter(t);
5626      * }
5627      * // and if the target has a void return:
5628      * void target2(A...);
5629      * V filter2();
5630      * V adapter2(A... a) {
5631      *   target2(a...);
5632      *   return filter2();
5633      * }
5634      * // and if the filter has a void return:
5635      * T target3(A...);
5636      * void filter3(V);
5637      * void adapter3(A... a) {
5638      *   T t = target3(a...);
5639      *   filter3(t);
5640      * }
5641      * }
5642      * <p>
5643      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5644      * variable-arity method handle}, even if the original target method handle was.
5645      * @param target the method handle to invoke before filtering the return value
5646      * @param filter method handle to call on the return value
5647      * @return method handle which incorporates the specified return value filtering logic
5648      * @throws NullPointerException if either argument is null
5649      * @throws IllegalArgumentException if the argument list of {@code filter}
5650      *          does not match the return type of target as described above
5651      */
5652     public static MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
5653         MethodType targetType = target.type();
5654         MethodType filterType = filter.type();
5655         filterReturnValueChecks(targetType, filterType);
5656         BoundMethodHandle result = target.rebind();
5657         BasicType rtype = BasicType.basicType(filterType.returnType());
5658         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
5659         MethodType newType = targetType.changeReturnType(filterType.returnType());
5660         result = result.copyWithExtendL(newType, lform, filter);
5661         return result;
5662     }
5663 
5664     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
5665         Class<?> rtype = targetType.returnType();
5666         int filterValues = filterType.parameterCount();
5667         if (filterValues == 0
5668                 ? (rtype != void.class)
5669                 : (rtype != filterType.parameterType(0) || filterValues != 1))
5670             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5671     }
5672 
5673     /**
5674      * Filter the return value of a target method handle with a filter function. The filter function is
5675      * applied to the return value of the original handle; if the filter specifies more than one parameters,
5676      * then any remaining parameter is appended to the adapter handle. In other words, the adaptation works
5677      * as follows:
5678      * {@snippet lang="java" :
5679      * T target(A...)
5680      * V filter(B... , T)
5681      * V adapter(A... a, B... b) {
5682      *     T t = target(a...);
5683      *     return filter(b..., t);
5684      * }
5685      * }
5686      * <p>
5687      * If the filter handle is a unary function, then this method behaves like {@link #filterReturnValue(MethodHandle, MethodHandle)}.
5688      *
5689      * @param target the target method handle
5690      * @param filter the filter method handle
5691      * @return the adapter method handle
5692      */
5693     /* package */ static MethodHandle collectReturnValue(MethodHandle target, MethodHandle filter) {
5694         MethodType targetType = target.type();
5695         MethodType filterType = filter.type();
5696         BoundMethodHandle result = target.rebind();
5697         LambdaForm lform = result.editor().collectReturnValueForm(filterType.basicType());
5698         MethodType newType = targetType.changeReturnType(filterType.returnType());
5699         if (filterType.parameterCount() > 1) {
5700             for (int i = 0 ; i < filterType.parameterCount() - 1 ; i++) {
5701                 newType = newType.appendParameterTypes(filterType.parameterType(i));
5702             }
5703         }
5704         result = result.copyWithExtendL(newType, lform, filter);
5705         return result;
5706     }
5707 
5708     /**
5709      * Adapts a target method handle by pre-processing
5710      * some of its arguments, and then calling the target with
5711      * the result of the pre-processing, inserted into the original
5712      * sequence of arguments.
5713      * <p>
5714      * The pre-processing is performed by {@code combiner}, a second method handle.
5715      * Of the arguments passed to the adapter, the first {@code N} arguments
5716      * are copied to the combiner, which is then called.
5717      * (Here, {@code N} is defined as the parameter count of the combiner.)
5718      * After this, control passes to the target, with any result
5719      * from the combiner inserted before the original {@code N} incoming
5720      * arguments.
5721      * <p>
5722      * If the combiner returns a value, the first parameter type of the target
5723      * must be identical with the return type of the combiner, and the next
5724      * {@code N} parameter types of the target must exactly match the parameters
5725      * of the combiner.
5726      * <p>
5727      * If the combiner has a void return, no result will be inserted,
5728      * and the first {@code N} parameter types of the target
5729      * must exactly match the parameters of the combiner.
5730      * <p>
5731      * The resulting adapter is the same type as the target, except that the
5732      * first parameter type is dropped,
5733      * if it corresponds to the result of the combiner.
5734      * <p>
5735      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
5736      * that either the combiner or the target does not wish to receive.
5737      * If some of the incoming arguments are destined only for the combiner,
5738      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
5739      * arguments will not need to be live on the stack on entry to the
5740      * target.)
5741      * <p><b>Example:</b>
5742      * {@snippet lang="java" :
5743 import static java.lang.invoke.MethodHandles.*;
5744 import static java.lang.invoke.MethodType.*;
5745 ...
5746 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
5747   "println", methodType(void.class, String.class))
5748     .bindTo(System.out);
5749 MethodHandle cat = lookup().findVirtual(String.class,
5750   "concat", methodType(String.class, String.class));
5751 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
5752 MethodHandle catTrace = foldArguments(cat, trace);
5753 // also prints "boo":
5754 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
5755      * }
5756      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5757      * represents the result type of the {@code target} and resulting adapter.
5758      * {@code V}/{@code v} represent the type and value of the parameter and argument
5759      * of {@code target} that precedes the folding position; {@code V} also is
5760      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
5761      * types and values of the {@code N} parameters and arguments at the folding
5762      * position. {@code B}/{@code b} represent the types and values of the
5763      * {@code target} parameters and arguments that follow the folded parameters
5764      * and arguments.
5765      * {@snippet lang="java" :
5766      * // there are N arguments in A...
5767      * T target(V, A[N]..., B...);
5768      * V combiner(A...);
5769      * T adapter(A... a, B... b) {
5770      *   V v = combiner(a...);
5771      *   return target(v, a..., b...);
5772      * }
5773      * // and if the combiner has a void return:
5774      * T target2(A[N]..., B...);
5775      * void combiner2(A...);
5776      * T adapter2(A... a, B... b) {
5777      *   combiner2(a...);
5778      *   return target2(a..., b...);
5779      * }
5780      * }
5781      * <p>
5782      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5783      * variable-arity method handle}, even if the original target method handle was.
5784      * @param target the method handle to invoke after arguments are combined
5785      * @param combiner method handle to call initially on the incoming arguments
5786      * @return method handle which incorporates the specified argument folding logic
5787      * @throws NullPointerException if either argument is null
5788      * @throws IllegalArgumentException if {@code combiner}'s return type
5789      *          is non-void and not the same as the first argument type of
5790      *          the target, or if the initial {@code N} argument types
5791      *          of the target
5792      *          (skipping one matching the {@code combiner}'s return type)
5793      *          are not identical with the argument types of {@code combiner}
5794      */
5795     public static MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
5796         return foldArguments(target, 0, combiner);
5797     }
5798 
5799     /**
5800      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
5801      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
5802      * before the folded arguments.
5803      * <p>
5804      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
5805      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
5806      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
5807      * 0.
5808      *
5809      * @apiNote Example:
5810      * {@snippet lang="java" :
5811     import static java.lang.invoke.MethodHandles.*;
5812     import static java.lang.invoke.MethodType.*;
5813     ...
5814     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
5815     "println", methodType(void.class, String.class))
5816     .bindTo(System.out);
5817     MethodHandle cat = lookup().findVirtual(String.class,
5818     "concat", methodType(String.class, String.class));
5819     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
5820     MethodHandle catTrace = foldArguments(cat, 1, trace);
5821     // also prints "jum":
5822     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
5823      * }
5824      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5825      * represents the result type of the {@code target} and resulting adapter.
5826      * {@code V}/{@code v} represent the type and value of the parameter and argument
5827      * of {@code target} that precedes the folding position; {@code V} also is
5828      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
5829      * types and values of the {@code N} parameters and arguments at the folding
5830      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
5831      * and values of the {@code target} parameters and arguments that precede and
5832      * follow the folded parameters and arguments starting at {@code pos},
5833      * respectively.
5834      * {@snippet lang="java" :
5835      * // there are N arguments in A...
5836      * T target(Z..., V, A[N]..., B...);
5837      * V combiner(A...);
5838      * T adapter(Z... z, A... a, B... b) {
5839      *   V v = combiner(a...);
5840      *   return target(z..., v, a..., b...);
5841      * }
5842      * // and if the combiner has a void return:
5843      * T target2(Z..., A[N]..., B...);
5844      * void combiner2(A...);
5845      * T adapter2(Z... z, A... a, B... b) {
5846      *   combiner2(a...);
5847      *   return target2(z..., a..., b...);
5848      * }
5849      * }
5850      * <p>
5851      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5852      * variable-arity method handle}, even if the original target method handle was.
5853      *
5854      * @param target the method handle to invoke after arguments are combined
5855      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
5856      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5857      * @param combiner method handle to call initially on the incoming arguments
5858      * @return method handle which incorporates the specified argument folding logic
5859      * @throws NullPointerException if either argument is null
5860      * @throws IllegalArgumentException if either of the following two conditions holds:
5861      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5862      *              {@code pos} of the target signature;
5863      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
5864      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
5865      *
5866      * @see #foldArguments(MethodHandle, MethodHandle)
5867      * @since 9
5868      */
5869     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
5870         MethodType targetType = target.type();
5871         MethodType combinerType = combiner.type();
5872         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
5873         BoundMethodHandle result = target.rebind();
5874         boolean dropResult = rtype == void.class;
5875         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
5876         MethodType newType = targetType;
5877         if (!dropResult) {
5878             newType = newType.dropParameterTypes(pos, pos + 1);
5879         }
5880         result = result.copyWithExtendL(newType, lform, combiner);
5881         return result;
5882     }
5883 
5884     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
5885         int foldArgs   = combinerType.parameterCount();
5886         Class<?> rtype = combinerType.returnType();
5887         int foldVals = rtype == void.class ? 0 : 1;
5888         int afterInsertPos = foldPos + foldVals;
5889         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
5890         if (ok) {
5891             for (int i = 0; i < foldArgs; i++) {
5892                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
5893                     ok = false;
5894                     break;
5895                 }
5896             }
5897         }
5898         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
5899             ok = false;
5900         if (!ok)
5901             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5902         return rtype;
5903     }
5904 
5905     /**
5906      * Adapts a target method handle by pre-processing some of its arguments, then calling the target with the result
5907      * of the pre-processing replacing the argument at the given position.
5908      *
5909      * @param target the method handle to invoke after arguments are combined
5910      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5911      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5912      * @param combiner method handle to call initially on the incoming arguments
5913      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5914      * @return method handle which incorporates the specified argument folding logic
5915      * @throws NullPointerException if either argument is null
5916      * @throws IllegalArgumentException if either of the following two conditions holds:
5917      *          (1) {@code combiner}'s return type is not the same as the argument type at position
5918      *              {@code pos} of the target signature;
5919      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature are
5920      *              not identical with the argument types of {@code combiner}.
5921      */
5922     /*non-public*/
5923     static MethodHandle filterArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5924         return argumentsWithCombiner(true, target, position, combiner, argPositions);
5925     }
5926 
5927     /**
5928      * Adapts a target method handle by pre-processing some of its arguments, calling the target with the result of
5929      * the pre-processing inserted into the original sequence of arguments at the given position.
5930      *
5931      * @param target the method handle to invoke after arguments are combined
5932      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5933      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5934      * @param combiner method handle to call initially on the incoming arguments
5935      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5936      * @return method handle which incorporates the specified argument folding logic
5937      * @throws NullPointerException if either argument is null
5938      * @throws IllegalArgumentException if either of the following two conditions holds:
5939      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5940      *              {@code pos} of the target signature;
5941      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature
5942      *              (skipping {@code position} where the {@code combiner}'s return will be folded in) are not identical
5943      *              with the argument types of {@code combiner}.
5944      */
5945     /*non-public*/
5946     static MethodHandle foldArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5947         return argumentsWithCombiner(false, target, position, combiner, argPositions);
5948     }
5949 
5950     private static MethodHandle argumentsWithCombiner(boolean filter, MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5951         MethodType targetType = target.type();
5952         MethodType combinerType = combiner.type();
5953         Class<?> rtype = argumentsWithCombinerChecks(position, filter, targetType, combinerType, argPositions);
5954         BoundMethodHandle result = target.rebind();
5955 
5956         MethodType newType = targetType;
5957         LambdaForm lform;
5958         if (filter) {
5959             lform = result.editor().filterArgumentsForm(1 + position, combinerType.basicType(), argPositions);
5960         } else {
5961             boolean dropResult = rtype == void.class;
5962             lform = result.editor().foldArgumentsForm(1 + position, dropResult, combinerType.basicType(), argPositions);
5963             if (!dropResult) {
5964                 newType = newType.dropParameterTypes(position, position + 1);
5965             }
5966         }
5967         result = result.copyWithExtendL(newType, lform, combiner);
5968         return result;
5969     }
5970 
5971     private static Class<?> argumentsWithCombinerChecks(int position, boolean filter, MethodType targetType, MethodType combinerType, int ... argPos) {
5972         int combinerArgs = combinerType.parameterCount();
5973         if (argPos.length != combinerArgs) {
5974             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
5975         }
5976         Class<?> rtype = combinerType.returnType();
5977 
5978         for (int i = 0; i < combinerArgs; i++) {
5979             int arg = argPos[i];
5980             if (arg < 0 || arg > targetType.parameterCount()) {
5981                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
5982             }
5983             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
5984                 throw newIllegalArgumentException("target argument type at position " + arg
5985                         + " must match combiner argument type at index " + i + ": " + targetType
5986                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
5987             }
5988         }
5989         if (filter && combinerType.returnType() != targetType.parameterType(position)) {
5990             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5991         }
5992         return rtype;
5993     }
5994 
5995     /**
5996      * Makes a method handle which adapts a target method handle,
5997      * by guarding it with a test, a boolean-valued method handle.
5998      * If the guard fails, a fallback handle is called instead.
5999      * All three method handles must have the same corresponding
6000      * argument and return types, except that the return type
6001      * of the test must be boolean, and the test is allowed
6002      * to have fewer arguments than the other two method handles.
6003      * <p>
6004      * Here is pseudocode for the resulting adapter. In the code, {@code T}
6005      * represents the uniform result type of the three involved handles;
6006      * {@code A}/{@code a}, the types and values of the {@code target}
6007      * parameters and arguments that are consumed by the {@code test}; and
6008      * {@code B}/{@code b}, those types and values of the {@code target}
6009      * parameters and arguments that are not consumed by the {@code test}.
6010      * {@snippet lang="java" :
6011      * boolean test(A...);
6012      * T target(A...,B...);
6013      * T fallback(A...,B...);
6014      * T adapter(A... a,B... b) {
6015      *   if (test(a...))
6016      *     return target(a..., b...);
6017      *   else
6018      *     return fallback(a..., b...);
6019      * }
6020      * }
6021      * Note that the test arguments ({@code a...} in the pseudocode) cannot
6022      * be modified by execution of the test, and so are passed unchanged
6023      * from the caller to the target or fallback as appropriate.
6024      * @param test method handle used for test, must return boolean
6025      * @param target method handle to call if test passes
6026      * @param fallback method handle to call if test fails
6027      * @return method handle which incorporates the specified if/then/else logic
6028      * @throws NullPointerException if any argument is null
6029      * @throws IllegalArgumentException if {@code test} does not return boolean,
6030      *          or if all three method types do not match (with the return
6031      *          type of {@code test} changed to match that of the target).
6032      */
6033     public static MethodHandle guardWithTest(MethodHandle test,
6034                                MethodHandle target,
6035                                MethodHandle fallback) {
6036         MethodType gtype = test.type();
6037         MethodType ttype = target.type();
6038         MethodType ftype = fallback.type();
6039         if (!ttype.equals(ftype))
6040             throw misMatchedTypes("target and fallback types", ttype, ftype);
6041         if (gtype.returnType() != boolean.class)
6042             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
6043 
6044         test = dropArgumentsToMatch(test, 0, ttype.ptypes(), 0, true);
6045         if (test == null) {
6046             throw misMatchedTypes("target and test types", ttype, gtype);
6047         }
6048         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
6049     }
6050 
6051     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
6052         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
6053     }
6054 
6055     /**
6056      * Makes a method handle which adapts a target method handle,
6057      * by running it inside an exception handler.
6058      * If the target returns normally, the adapter returns that value.
6059      * If an exception matching the specified type is thrown, the fallback
6060      * handle is called instead on the exception, plus the original arguments.
6061      * <p>
6062      * The target and handler must have the same corresponding
6063      * argument and return types, except that handler may omit trailing arguments
6064      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
6065      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
6066      * <p>
6067      * Here is pseudocode for the resulting adapter. In the code, {@code T}
6068      * represents the return type of the {@code target} and {@code handler},
6069      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
6070      * the types and values of arguments to the resulting handle consumed by
6071      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
6072      * resulting handle discarded by {@code handler}.
6073      * {@snippet lang="java" :
6074      * T target(A..., B...);
6075      * T handler(ExType, A...);
6076      * T adapter(A... a, B... b) {
6077      *   try {
6078      *     return target(a..., b...);
6079      *   } catch (ExType ex) {
6080      *     return handler(ex, a...);
6081      *   }
6082      * }
6083      * }
6084      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
6085      * be modified by execution of the target, and so are passed unchanged
6086      * from the caller to the handler, if the handler is invoked.
6087      * <p>
6088      * The target and handler must return the same type, even if the handler
6089      * always throws.  (This might happen, for instance, because the handler
6090      * is simulating a {@code finally} clause).
6091      * To create such a throwing handler, compose the handler creation logic
6092      * with {@link #throwException throwException},
6093      * in order to create a method handle of the correct return type.
6094      * @param target method handle to call
6095      * @param exType the type of exception which the handler will catch
6096      * @param handler method handle to call if a matching exception is thrown
6097      * @return method handle which incorporates the specified try/catch logic
6098      * @throws NullPointerException if any argument is null
6099      * @throws IllegalArgumentException if {@code handler} does not accept
6100      *          the given exception type, or if the method handle types do
6101      *          not match in their return types and their
6102      *          corresponding parameters
6103      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
6104      */
6105     public static MethodHandle catchException(MethodHandle target,
6106                                 Class<? extends Throwable> exType,
6107                                 MethodHandle handler) {
6108         MethodType ttype = target.type();
6109         MethodType htype = handler.type();
6110         if (!Throwable.class.isAssignableFrom(exType))
6111             throw new ClassCastException(exType.getName());
6112         if (htype.parameterCount() < 1 ||
6113             !htype.parameterType(0).isAssignableFrom(exType))
6114             throw newIllegalArgumentException("handler does not accept exception type "+exType);
6115         if (htype.returnType() != ttype.returnType())
6116             throw misMatchedTypes("target and handler return types", ttype, htype);
6117         handler = dropArgumentsToMatch(handler, 1, ttype.ptypes(), 0, true);
6118         if (handler == null) {
6119             throw misMatchedTypes("target and handler types", ttype, htype);
6120         }
6121         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
6122     }
6123 
6124     /**
6125      * Produces a method handle which will throw exceptions of the given {@code exType}.
6126      * The method handle will accept a single argument of {@code exType},
6127      * and immediately throw it as an exception.
6128      * The method type will nominally specify a return of {@code returnType}.
6129      * The return type may be anything convenient:  It doesn't matter to the
6130      * method handle's behavior, since it will never return normally.
6131      * @param returnType the return type of the desired method handle
6132      * @param exType the parameter type of the desired method handle
6133      * @return method handle which can throw the given exceptions
6134      * @throws NullPointerException if either argument is null
6135      */
6136     public static MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
6137         if (!Throwable.class.isAssignableFrom(exType))
6138             throw new ClassCastException(exType.getName());
6139         return MethodHandleImpl.throwException(methodType(returnType, exType));
6140     }
6141 
6142     /**
6143      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
6144      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
6145      * delivers the loop's result, which is the return value of the resulting handle.
6146      * <p>
6147      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
6148      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
6149      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
6150      * terms of method handles, each clause will specify up to four independent actions:<ul>
6151      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
6152      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
6153      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
6154      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
6155      * </ul>
6156      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
6157      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
6158      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
6159      * <p>
6160      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
6161      * this case. See below for a detailed description.
6162      * <p>
6163      * <em>Parameters optional everywhere:</em>
6164      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
6165      * As an exception, the init functions cannot take any {@code v} parameters,
6166      * because those values are not yet computed when the init functions are executed.
6167      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
6168      * In fact, any clause function may take no arguments at all.
6169      * <p>
6170      * <em>Loop parameters:</em>
6171      * A clause function may take all the iteration variable values it is entitled to, in which case
6172      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
6173      * with their types and values notated as {@code (A...)} and {@code (a...)}.
6174      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
6175      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
6176      * init function is automatically a loop parameter {@code a}.)
6177      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
6178      * These loop parameters act as loop-invariant values visible across the whole loop.
6179      * <p>
6180      * <em>Parameters visible everywhere:</em>
6181      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
6182      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
6183      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
6184      * Most clause functions will not need all of this information, but they will be formally connected to it
6185      * as if by {@link #dropArguments}.
6186      * <a id="astar"></a>
6187      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
6188      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
6189      * In that notation, the general form of an init function parameter list
6190      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
6191      * <p>
6192      * <em>Checking clause structure:</em>
6193      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
6194      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
6195      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
6196      * met by the inputs to the loop combinator.
6197      * <p>
6198      * <em>Effectively identical sequences:</em>
6199      * <a id="effid"></a>
6200      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
6201      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
6202      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
6203      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
6204      * that longest list.
6205      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
6206      * and the same is true if more sequences of the form {@code (V... A*)} are added.
6207      * <p>
6208      * <em>Step 0: Determine clause structure.</em><ol type="a">
6209      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
6210      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
6211      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
6212      * four. Padding takes place by appending elements to the array.
6213      * <li>Clauses with all {@code null}s are disregarded.
6214      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
6215      * </ol>
6216      * <p>
6217      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
6218      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
6219      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
6220      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
6221      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
6222      * iteration variable type.
6223      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
6224      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
6225      * </ol>
6226      * <p>
6227      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
6228      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
6229      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
6230      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
6231      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
6232      * (These types will be checked in step 2, along with all the clause function types.)
6233      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
6234      * <li>All of the collected parameter lists must be effectively identical.
6235      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
6236      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
6237      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
6238      * the "internal parameter list".
6239      * </ul>
6240      * <p>
6241      * <em>Step 1C: Determine loop return type.</em><ol type="a">
6242      * <li>Examine fini function return types, disregarding omitted fini functions.
6243      * <li>If there are no fini functions, the loop return type is {@code void}.
6244      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
6245      * type.
6246      * </ol>
6247      * <p>
6248      * <em>Step 1D: Check other types.</em><ol type="a">
6249      * <li>There must be at least one non-omitted pred function.
6250      * <li>Every non-omitted pred function must have a {@code boolean} return type.
6251      * </ol>
6252      * <p>
6253      * <em>Step 2: Determine parameter lists.</em><ol type="a">
6254      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
6255      * <li>The parameter list for init functions will be adjusted to the external parameter list.
6256      * (Note that their parameter lists are already effectively identical to this list.)
6257      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
6258      * effectively identical to the internal parameter list {@code (V... A...)}.
6259      * </ol>
6260      * <p>
6261      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
6262      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
6263      * type.
6264      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
6265      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
6266      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
6267      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
6268      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
6269      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
6270      * loop return type.
6271      * </ol>
6272      * <p>
6273      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
6274      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
6275      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
6276      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
6277      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
6278      * pad out the end of the list.
6279      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
6280      * </ol>
6281      * <p>
6282      * <em>Final observations.</em><ol type="a">
6283      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
6284      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
6285      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
6286      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
6287      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
6288      * <li>Each pair of init and step functions agrees in their return type {@code V}.
6289      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
6290      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
6291      * </ol>
6292      * <p>
6293      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
6294      * <ul>
6295      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
6296      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
6297      * (Only one {@code Pn} has to be non-{@code null}.)
6298      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
6299      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
6300      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
6301      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
6302      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
6303      * the resulting loop handle's parameter types {@code (A...)}.
6304      * </ul>
6305      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
6306      * which is natural if most of the loop computation happens in the steps.  For some loops,
6307      * the burden of computation might be heaviest in the pred functions, and so the pred functions
6308      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
6309      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
6310      * where the init functions will need the extra parameters.  For such reasons, the rules for
6311      * determining these parameters are as symmetric as possible, across all clause parts.
6312      * In general, the loop parameters function as common invariant values across the whole
6313      * loop, while the iteration variables function as common variant values, or (if there is
6314      * no step function) as internal loop invariant temporaries.
6315      * <p>
6316      * <em>Loop execution.</em><ol type="a">
6317      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
6318      * every clause function. These locals are loop invariant.
6319      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
6320      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
6321      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
6322      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
6323      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
6324      * (in argument order).
6325      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
6326      * returns {@code false}.
6327      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
6328      * sequence {@code (v...)} of loop variables.
6329      * The updated value is immediately visible to all subsequent function calls.
6330      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
6331      * (of type {@code R}) is returned from the loop as a whole.
6332      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
6333      * except by throwing an exception.
6334      * </ol>
6335      * <p>
6336      * <em>Usage tips.</em>
6337      * <ul>
6338      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
6339      * sometimes a step function only needs to observe the current value of its own variable.
6340      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
6341      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
6342      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
6343      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
6344      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
6345      * <li>If some of the clause functions are virtual methods on an instance, the instance
6346      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
6347      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
6348      * will be the first iteration variable value, and it will be easy to use virtual
6349      * methods as clause parts, since all of them will take a leading instance reference matching that value.
6350      * </ul>
6351      * <p>
6352      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
6353      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
6354      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
6355      * {@snippet lang="java" :
6356      * V... init...(A...);
6357      * boolean pred...(V..., A...);
6358      * V... step...(V..., A...);
6359      * R fini...(V..., A...);
6360      * R loop(A... a) {
6361      *   V... v... = init...(a...);
6362      *   for (;;) {
6363      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
6364      *       v = s(v..., a...);
6365      *       if (!p(v..., a...)) {
6366      *         return f(v..., a...);
6367      *       }
6368      *     }
6369      *   }
6370      * }
6371      * }
6372      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
6373      * to their full length, even though individual clause functions may neglect to take them all.
6374      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
6375      *
6376      * @apiNote Example:
6377      * {@snippet lang="java" :
6378      * // iterative implementation of the factorial function as a loop handle
6379      * static int one(int k) { return 1; }
6380      * static int inc(int i, int acc, int k) { return i + 1; }
6381      * static int mult(int i, int acc, int k) { return i * acc; }
6382      * static boolean pred(int i, int acc, int k) { return i < k; }
6383      * static int fin(int i, int acc, int k) { return acc; }
6384      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
6385      * // null initializer for counter, should initialize to 0
6386      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
6387      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
6388      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
6389      * assertEquals(120, loop.invoke(5));
6390      * }
6391      * The same example, dropping arguments and using combinators:
6392      * {@snippet lang="java" :
6393      * // simplified implementation of the factorial function as a loop handle
6394      * static int inc(int i) { return i + 1; } // drop acc, k
6395      * static int mult(int i, int acc) { return i * acc; } //drop k
6396      * static boolean cmp(int i, int k) { return i < k; }
6397      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
6398      * // null initializer for counter, should initialize to 0
6399      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
6400      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
6401      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
6402      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
6403      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
6404      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
6405      * assertEquals(720, loop.invoke(6));
6406      * }
6407      * A similar example, using a helper object to hold a loop parameter:
6408      * {@snippet lang="java" :
6409      * // instance-based implementation of the factorial function as a loop handle
6410      * static class FacLoop {
6411      *   final int k;
6412      *   FacLoop(int k) { this.k = k; }
6413      *   int inc(int i) { return i + 1; }
6414      *   int mult(int i, int acc) { return i * acc; }
6415      *   boolean pred(int i) { return i < k; }
6416      *   int fin(int i, int acc) { return acc; }
6417      * }
6418      * // assume MH_FacLoop is a handle to the constructor
6419      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
6420      * // null initializer for counter, should initialize to 0
6421      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
6422      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
6423      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
6424      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
6425      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
6426      * assertEquals(5040, loop.invoke(7));
6427      * }
6428      *
6429      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
6430      *
6431      * @return a method handle embodying the looping behavior as defined by the arguments.
6432      *
6433      * @throws IllegalArgumentException in case any of the constraints described above is violated.
6434      *
6435      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
6436      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
6437      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
6438      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
6439      * @since 9
6440      */
6441     public static MethodHandle loop(MethodHandle[]... clauses) {
6442         // Step 0: determine clause structure.
6443         loopChecks0(clauses);
6444 
6445         List<MethodHandle> init = new ArrayList<>();
6446         List<MethodHandle> step = new ArrayList<>();
6447         List<MethodHandle> pred = new ArrayList<>();
6448         List<MethodHandle> fini = new ArrayList<>();
6449 
6450         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
6451             init.add(clause[0]); // all clauses have at least length 1
6452             step.add(clause.length <= 1 ? null : clause[1]);
6453             pred.add(clause.length <= 2 ? null : clause[2]);
6454             fini.add(clause.length <= 3 ? null : clause[3]);
6455         });
6456 
6457         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
6458         final int nclauses = init.size();
6459 
6460         // Step 1A: determine iteration variables (V...).
6461         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
6462         for (int i = 0; i < nclauses; ++i) {
6463             MethodHandle in = init.get(i);
6464             MethodHandle st = step.get(i);
6465             if (in == null && st == null) {
6466                 iterationVariableTypes.add(void.class);
6467             } else if (in != null && st != null) {
6468                 loopChecks1a(i, in, st);
6469                 iterationVariableTypes.add(in.type().returnType());
6470             } else {
6471                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
6472             }
6473         }
6474         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).toList();
6475 
6476         // Step 1B: determine loop parameters (A...).
6477         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
6478         loopChecks1b(init, commonSuffix);
6479 
6480         // Step 1C: determine loop return type.
6481         // Step 1D: check other types.
6482         // local variable required here; see JDK-8223553
6483         Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type)
6484                 .map(MethodType::returnType);
6485         final Class<?> loopReturnType = cstream.findFirst().orElse(void.class);
6486         loopChecks1cd(pred, fini, loopReturnType);
6487 
6488         // Step 2: determine parameter lists.
6489         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
6490         commonParameterSequence.addAll(commonSuffix);
6491         loopChecks2(step, pred, fini, commonParameterSequence);
6492         // Step 3: fill in omitted functions.
6493         for (int i = 0; i < nclauses; ++i) {
6494             Class<?> t = iterationVariableTypes.get(i);
6495             if (init.get(i) == null) {
6496                 init.set(i, empty(methodType(t, commonSuffix)));
6497             }
6498             if (step.get(i) == null) {
6499                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
6500             }
6501             if (pred.get(i) == null) {
6502                 pred.set(i, dropArguments(constant(boolean.class, true), 0, commonParameterSequence));
6503             }
6504             if (fini.get(i) == null) {
6505                 fini.set(i, empty(methodType(t, commonParameterSequence)));
6506             }
6507         }
6508 
6509         // Step 4: fill in missing parameter types.
6510         // Also convert all handles to fixed-arity handles.
6511         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
6512         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
6513         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
6514         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
6515 
6516         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
6517                 allMatch(pl -> pl.equals(commonSuffix));
6518         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
6519                 allMatch(pl -> pl.equals(commonParameterSequence));
6520 
6521         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
6522     }
6523 
6524     private static void loopChecks0(MethodHandle[][] clauses) {
6525         if (clauses == null || clauses.length == 0) {
6526             throw newIllegalArgumentException("null or no clauses passed");
6527         }
6528         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
6529             throw newIllegalArgumentException("null clauses are not allowed");
6530         }
6531         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
6532             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
6533         }
6534     }
6535 
6536     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
6537         if (in.type().returnType() != st.type().returnType()) {
6538             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
6539                     st.type().returnType());
6540         }
6541     }
6542 
6543     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
6544         return mhs.filter(Objects::nonNull)
6545                 // take only those that can contribute to a common suffix because they are longer than the prefix
6546                 .map(MethodHandle::type)
6547                 .filter(t -> t.parameterCount() > skipSize)
6548                 .max(Comparator.comparingInt(MethodType::parameterCount))
6549                 .map(methodType -> List.of(Arrays.copyOfRange(methodType.ptypes(), skipSize, methodType.parameterCount())))
6550                 .orElse(List.of());
6551     }
6552 
6553     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
6554         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
6555         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
6556         return longest1.size() >= longest2.size() ? longest1 : longest2;
6557     }
6558 
6559     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
6560         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
6561                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
6562             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
6563                     " (common suffix: " + commonSuffix + ")");
6564         }
6565     }
6566 
6567     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
6568         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
6569                 anyMatch(t -> t != loopReturnType)) {
6570             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
6571                     loopReturnType + ")");
6572         }
6573 
6574         if (pred.stream().noneMatch(Objects::nonNull)) {
6575             throw newIllegalArgumentException("no predicate found", pred);
6576         }
6577         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
6578                 anyMatch(t -> t != boolean.class)) {
6579             throw newIllegalArgumentException("predicates must have boolean return type", pred);
6580         }
6581     }
6582 
6583     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
6584         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
6585                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
6586             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
6587                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
6588         }
6589     }
6590 
6591     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
6592         return hs.stream().map(h -> {
6593             int pc = h.type().parameterCount();
6594             int tpsize = targetParams.size();
6595             return pc < tpsize ? dropArguments(h, pc, targetParams.subList(pc, tpsize)) : h;
6596         }).toList();
6597     }
6598 
6599     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
6600         return hs.stream().map(MethodHandle::asFixedArity).toList();
6601     }
6602 
6603     /**
6604      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
6605      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6606      * <p>
6607      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
6608      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
6609      * evaluates to {@code true}).
6610      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
6611      * <p>
6612      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
6613      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
6614      * and updated with the value returned from its invocation. The result of loop execution will be
6615      * the final value of the additional loop-local variable (if present).
6616      * <p>
6617      * The following rules hold for these argument handles:<ul>
6618      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6619      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
6620      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6621      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
6622      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
6623      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
6624      * It will constrain the parameter lists of the other loop parts.
6625      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
6626      * list {@code (A...)} is called the <em>external parameter list</em>.
6627      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6628      * additional state variable of the loop.
6629      * The body must both accept and return a value of this type {@code V}.
6630      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6631      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6632      * <a href="MethodHandles.html#effid">effectively identical</a>
6633      * to the external parameter list {@code (A...)}.
6634      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6635      * {@linkplain #empty default value}.
6636      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
6637      * Its parameter list (either empty or of the form {@code (V A*)}) must be
6638      * effectively identical to the internal parameter list.
6639      * </ul>
6640      * <p>
6641      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6642      * <li>The loop handle's result type is the result type {@code V} of the body.
6643      * <li>The loop handle's parameter types are the types {@code (A...)},
6644      * from the external parameter list.
6645      * </ul>
6646      * <p>
6647      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6648      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
6649      * passed to the loop.
6650      * {@snippet lang="java" :
6651      * V init(A...);
6652      * boolean pred(V, A...);
6653      * V body(V, A...);
6654      * V whileLoop(A... a...) {
6655      *   V v = init(a...);
6656      *   while (pred(v, a...)) {
6657      *     v = body(v, a...);
6658      *   }
6659      *   return v;
6660      * }
6661      * }
6662      *
6663      * @apiNote Example:
6664      * {@snippet lang="java" :
6665      * // implement the zip function for lists as a loop handle
6666      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
6667      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
6668      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
6669      *   zip.add(a.next());
6670      *   zip.add(b.next());
6671      *   return zip;
6672      * }
6673      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
6674      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
6675      * List<String> a = Arrays.asList("a", "b", "c", "d");
6676      * List<String> b = Arrays.asList("e", "f", "g", "h");
6677      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
6678      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
6679      * }
6680      *
6681      *
6682      * @apiNote The implementation of this method can be expressed as follows:
6683      * {@snippet lang="java" :
6684      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
6685      *     MethodHandle fini = (body.type().returnType() == void.class
6686      *                         ? null : identity(body.type().returnType()));
6687      *     MethodHandle[]
6688      *         checkExit = { null, null, pred, fini },
6689      *         varBody   = { init, body };
6690      *     return loop(checkExit, varBody);
6691      * }
6692      * }
6693      *
6694      * @param init optional initializer, providing the initial value of the loop variable.
6695      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6696      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
6697      *             above for other constraints.
6698      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
6699      *             See above for other constraints.
6700      *
6701      * @return a method handle implementing the {@code while} loop as described by the arguments.
6702      * @throws IllegalArgumentException if the rules for the arguments are violated.
6703      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
6704      *
6705      * @see #loop(MethodHandle[][])
6706      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
6707      * @since 9
6708      */
6709     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
6710         whileLoopChecks(init, pred, body);
6711         MethodHandle fini = identityOrVoid(body.type().returnType());
6712         MethodHandle[] checkExit = { null, null, pred, fini };
6713         MethodHandle[] varBody = { init, body };
6714         return loop(checkExit, varBody);
6715     }
6716 
6717     /**
6718      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
6719      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6720      * <p>
6721      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
6722      * method will, in each iteration, first execute its body and then evaluate the predicate.
6723      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
6724      * <p>
6725      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
6726      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
6727      * and updated with the value returned from its invocation. The result of loop execution will be
6728      * the final value of the additional loop-local variable (if present).
6729      * <p>
6730      * The following rules hold for these argument handles:<ul>
6731      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6732      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
6733      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6734      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
6735      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
6736      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
6737      * It will constrain the parameter lists of the other loop parts.
6738      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
6739      * list {@code (A...)} is called the <em>external parameter list</em>.
6740      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6741      * additional state variable of the loop.
6742      * The body must both accept and return a value of this type {@code V}.
6743      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6744      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6745      * <a href="MethodHandles.html#effid">effectively identical</a>
6746      * to the external parameter list {@code (A...)}.
6747      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6748      * {@linkplain #empty default value}.
6749      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
6750      * Its parameter list (either empty or of the form {@code (V A*)}) must be
6751      * effectively identical to the internal parameter list.
6752      * </ul>
6753      * <p>
6754      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6755      * <li>The loop handle's result type is the result type {@code V} of the body.
6756      * <li>The loop handle's parameter types are the types {@code (A...)},
6757      * from the external parameter list.
6758      * </ul>
6759      * <p>
6760      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6761      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
6762      * passed to the loop.
6763      * {@snippet lang="java" :
6764      * V init(A...);
6765      * boolean pred(V, A...);
6766      * V body(V, A...);
6767      * V doWhileLoop(A... a...) {
6768      *   V v = init(a...);
6769      *   do {
6770      *     v = body(v, a...);
6771      *   } while (pred(v, a...));
6772      *   return v;
6773      * }
6774      * }
6775      *
6776      * @apiNote Example:
6777      * {@snippet lang="java" :
6778      * // int i = 0; while (i < limit) { ++i; } return i; => limit
6779      * static int zero(int limit) { return 0; }
6780      * static int step(int i, int limit) { return i + 1; }
6781      * static boolean pred(int i, int limit) { return i < limit; }
6782      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
6783      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
6784      * assertEquals(23, loop.invoke(23));
6785      * }
6786      *
6787      *
6788      * @apiNote The implementation of this method can be expressed as follows:
6789      * {@snippet lang="java" :
6790      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6791      *     MethodHandle fini = (body.type().returnType() == void.class
6792      *                         ? null : identity(body.type().returnType()));
6793      *     MethodHandle[] clause = { init, body, pred, fini };
6794      *     return loop(clause);
6795      * }
6796      * }
6797      *
6798      * @param init optional initializer, providing the initial value of the loop variable.
6799      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6800      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
6801      *             See above for other constraints.
6802      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
6803      *             above for other constraints.
6804      *
6805      * @return a method handle implementing the {@code while} loop as described by the arguments.
6806      * @throws IllegalArgumentException if the rules for the arguments are violated.
6807      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
6808      *
6809      * @see #loop(MethodHandle[][])
6810      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
6811      * @since 9
6812      */
6813     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6814         whileLoopChecks(init, pred, body);
6815         MethodHandle fini = identityOrVoid(body.type().returnType());
6816         MethodHandle[] clause = {init, body, pred, fini };
6817         return loop(clause);
6818     }
6819 
6820     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
6821         Objects.requireNonNull(pred);
6822         Objects.requireNonNull(body);
6823         MethodType bodyType = body.type();
6824         Class<?> returnType = bodyType.returnType();
6825         List<Class<?>> innerList = bodyType.parameterList();
6826         List<Class<?>> outerList = innerList;
6827         if (returnType == void.class) {
6828             // OK
6829         } else if (innerList.isEmpty() || innerList.get(0) != returnType) {
6830             // leading V argument missing => error
6831             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6832             throw misMatchedTypes("body function", bodyType, expected);
6833         } else {
6834             outerList = innerList.subList(1, innerList.size());
6835         }
6836         MethodType predType = pred.type();
6837         if (predType.returnType() != boolean.class ||
6838                 !predType.effectivelyIdenticalParameters(0, innerList)) {
6839             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
6840         }
6841         if (init != null) {
6842             MethodType initType = init.type();
6843             if (initType.returnType() != returnType ||
6844                     !initType.effectivelyIdenticalParameters(0, outerList)) {
6845                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
6846             }
6847         }
6848     }
6849 
6850     /**
6851      * Constructs a loop that runs a given number of iterations.
6852      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6853      * <p>
6854      * The number of iterations is determined by the {@code iterations} handle evaluation result.
6855      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
6856      * It will be initialized to 0 and incremented by 1 in each iteration.
6857      * <p>
6858      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6859      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6860      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6861      * <p>
6862      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6863      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6864      * iteration variable.
6865      * The result of the loop handle execution will be the final {@code V} value of that variable
6866      * (or {@code void} if there is no {@code V} variable).
6867      * <p>
6868      * The following rules hold for the argument handles:<ul>
6869      * <li>The {@code iterations} handle must not be {@code null}, and must return
6870      * the type {@code int}, referred to here as {@code I} in parameter type lists.
6871      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6872      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6873      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6874      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6875      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6876      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6877      * of types called the <em>internal parameter list</em>.
6878      * It will constrain the parameter lists of the other loop parts.
6879      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6880      * with no additional {@code A} types, then the internal parameter list is extended by
6881      * the argument types {@code A...} of the {@code iterations} handle.
6882      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6883      * list {@code (A...)} is called the <em>external parameter list</em>.
6884      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6885      * additional state variable of the loop.
6886      * The body must both accept a leading parameter and return a value of this type {@code V}.
6887      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6888      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6889      * <a href="MethodHandles.html#effid">effectively identical</a>
6890      * to the external parameter list {@code (A...)}.
6891      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6892      * {@linkplain #empty default value}.
6893      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
6894      * effectively identical to the external parameter list {@code (A...)}.
6895      * </ul>
6896      * <p>
6897      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6898      * <li>The loop handle's result type is the result type {@code V} of the body.
6899      * <li>The loop handle's parameter types are the types {@code (A...)},
6900      * from the external parameter list.
6901      * </ul>
6902      * <p>
6903      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6904      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6905      * arguments passed to the loop.
6906      * {@snippet lang="java" :
6907      * int iterations(A...);
6908      * V init(A...);
6909      * V body(V, int, A...);
6910      * V countedLoop(A... a...) {
6911      *   int end = iterations(a...);
6912      *   V v = init(a...);
6913      *   for (int i = 0; i < end; ++i) {
6914      *     v = body(v, i, a...);
6915      *   }
6916      *   return v;
6917      * }
6918      * }
6919      *
6920      * @apiNote Example with a fully conformant body method:
6921      * {@snippet lang="java" :
6922      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6923      * // => a variation on a well known theme
6924      * static String step(String v, int counter, String init) { return "na " + v; }
6925      * // assume MH_step is a handle to the method above
6926      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
6927      * MethodHandle start = MethodHandles.identity(String.class);
6928      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
6929      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
6930      * }
6931      *
6932      * @apiNote Example with the simplest possible body method type,
6933      * and passing the number of iterations to the loop invocation:
6934      * {@snippet lang="java" :
6935      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6936      * // => a variation on a well known theme
6937      * static String step(String v, int counter ) { return "na " + v; }
6938      * // assume MH_step is a handle to the method above
6939      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
6940      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
6941      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
6942      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
6943      * }
6944      *
6945      * @apiNote Example that treats the number of iterations, string to append to, and string to append
6946      * as loop parameters:
6947      * {@snippet lang="java" :
6948      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6949      * // => a variation on a well known theme
6950      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
6951      * // assume MH_step is a handle to the method above
6952      * MethodHandle count = MethodHandles.identity(int.class);
6953      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
6954      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
6955      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
6956      * }
6957      *
6958      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
6959      * to enforce a loop type:
6960      * {@snippet lang="java" :
6961      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6962      * // => a variation on a well known theme
6963      * static String step(String v, int counter, String pre) { return pre + " " + v; }
6964      * // assume MH_step is a handle to the method above
6965      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
6966      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
6967      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
6968      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
6969      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
6970      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
6971      * }
6972      *
6973      * @apiNote The implementation of this method can be expressed as follows:
6974      * {@snippet lang="java" :
6975      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6976      *     return countedLoop(empty(iterations.type()), iterations, init, body);
6977      * }
6978      * }
6979      *
6980      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
6981      *                   result type must be {@code int}. See above for other constraints.
6982      * @param init optional initializer, providing the initial value of the loop variable.
6983      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6984      * @param body body of the loop, which may not be {@code null}.
6985      *             It controls the loop parameters and result type in the standard case (see above for details).
6986      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
6987      *             and may accept any number of additional types.
6988      *             See above for other constraints.
6989      *
6990      * @return a method handle representing the loop.
6991      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
6992      * @throws IllegalArgumentException if any argument violates the rules formulated above.
6993      *
6994      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
6995      * @since 9
6996      */
6997     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6998         return countedLoop(empty(iterations.type()), iterations, init, body);
6999     }
7000 
7001     /**
7002      * Constructs a loop that counts over a range of numbers.
7003      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
7004      * <p>
7005      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
7006      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
7007      * values of the loop counter.
7008      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
7009      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
7010      * <p>
7011      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
7012      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
7013      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
7014      * <p>
7015      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
7016      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
7017      * iteration variable.
7018      * The result of the loop handle execution will be the final {@code V} value of that variable
7019      * (or {@code void} if there is no {@code V} variable).
7020      * <p>
7021      * The following rules hold for the argument handles:<ul>
7022      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
7023      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
7024      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
7025      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
7026      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
7027      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
7028      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
7029      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
7030      * of types called the <em>internal parameter list</em>.
7031      * It will constrain the parameter lists of the other loop parts.
7032      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
7033      * with no additional {@code A} types, then the internal parameter list is extended by
7034      * the argument types {@code A...} of the {@code end} handle.
7035      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
7036      * list {@code (A...)} is called the <em>external parameter list</em>.
7037      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
7038      * additional state variable of the loop.
7039      * The body must both accept a leading parameter and return a value of this type {@code V}.
7040      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
7041      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
7042      * <a href="MethodHandles.html#effid">effectively identical</a>
7043      * to the external parameter list {@code (A...)}.
7044      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
7045      * {@linkplain #empty default value}.
7046      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
7047      * effectively identical to the external parameter list {@code (A...)}.
7048      * <li>Likewise, the parameter list of {@code end} must be effectively identical
7049      * to the external parameter list.
7050      * </ul>
7051      * <p>
7052      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
7053      * <li>The loop handle's result type is the result type {@code V} of the body.
7054      * <li>The loop handle's parameter types are the types {@code (A...)},
7055      * from the external parameter list.
7056      * </ul>
7057      * <p>
7058      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
7059      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
7060      * arguments passed to the loop.
7061      * {@snippet lang="java" :
7062      * int start(A...);
7063      * int end(A...);
7064      * V init(A...);
7065      * V body(V, int, A...);
7066      * V countedLoop(A... a...) {
7067      *   int e = end(a...);
7068      *   int s = start(a...);
7069      *   V v = init(a...);
7070      *   for (int i = s; i < e; ++i) {
7071      *     v = body(v, i, a...);
7072      *   }
7073      *   return v;
7074      * }
7075      * }
7076      *
7077      * @apiNote The implementation of this method can be expressed as follows:
7078      * {@snippet lang="java" :
7079      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
7080      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
7081      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
7082      *     // the following semantics:
7083      *     // MH_increment: (int limit, int counter) -> counter + 1
7084      *     // MH_predicate: (int limit, int counter) -> counter < limit
7085      *     Class<?> counterType = start.type().returnType();  // int
7086      *     Class<?> returnType = body.type().returnType();
7087      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
7088      *     if (returnType != void.class) {  // ignore the V variable
7089      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
7090      *         pred = dropArguments(pred, 1, returnType);  // ditto
7091      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
7092      *     }
7093      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
7094      *     MethodHandle[]
7095      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
7096      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
7097      *         indexVar   = { start, incr };           // i = start(); i = i + 1
7098      *     return loop(loopLimit, bodyClause, indexVar);
7099      * }
7100      * }
7101      *
7102      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
7103      *              See above for other constraints.
7104      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
7105      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
7106      * @param init optional initializer, providing the initial value of the loop variable.
7107      *             May be {@code null}, implying a default initial value.  See above for other constraints.
7108      * @param body body of the loop, which may not be {@code null}.
7109      *             It controls the loop parameters and result type in the standard case (see above for details).
7110      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
7111      *             and may accept any number of additional types.
7112      *             See above for other constraints.
7113      *
7114      * @return a method handle representing the loop.
7115      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
7116      * @throws IllegalArgumentException if any argument violates the rules formulated above.
7117      *
7118      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
7119      * @since 9
7120      */
7121     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
7122         countedLoopChecks(start, end, init, body);
7123         Class<?> counterType = start.type().returnType();  // int, but who's counting?
7124         Class<?> limitType   = end.type().returnType();    // yes, int again
7125         Class<?> returnType  = body.type().returnType();
7126         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
7127         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
7128         MethodHandle retv = null;
7129         if (returnType != void.class) {
7130             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
7131             pred = dropArguments(pred, 1, returnType);  // ditto
7132             retv = dropArguments(identity(returnType), 0, counterType);
7133         }
7134         body = dropArguments(body, 0, counterType);  // ignore the limit variable
7135         MethodHandle[]
7136             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
7137             bodyClause = { init, body },            // v = init(); v = body(v, i)
7138             indexVar   = { start, incr };           // i = start(); i = i + 1
7139         return loop(loopLimit, bodyClause, indexVar);
7140     }
7141 
7142     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
7143         Objects.requireNonNull(start);
7144         Objects.requireNonNull(end);
7145         Objects.requireNonNull(body);
7146         Class<?> counterType = start.type().returnType();
7147         if (counterType != int.class) {
7148             MethodType expected = start.type().changeReturnType(int.class);
7149             throw misMatchedTypes("start function", start.type(), expected);
7150         } else if (end.type().returnType() != counterType) {
7151             MethodType expected = end.type().changeReturnType(counterType);
7152             throw misMatchedTypes("end function", end.type(), expected);
7153         }
7154         MethodType bodyType = body.type();
7155         Class<?> returnType = bodyType.returnType();
7156         List<Class<?>> innerList = bodyType.parameterList();
7157         // strip leading V value if present
7158         int vsize = (returnType == void.class ? 0 : 1);
7159         if (vsize != 0 && (innerList.isEmpty() || innerList.get(0) != returnType)) {
7160             // argument list has no "V" => error
7161             MethodType expected = bodyType.insertParameterTypes(0, returnType);
7162             throw misMatchedTypes("body function", bodyType, expected);
7163         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
7164             // missing I type => error
7165             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
7166             throw misMatchedTypes("body function", bodyType, expected);
7167         }
7168         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
7169         if (outerList.isEmpty()) {
7170             // special case; take lists from end handle
7171             outerList = end.type().parameterList();
7172             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
7173         }
7174         MethodType expected = methodType(counterType, outerList);
7175         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
7176             throw misMatchedTypes("start parameter types", start.type(), expected);
7177         }
7178         if (end.type() != start.type() &&
7179             !end.type().effectivelyIdenticalParameters(0, outerList)) {
7180             throw misMatchedTypes("end parameter types", end.type(), expected);
7181         }
7182         if (init != null) {
7183             MethodType initType = init.type();
7184             if (initType.returnType() != returnType ||
7185                 !initType.effectivelyIdenticalParameters(0, outerList)) {
7186                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
7187             }
7188         }
7189     }
7190 
7191     /**
7192      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
7193      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
7194      * <p>
7195      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
7196      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
7197      * <p>
7198      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
7199      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
7200      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
7201      * <p>
7202      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
7203      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
7204      * iteration variable.
7205      * The result of the loop handle execution will be the final {@code V} value of that variable
7206      * (or {@code void} if there is no {@code V} variable).
7207      * <p>
7208      * The following rules hold for the argument handles:<ul>
7209      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
7210      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
7211      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
7212      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
7213      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
7214      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
7215      * of types called the <em>internal parameter list</em>.
7216      * It will constrain the parameter lists of the other loop parts.
7217      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
7218      * with no additional {@code A} types, then the internal parameter list is extended by
7219      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
7220      * single type {@code Iterable} is added and constitutes the {@code A...} list.
7221      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
7222      * list {@code (A...)} is called the <em>external parameter list</em>.
7223      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
7224      * additional state variable of the loop.
7225      * The body must both accept a leading parameter and return a value of this type {@code V}.
7226      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
7227      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
7228      * <a href="MethodHandles.html#effid">effectively identical</a>
7229      * to the external parameter list {@code (A...)}.
7230      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
7231      * {@linkplain #empty default value}.
7232      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
7233      * type {@code java.util.Iterator} or a subtype thereof.
7234      * The iterator it produces when the loop is executed will be assumed
7235      * to yield values which can be converted to type {@code T}.
7236      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
7237      * effectively identical to the external parameter list {@code (A...)}.
7238      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
7239      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
7240      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
7241      * handle parameter is adjusted to accept the leading {@code A} type, as if by
7242      * the {@link MethodHandle#asType asType} conversion method.
7243      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
7244      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
7245      * </ul>
7246      * <p>
7247      * The type {@code T} may be either a primitive or reference.
7248      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
7249      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
7250      * as if by the {@link MethodHandle#asType asType} conversion method.
7251      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
7252      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
7253      * <p>
7254      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
7255      * <li>The loop handle's result type is the result type {@code V} of the body.
7256      * <li>The loop handle's parameter types are the types {@code (A...)},
7257      * from the external parameter list.
7258      * </ul>
7259      * <p>
7260      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
7261      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
7262      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
7263      * {@snippet lang="java" :
7264      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
7265      * V init(A...);
7266      * V body(V,T,A...);
7267      * V iteratedLoop(A... a...) {
7268      *   Iterator<T> it = iterator(a...);
7269      *   V v = init(a...);
7270      *   while (it.hasNext()) {
7271      *     T t = it.next();
7272      *     v = body(v, t, a...);
7273      *   }
7274      *   return v;
7275      * }
7276      * }
7277      *
7278      * @apiNote Example:
7279      * {@snippet lang="java" :
7280      * // get an iterator from a list
7281      * static List<String> reverseStep(List<String> r, String e) {
7282      *   r.add(0, e);
7283      *   return r;
7284      * }
7285      * static List<String> newArrayList() { return new ArrayList<>(); }
7286      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
7287      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
7288      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
7289      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
7290      * assertEquals(reversedList, (List<String>) loop.invoke(list));
7291      * }
7292      *
7293      * @apiNote The implementation of this method can be expressed approximately as follows:
7294      * {@snippet lang="java" :
7295      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
7296      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
7297      *     Class<?> returnType = body.type().returnType();
7298      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
7299      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
7300      *     MethodHandle retv = null, step = body, startIter = iterator;
7301      *     if (returnType != void.class) {
7302      *         // the simple thing first:  in (I V A...), drop the I to get V
7303      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
7304      *         // body type signature (V T A...), internal loop types (I V A...)
7305      *         step = swapArguments(body, 0, 1);  // swap V <-> T
7306      *     }
7307      *     if (startIter == null)  startIter = MH_getIter;
7308      *     MethodHandle[]
7309      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
7310      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
7311      *     return loop(iterVar, bodyClause);
7312      * }
7313      * }
7314      *
7315      * @param iterator an optional handle to return the iterator to start the loop.
7316      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
7317      *                 See above for other constraints.
7318      * @param init optional initializer, providing the initial value of the loop variable.
7319      *             May be {@code null}, implying a default initial value.  See above for other constraints.
7320      * @param body body of the loop, which may not be {@code null}.
7321      *             It controls the loop parameters and result type in the standard case (see above for details).
7322      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
7323      *             and may accept any number of additional types.
7324      *             See above for other constraints.
7325      *
7326      * @return a method handle embodying the iteration loop functionality.
7327      * @throws NullPointerException if the {@code body} handle is {@code null}.
7328      * @throws IllegalArgumentException if any argument violates the above requirements.
7329      *
7330      * @since 9
7331      */
7332     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
7333         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
7334         Class<?> returnType = body.type().returnType();
7335         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
7336         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
7337         MethodHandle startIter;
7338         MethodHandle nextVal;
7339         {
7340             MethodType iteratorType;
7341             if (iterator == null) {
7342                 // derive argument type from body, if available, else use Iterable
7343                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
7344                 iteratorType = startIter.type().changeParameterType(0, iterableType);
7345             } else {
7346                 // force return type to the internal iterator class
7347                 iteratorType = iterator.type().changeReturnType(Iterator.class);
7348                 startIter = iterator;
7349             }
7350             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
7351             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
7352 
7353             // perform the asType transforms under an exception transformer, as per spec.:
7354             try {
7355                 startIter = startIter.asType(iteratorType);
7356                 nextVal = nextRaw.asType(nextValType);
7357             } catch (WrongMethodTypeException ex) {
7358                 throw new IllegalArgumentException(ex);
7359             }
7360         }
7361 
7362         MethodHandle retv = null, step = body;
7363         if (returnType != void.class) {
7364             // the simple thing first:  in (I V A...), drop the I to get V
7365             retv = dropArguments(identity(returnType), 0, Iterator.class);
7366             // body type signature (V T A...), internal loop types (I V A...)
7367             step = swapArguments(body, 0, 1);  // swap V <-> T
7368         }
7369 
7370         MethodHandle[]
7371             iterVar    = { startIter, null, hasNext, retv },
7372             bodyClause = { init, filterArgument(step, 0, nextVal) };
7373         return loop(iterVar, bodyClause);
7374     }
7375 
7376     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
7377         Objects.requireNonNull(body);
7378         MethodType bodyType = body.type();
7379         Class<?> returnType = bodyType.returnType();
7380         List<Class<?>> internalParamList = bodyType.parameterList();
7381         // strip leading V value if present
7382         int vsize = (returnType == void.class ? 0 : 1);
7383         if (vsize != 0 && (internalParamList.isEmpty() || internalParamList.get(0) != returnType)) {
7384             // argument list has no "V" => error
7385             MethodType expected = bodyType.insertParameterTypes(0, returnType);
7386             throw misMatchedTypes("body function", bodyType, expected);
7387         } else if (internalParamList.size() <= vsize) {
7388             // missing T type => error
7389             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
7390             throw misMatchedTypes("body function", bodyType, expected);
7391         }
7392         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
7393         Class<?> iterableType = null;
7394         if (iterator != null) {
7395             // special case; if the body handle only declares V and T then
7396             // the external parameter list is obtained from iterator handle
7397             if (externalParamList.isEmpty()) {
7398                 externalParamList = iterator.type().parameterList();
7399             }
7400             MethodType itype = iterator.type();
7401             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
7402                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
7403             }
7404             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
7405                 MethodType expected = methodType(itype.returnType(), externalParamList);
7406                 throw misMatchedTypes("iterator parameters", itype, expected);
7407             }
7408         } else {
7409             if (externalParamList.isEmpty()) {
7410                 // special case; if the iterator handle is null and the body handle
7411                 // only declares V and T then the external parameter list consists
7412                 // of Iterable
7413                 externalParamList = List.of(Iterable.class);
7414                 iterableType = Iterable.class;
7415             } else {
7416                 // special case; if the iterator handle is null and the external
7417                 // parameter list is not empty then the first parameter must be
7418                 // assignable to Iterable
7419                 iterableType = externalParamList.get(0);
7420                 if (!Iterable.class.isAssignableFrom(iterableType)) {
7421                     throw newIllegalArgumentException(
7422                             "inferred first loop argument must inherit from Iterable: " + iterableType);
7423                 }
7424             }
7425         }
7426         if (init != null) {
7427             MethodType initType = init.type();
7428             if (initType.returnType() != returnType ||
7429                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
7430                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
7431             }
7432         }
7433         return iterableType;  // help the caller a bit
7434     }
7435 
7436     /*non-public*/
7437     static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
7438         // there should be a better way to uncross my wires
7439         int arity = mh.type().parameterCount();
7440         int[] order = new int[arity];
7441         for (int k = 0; k < arity; k++)  order[k] = k;
7442         order[i] = j; order[j] = i;
7443         Class<?>[] types = mh.type().parameterArray();
7444         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
7445         MethodType swapType = methodType(mh.type().returnType(), types);
7446         return permuteArguments(mh, swapType, order);
7447     }
7448 
7449     /**
7450      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
7451      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
7452      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
7453      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
7454      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
7455      * {@code try-finally} handle.
7456      * <p>
7457      * The {@code cleanup} handle will be passed one or two additional leading arguments.
7458      * The first is the exception thrown during the
7459      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
7460      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
7461      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
7462      * The second argument is not present if the {@code target} handle has a {@code void} return type.
7463      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
7464      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
7465      * <p>
7466      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
7467      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
7468      * two extra leading parameters:<ul>
7469      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
7470      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
7471      * the result from the execution of the {@code target} handle.
7472      * This parameter is not present if the {@code target} returns {@code void}.
7473      * </ul>
7474      * <p>
7475      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
7476      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
7477      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
7478      * the cleanup.
7479      * {@snippet lang="java" :
7480      * V target(A..., B...);
7481      * V cleanup(Throwable, V, A...);
7482      * V adapter(A... a, B... b) {
7483      *   V result = (zero value for V);
7484      *   Throwable throwable = null;
7485      *   try {
7486      *     result = target(a..., b...);
7487      *   } catch (Throwable t) {
7488      *     throwable = t;
7489      *     throw t;
7490      *   } finally {
7491      *     result = cleanup(throwable, result, a...);
7492      *   }
7493      *   return result;
7494      * }
7495      * }
7496      * <p>
7497      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
7498      * be modified by execution of the target, and so are passed unchanged
7499      * from the caller to the cleanup, if it is invoked.
7500      * <p>
7501      * The target and cleanup must return the same type, even if the cleanup
7502      * always throws.
7503      * To create such a throwing cleanup, compose the cleanup logic
7504      * with {@link #throwException throwException},
7505      * in order to create a method handle of the correct return type.
7506      * <p>
7507      * Note that {@code tryFinally} never converts exceptions into normal returns.
7508      * In rare cases where exceptions must be converted in that way, first wrap
7509      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
7510      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
7511      * <p>
7512      * It is recommended that the first parameter type of {@code cleanup} be
7513      * declared {@code Throwable} rather than a narrower subtype.  This ensures
7514      * {@code cleanup} will always be invoked with whatever exception that
7515      * {@code target} throws.  Declaring a narrower type may result in a
7516      * {@code ClassCastException} being thrown by the {@code try-finally}
7517      * handle if the type of the exception thrown by {@code target} is not
7518      * assignable to the first parameter type of {@code cleanup}.  Note that
7519      * various exception types of {@code VirtualMachineError},
7520      * {@code LinkageError}, and {@code RuntimeException} can in principle be
7521      * thrown by almost any kind of Java code, and a finally clause that
7522      * catches (say) only {@code IOException} would mask any of the others
7523      * behind a {@code ClassCastException}.
7524      *
7525      * @param target the handle whose execution is to be wrapped in a {@code try} block.
7526      * @param cleanup the handle that is invoked in the finally block.
7527      *
7528      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
7529      * @throws NullPointerException if any argument is null
7530      * @throws IllegalArgumentException if {@code cleanup} does not accept
7531      *          the required leading arguments, or if the method handle types do
7532      *          not match in their return types and their
7533      *          corresponding trailing parameters
7534      *
7535      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
7536      * @since 9
7537      */
7538     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
7539         Class<?>[] targetParamTypes = target.type().ptypes();
7540         Class<?> rtype = target.type().returnType();
7541 
7542         tryFinallyChecks(target, cleanup);
7543 
7544         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
7545         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
7546         // target parameter list.
7547         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0, false);
7548 
7549         // Ensure that the intrinsic type checks the instance thrown by the
7550         // target against the first parameter of cleanup
7551         cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
7552 
7553         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
7554         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
7555     }
7556 
7557     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
7558         Class<?> rtype = target.type().returnType();
7559         if (rtype != cleanup.type().returnType()) {
7560             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
7561         }
7562         MethodType cleanupType = cleanup.type();
7563         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
7564             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
7565         }
7566         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
7567             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
7568         }
7569         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
7570         // target parameter list.
7571         int cleanupArgIndex = rtype == void.class ? 1 : 2;
7572         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
7573             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
7574                     cleanup.type(), target.type());
7575         }
7576     }
7577 
7578     /**
7579      * Creates a table switch method handle, which can be used to switch over a set of target
7580      * method handles, based on a given target index, called selector.
7581      * <p>
7582      * For a selector value of {@code n}, where {@code n} falls in the range {@code [0, N)},
7583      * and where {@code N} is the number of target method handles, the table switch method
7584      * handle will invoke the n-th target method handle from the list of target method handles.
7585      * <p>
7586      * For a selector value that does not fall in the range {@code [0, N)}, the table switch
7587      * method handle will invoke the given fallback method handle.
7588      * <p>
7589      * All method handles passed to this method must have the same type, with the additional
7590      * requirement that the leading parameter be of type {@code int}. The leading parameter
7591      * represents the selector.
7592      * <p>
7593      * Any trailing parameters present in the type will appear on the returned table switch
7594      * method handle as well. Any arguments assigned to these parameters will be forwarded,
7595      * together with the selector value, to the selected method handle when invoking it.
7596      *
7597      * @apiNote Example:
7598      * The cases each drop the {@code selector} value they are given, and take an additional
7599      * {@code String} argument, which is concatenated (using {@link String#concat(String)})
7600      * to a specific constant label string for each case:
7601      * {@snippet lang="java" :
7602      * MethodHandles.Lookup lookup = MethodHandles.lookup();
7603      * MethodHandle caseMh = lookup.findVirtual(String.class, "concat",
7604      *         MethodType.methodType(String.class, String.class));
7605      * caseMh = MethodHandles.dropArguments(caseMh, 0, int.class);
7606      *
7607      * MethodHandle caseDefault = MethodHandles.insertArguments(caseMh, 1, "default: ");
7608      * MethodHandle case0 = MethodHandles.insertArguments(caseMh, 1, "case 0: ");
7609      * MethodHandle case1 = MethodHandles.insertArguments(caseMh, 1, "case 1: ");
7610      *
7611      * MethodHandle mhSwitch = MethodHandles.tableSwitch(
7612      *     caseDefault,
7613      *     case0,
7614      *     case1
7615      * );
7616      *
7617      * assertEquals("default: data", (String) mhSwitch.invokeExact(-1, "data"));
7618      * assertEquals("case 0: data", (String) mhSwitch.invokeExact(0, "data"));
7619      * assertEquals("case 1: data", (String) mhSwitch.invokeExact(1, "data"));
7620      * assertEquals("default: data", (String) mhSwitch.invokeExact(2, "data"));
7621      * }
7622      *
7623      * @param fallback the fallback method handle that is called when the selector is not
7624      *                 within the range {@code [0, N)}.
7625      * @param targets array of target method handles.
7626      * @return the table switch method handle.
7627      * @throws NullPointerException if {@code fallback}, the {@code targets} array, or any
7628      *                              any of the elements of the {@code targets} array are
7629      *                              {@code null}.
7630      * @throws IllegalArgumentException if the {@code targets} array is empty, if the leading
7631      *                                  parameter of the fallback handle or any of the target
7632      *                                  handles is not {@code int}, or if the types of
7633      *                                  the fallback handle and all of target handles are
7634      *                                  not the same.
7635      *
7636      * @since 17
7637      */
7638     public static MethodHandle tableSwitch(MethodHandle fallback, MethodHandle... targets) {
7639         Objects.requireNonNull(fallback);
7640         Objects.requireNonNull(targets);
7641         targets = targets.clone();
7642         MethodType type = tableSwitchChecks(fallback, targets);
7643         return MethodHandleImpl.makeTableSwitch(type, fallback, targets);
7644     }
7645 
7646     private static MethodType tableSwitchChecks(MethodHandle defaultCase, MethodHandle[] caseActions) {
7647         if (caseActions.length == 0)
7648             throw new IllegalArgumentException("Not enough cases: " + Arrays.toString(caseActions));
7649 
7650         MethodType expectedType = defaultCase.type();
7651 
7652         if (!(expectedType.parameterCount() >= 1) || expectedType.parameterType(0) != int.class)
7653             throw new IllegalArgumentException(
7654                 "Case actions must have int as leading parameter: " + Arrays.toString(caseActions));
7655 
7656         for (MethodHandle mh : caseActions) {
7657             Objects.requireNonNull(mh);
7658             if (mh.type() != expectedType)
7659                 throw new IllegalArgumentException(
7660                     "Case actions must have the same type: " + Arrays.toString(caseActions));
7661         }
7662 
7663         return expectedType;
7664     }
7665 
7666     /**
7667      * Adapts a target var handle by pre-processing incoming and outgoing values using a pair of filter functions.
7668      * <p>
7669      * When calling e.g. {@link VarHandle#set(Object...)} on the resulting var handle, the incoming value (of type {@code T}, where
7670      * {@code T} is the <em>last</em> parameter type of the first filter function) is processed using the first filter and then passed
7671      * to the target var handle.
7672      * Conversely, when calling e.g. {@link VarHandle#get(Object...)} on the resulting var handle, the return value obtained from
7673      * the target var handle (of type {@code T}, where {@code T} is the <em>last</em> parameter type of the second filter function)
7674      * is processed using the second filter and returned to the caller. More advanced access mode types, such as
7675      * {@link VarHandle.AccessMode#COMPARE_AND_EXCHANGE} might apply both filters at the same time.
7676      * <p>
7677      * For the boxing and unboxing filters to be well-formed, their types must be of the form {@code (A... , S) -> T} and
7678      * {@code (A... , T) -> S}, respectively, where {@code T} is the type of the target var handle. If this is the case,
7679      * the resulting var handle will have type {@code S} and will feature the additional coordinates {@code A...} (which
7680      * will be appended to the coordinates of the target var handle).
7681      * <p>
7682      * If the boxing and unboxing filters throw any checked exceptions when invoked, the resulting var handle will
7683      * throw an {@link IllegalStateException}.
7684      * <p>
7685      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
7686      * atomic access guarantees as those featured by the target var handle.
7687      *
7688      * @param target the target var handle
7689      * @param filterToTarget a filter to convert some type {@code S} into the type of {@code target}
7690      * @param filterFromTarget a filter to convert the type of {@code target} to some type {@code S}
7691      * @return an adapter var handle which accepts a new type, performing the provided boxing/unboxing conversions.
7692      * @throws IllegalArgumentException if {@code filterFromTarget} and {@code filterToTarget} are not well-formed, that is, they have types
7693      * other than {@code (A... , S) -> T} and {@code (A... , T) -> S}, respectively, where {@code T} is the type of the target var handle,
7694      * or if it's determined that either {@code filterFromTarget} or {@code filterToTarget} throws any checked exceptions.
7695      * @throws NullPointerException if any of the arguments is {@code null}.
7696      * @since 22
7697      */
7698     public static VarHandle filterValue(VarHandle target, MethodHandle filterToTarget, MethodHandle filterFromTarget) {
7699         return VarHandles.filterValue(target, filterToTarget, filterFromTarget);
7700     }
7701 
7702     /**
7703      * Adapts a target var handle by pre-processing incoming coordinate values using unary filter functions.
7704      * <p>
7705      * When calling e.g. {@link VarHandle#get(Object...)} on the resulting var handle, the incoming coordinate values
7706      * starting at position {@code pos} (of type {@code C1, C2 ... Cn}, where {@code C1, C2 ... Cn} are the return types
7707      * of the unary filter functions) are transformed into new values (of type {@code S1, S2 ... Sn}, where {@code S1, S2 ... Sn} are the
7708      * parameter types of the unary filter functions), and then passed (along with any coordinate that was left unaltered
7709      * by the adaptation) to the target var handle.
7710      * <p>
7711      * For the coordinate filters to be well-formed, their types must be of the form {@code S1 -> T1, S2 -> T1 ... Sn -> Tn},
7712      * where {@code T1, T2 ... Tn} are the coordinate types starting at position {@code pos} of the target var handle.
7713      * <p>
7714      * If any of the filters throws a checked exception when invoked, the resulting var handle will
7715      * throw an {@link IllegalStateException}.
7716      * <p>
7717      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
7718      * atomic access guarantees as those featured by the target var handle.
7719      *
7720      * @param target the target var handle
7721      * @param pos the position of the first coordinate to be transformed
7722      * @param filters the unary functions which are used to transform coordinates starting at position {@code pos}
7723      * @return an adapter var handle which accepts new coordinate types, applying the provided transformation
7724      * to the new coordinate values.
7725      * @throws IllegalArgumentException if the handles in {@code filters} are not well-formed, that is, they have types
7726      * other than {@code S1 -> T1, S2 -> T2, ... Sn -> Tn} where {@code T1, T2 ... Tn} are the coordinate types starting
7727      * at position {@code pos} of the target var handle, if {@code pos} is not between 0 and the target var handle coordinate arity, inclusive,
7728      * or if more filters are provided than the actual number of coordinate types available starting at {@code pos},
7729      * or if it's determined that any of the filters throws any checked exceptions.
7730      * @throws NullPointerException if any of the arguments is {@code null} or {@code filters} contains {@code null}.
7731      * @since 22
7732      */
7733     public static VarHandle filterCoordinates(VarHandle target, int pos, MethodHandle... filters) {
7734         return VarHandles.filterCoordinates(target, pos, filters);
7735     }
7736 
7737     /**
7738      * Provides a target var handle with one or more <em>bound coordinates</em>
7739      * in advance of the var handle's invocation. As a consequence, the resulting var handle will feature less
7740      * coordinate types than the target var handle.
7741      * <p>
7742      * When calling e.g. {@link VarHandle#get(Object...)} on the resulting var handle, incoming coordinate values
7743      * are joined with bound coordinate values, and then passed to the target var handle.
7744      * <p>
7745      * For the bound coordinates to be well-formed, their types must be {@code T1, T2 ... Tn },
7746      * where {@code T1, T2 ... Tn} are the coordinate types starting at position {@code pos} of the target var handle.
7747      * <p>
7748      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
7749      * atomic access guarantees as those featured by the target var handle.
7750      *
7751      * @param target the var handle to invoke after the bound coordinates are inserted
7752      * @param pos the position of the first coordinate to be inserted
7753      * @param values the series of bound coordinates to insert
7754      * @return an adapter var handle which inserts additional coordinates,
7755      *         before calling the target var handle
7756      * @throws IllegalArgumentException if {@code pos} is not between 0 and the target var handle coordinate arity, inclusive,
7757      * or if more values are provided than the actual number of coordinate types available starting at {@code pos}.
7758      * @throws ClassCastException if the bound coordinates in {@code values} are not well-formed, that is, they have types
7759      * other than {@code T1, T2 ... Tn }, where {@code T1, T2 ... Tn} are the coordinate types starting at position {@code pos}
7760      * of the target var handle.
7761      * @throws NullPointerException if any of the arguments is {@code null} or {@code values} contains {@code null}.
7762      * @since 22
7763      */
7764     public static VarHandle insertCoordinates(VarHandle target, int pos, Object... values) {
7765         return VarHandles.insertCoordinates(target, pos, values);
7766     }
7767 
7768     /**
7769      * Provides a var handle which adapts the coordinate values of the target var handle, by re-arranging them
7770      * so that the new coordinates match the provided ones.
7771      * <p>
7772      * The given array controls the reordering.
7773      * Call {@code #I} the number of incoming coordinates (the value
7774      * {@code newCoordinates.size()}), and call {@code #O} the number
7775      * of outgoing coordinates (the number of coordinates associated with the target var handle).
7776      * Then the length of the reordering array must be {@code #O},
7777      * and each element must be a non-negative number less than {@code #I}.
7778      * For every {@code N} less than {@code #O}, the {@code N}-th
7779      * outgoing coordinate will be taken from the {@code I}-th incoming
7780      * coordinate, where {@code I} is {@code reorder[N]}.
7781      * <p>
7782      * No coordinate value conversions are applied.
7783      * The type of each incoming coordinate, as determined by {@code newCoordinates},
7784      * must be identical to the type of the corresponding outgoing coordinate
7785      * in the target var handle.
7786      * <p>
7787      * The reordering array need not specify an actual permutation.
7788      * An incoming coordinate will be duplicated if its index appears
7789      * more than once in the array, and an incoming coordinate will be dropped
7790      * if its index does not appear in the array.
7791      * <p>
7792      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
7793      * atomic access guarantees as those featured by the target var handle.
7794      * @param target the var handle to invoke after the coordinates have been reordered
7795      * @param newCoordinates the new coordinate types
7796      * @param reorder an index array which controls the reordering
7797      * @return an adapter var handle which re-arranges the incoming coordinate values,
7798      * before calling the target var handle
7799      * @throws IllegalArgumentException if the index array length is not equal to
7800      * the number of coordinates of the target var handle, or if any index array element is not a valid index for
7801      * a coordinate of {@code newCoordinates}, or if two corresponding coordinate types in
7802      * the target var handle and in {@code newCoordinates} are not identical.
7803      * @throws NullPointerException if any of the arguments is {@code null} or {@code newCoordinates} contains {@code null}.
7804      * @since 22
7805      */
7806     public static VarHandle permuteCoordinates(VarHandle target, List<Class<?>> newCoordinates, int... reorder) {
7807         return VarHandles.permuteCoordinates(target, newCoordinates, reorder);
7808     }
7809 
7810     /**
7811      * Adapts a target var handle by pre-processing
7812      * a sub-sequence of its coordinate values with a filter (a method handle).
7813      * The pre-processed coordinates are replaced by the result (if any) of the
7814      * filter function and the target var handle is then called on the modified (usually shortened)
7815      * coordinate list.
7816      * <p>
7817      * If {@code R} is the return type of the filter, then:
7818      * <ul>
7819      * <li>if {@code R} <em>is not</em> {@code void}, the target var handle must have a coordinate of type {@code R} in
7820      * position {@code pos}. The parameter types of the filter will replace the coordinate type at position {@code pos}
7821      * of the target var handle. When the returned var handle is invoked, it will be as if the filter is invoked first,
7822      * and its result is passed in place of the coordinate at position {@code pos} in a downstream invocation of the
7823      * target var handle.</li>
7824      * <li> if {@code R} <em>is</em> {@code void}, the parameter types (if any) of the filter will be inserted in the
7825      * coordinate type list of the target var handle at position {@code pos}. In this case, when the returned var handle
7826      * is invoked, the filter essentially acts as a side effect, consuming some of the coordinate values, before a
7827      * downstream invocation of the target var handle.</li>
7828      * </ul>
7829      * <p>
7830      * If any of the filters throws a checked exception when invoked, the resulting var handle will
7831      * throw an {@link IllegalStateException}.
7832      * <p>
7833      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
7834      * atomic access guarantees as those featured by the target var handle.
7835      *
7836      * @param target the var handle to invoke after the coordinates have been filtered
7837      * @param pos the position in the coordinate list of the target var handle where the filter is to be inserted
7838      * @param filter the filter method handle
7839      * @return an adapter var handle which filters the incoming coordinate values,
7840      * before calling the target var handle
7841      * @throws IllegalArgumentException if the return type of {@code filter}
7842      * is not void, and it is not the same as the {@code pos} coordinate of the target var handle,
7843      * if {@code pos} is not between 0 and the target var handle coordinate arity, inclusive,
7844      * if the resulting var handle's type would have <a href="MethodHandle.html#maxarity">too many coordinates</a>,
7845      * or if it's determined that {@code filter} throws any checked exceptions.
7846      * @throws NullPointerException if any of the arguments is {@code null}.
7847      * @since 22
7848      */
7849     public static VarHandle collectCoordinates(VarHandle target, int pos, MethodHandle filter) {
7850         return VarHandles.collectCoordinates(target, pos, filter);
7851     }
7852 
7853     /**
7854      * Returns a var handle which will discard some dummy coordinates before delegating to the
7855      * target var handle. As a consequence, the resulting var handle will feature more
7856      * coordinate types than the target var handle.
7857      * <p>
7858      * The {@code pos} argument may range between zero and <i>N</i>, where <i>N</i> is the arity of the
7859      * target var handle's coordinate types. If {@code pos} is zero, the dummy coordinates will precede
7860      * the target's real arguments; if {@code pos} is <i>N</i> they will come after.
7861      * <p>
7862      * The resulting var handle will feature the same access modes (see {@link VarHandle.AccessMode}) and
7863      * atomic access guarantees as those featured by the target var handle.
7864      *
7865      * @param target the var handle to invoke after the dummy coordinates are dropped
7866      * @param pos position of the first coordinate to drop (zero for the leftmost)
7867      * @param valueTypes the type(s) of the coordinate(s) to drop
7868      * @return an adapter var handle which drops some dummy coordinates,
7869      *         before calling the target var handle
7870      * @throws IllegalArgumentException if {@code pos} is not between 0 and the target var handle coordinate arity, inclusive.
7871      * @throws NullPointerException if any of the arguments is {@code null} or {@code valueTypes} contains {@code null}.
7872      * @since 22
7873      */
7874     public static VarHandle dropCoordinates(VarHandle target, int pos, Class<?>... valueTypes) {
7875         return VarHandles.dropCoordinates(target, pos, valueTypes);
7876     }
7877 }