1 /*
   2  * Copyright (c) 2000, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.internal.misc;
  27 
  28 import jdk.internal.ref.Cleaner;
  29 import jdk.internal.vm.annotation.ForceInline;
  30 import jdk.internal.vm.annotation.IntrinsicCandidate;
  31 import sun.nio.ch.DirectBuffer;
  32 
  33 import java.lang.reflect.Field;
  34 import java.security.ProtectionDomain;
  35 
  36 import static jdk.internal.misc.UnsafeConstants.*;
  37 
  38 /**
  39  * A collection of methods for performing low-level, unsafe operations.
  40  * Although the class and all methods are public, use of this class is
  41  * limited because only trusted code can obtain instances of it.
  42  *
  43  * <em>Note:</em> It is the responsibility of the caller to make sure
  44  * arguments are checked before methods of this class are
  45  * called. While some rudimentary checks are performed on the input,
  46  * the checks are best effort and when performance is an overriding
  47  * priority, as when methods of this class are optimized by the
  48  * runtime compiler, some or all checks (if any) may be elided. Hence,
  49  * the caller must not rely on the checks and corresponding
  50  * exceptions!
  51  *
  52  * @author John R. Rose
  53  * @see #getUnsafe
  54  */
  55 
  56 public final class Unsafe {
  57 
  58     private static native void registerNatives();
  59     static {
  60         runtimeSetup();
  61     }
  62 
  63     // Called from JVM when loading an AOT cache
  64     private static void runtimeSetup() {
  65         registerNatives();
  66     }
  67 
  68     private Unsafe() {}
  69 
  70     private static final Unsafe theUnsafe = new Unsafe();
  71 
  72     /**
  73      * Provides the caller with the capability of performing unsafe
  74      * operations.
  75      *
  76      * <p>The returned {@code Unsafe} object should be carefully guarded
  77      * by the caller, since it can be used to read and write data at arbitrary
  78      * memory addresses.  It must never be passed to untrusted code.
  79      *
  80      * <p>Most methods in this class are very low-level, and correspond to a
  81      * small number of hardware instructions (on typical machines).  Compilers
  82      * are encouraged to optimize these methods accordingly.
  83      *
  84      * <p>Here is a suggested idiom for using unsafe operations:
  85      *
  86      * <pre> {@code
  87      * class MyTrustedClass {
  88      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
  89      *   ...
  90      *   private long myCountAddress = ...;
  91      *   public int getCount() { return unsafe.getByte(myCountAddress); }
  92      * }}</pre>
  93      *
  94      * (It may assist compilers to make the local variable {@code final}.)
  95      */
  96     public static Unsafe getUnsafe() {
  97         return theUnsafe;
  98     }
  99 
 100     //--- peek and poke operations
 101     // (compilers should optimize these to memory ops)
 102 
 103     // These work on object fields in the Java heap.
 104     // They will not work on elements of packed arrays.
 105 
 106     /**
 107      * Fetches a value from a given Java variable.
 108      * More specifically, fetches a field or array element within the given
 109      * object {@code o} at the given offset, or (if {@code o} is null)
 110      * from the memory address whose numerical value is the given offset.
 111      * <p>
 112      * The results are undefined unless one of the following cases is true:
 113      * <ul>
 114      * <li>The offset was obtained from {@link #objectFieldOffset} on
 115      * the {@link java.lang.reflect.Field} of some Java field and the object
 116      * referred to by {@code o} is of a class compatible with that
 117      * field's class.
 118      *
 119      * <li>The offset and object reference {@code o} (either null or
 120      * non-null) were both obtained via {@link #staticFieldOffset}
 121      * and {@link #staticFieldBase} (respectively) from the
 122      * reflective {@link Field} representation of some Java field.
 123      *
 124      * <li>The object referred to by {@code o} is an array, and the offset
 125      * is an integer of the form {@code B+N*S}, where {@code N} is
 126      * a valid index into the array, and {@code B} and {@code S} are
 127      * the values obtained by {@link #arrayBaseOffset} and {@link
 128      * #arrayIndexScale} (respectively) from the array's class.  The value
 129      * referred to is the {@code N}<em>th</em> element of the array.
 130      *
 131      * </ul>
 132      * <p>
 133      * If one of the above cases is true, the call references a specific Java
 134      * variable (field or array element).  However, the results are undefined
 135      * if that variable is not in fact of the type returned by this method.
 136      * <p>
 137      * This method refers to a variable by means of two parameters, and so
 138      * it provides (in effect) a <em>double-register</em> addressing mode
 139      * for Java variables.  When the object reference is null, this method
 140      * uses its offset as an absolute address.  This is similar in operation
 141      * to methods such as {@link #getInt(long)}, which provide (in effect) a
 142      * <em>single-register</em> addressing mode for non-Java variables.
 143      * However, because Java variables may have a different layout in memory
 144      * from non-Java variables, programmers should not assume that these
 145      * two addressing modes are ever equivalent.  Also, programmers should
 146      * remember that offsets from the double-register addressing mode cannot
 147      * be portably confused with longs used in the single-register addressing
 148      * mode.
 149      *
 150      * @param o Java heap object in which the variable resides, if any, else
 151      *        null
 152      * @param offset indication of where the variable resides in a Java heap
 153      *        object, if any, else a memory address locating the variable
 154      *        statically
 155      * @return the value fetched from the indicated Java variable
 156      * @throws RuntimeException No defined exceptions are thrown, not even
 157      *         {@link NullPointerException}
 158      */
 159     @IntrinsicCandidate
 160     public native int getInt(Object o, long offset);
 161 
 162     /**
 163      * Stores a value into a given Java variable.
 164      * <p>
 165      * The first two parameters are interpreted exactly as with
 166      * {@link #getInt(Object, long)} to refer to a specific
 167      * Java variable (field or array element).  The given value
 168      * is stored into that variable.
 169      * <p>
 170      * The variable must be of the same type as the method
 171      * parameter {@code x}.
 172      *
 173      * @param o Java heap object in which the variable resides, if any, else
 174      *        null
 175      * @param offset indication of where the variable resides in a Java heap
 176      *        object, if any, else a memory address locating the variable
 177      *        statically
 178      * @param x the value to store into the indicated Java variable
 179      * @throws RuntimeException No defined exceptions are thrown, not even
 180      *         {@link NullPointerException}
 181      */
 182     @IntrinsicCandidate
 183     public native void putInt(Object o, long offset, int x);
 184 
 185     /**
 186      * Fetches a reference value from a given Java variable.
 187      * @see #getInt(Object, long)
 188      */
 189     @IntrinsicCandidate
 190     public native Object getReference(Object o, long offset);
 191 
 192     /**
 193      * Stores a reference value into a given Java variable.
 194      * <p>
 195      * Unless the reference {@code x} being stored is either null
 196      * or matches the field type, the results are undefined.
 197      * If the reference {@code o} is non-null, card marks or
 198      * other store barriers for that object (if the VM requires them)
 199      * are updated.
 200      * @see #putInt(Object, long, int)
 201      */
 202     @IntrinsicCandidate
 203     public native void putReference(Object o, long offset, Object x);
 204 
 205     /** @see #getInt(Object, long) */
 206     @IntrinsicCandidate
 207     public native boolean getBoolean(Object o, long offset);
 208 
 209     /** @see #putInt(Object, long, int) */
 210     @IntrinsicCandidate
 211     public native void    putBoolean(Object o, long offset, boolean x);
 212 
 213     /** @see #getInt(Object, long) */
 214     @IntrinsicCandidate
 215     public native byte    getByte(Object o, long offset);
 216 
 217     /** @see #putInt(Object, long, int) */
 218     @IntrinsicCandidate
 219     public native void    putByte(Object o, long offset, byte x);
 220 
 221     /** @see #getInt(Object, long) */
 222     @IntrinsicCandidate
 223     public native short   getShort(Object o, long offset);
 224 
 225     /** @see #putInt(Object, long, int) */
 226     @IntrinsicCandidate
 227     public native void    putShort(Object o, long offset, short x);
 228 
 229     /** @see #getInt(Object, long) */
 230     @IntrinsicCandidate
 231     public native char    getChar(Object o, long offset);
 232 
 233     /** @see #putInt(Object, long, int) */
 234     @IntrinsicCandidate
 235     public native void    putChar(Object o, long offset, char x);
 236 
 237     /** @see #getInt(Object, long) */
 238     @IntrinsicCandidate
 239     public native long    getLong(Object o, long offset);
 240 
 241     /** @see #putInt(Object, long, int) */
 242     @IntrinsicCandidate
 243     public native void    putLong(Object o, long offset, long x);
 244 
 245     /** @see #getInt(Object, long) */
 246     @IntrinsicCandidate
 247     public native float   getFloat(Object o, long offset);
 248 
 249     /** @see #putInt(Object, long, int) */
 250     @IntrinsicCandidate
 251     public native void    putFloat(Object o, long offset, float x);
 252 
 253     /** @see #getInt(Object, long) */
 254     @IntrinsicCandidate
 255     public native double  getDouble(Object o, long offset);
 256 
 257     /** @see #putInt(Object, long, int) */
 258     @IntrinsicCandidate
 259     public native void    putDouble(Object o, long offset, double x);
 260 
 261     /**
 262      * Fetches a native pointer from a given memory address.  If the address is
 263      * zero, or does not point into a block obtained from {@link
 264      * #allocateMemory}, the results are undefined.
 265      *
 266      * <p>If the native pointer is less than 64 bits wide, it is extended as
 267      * an unsigned number to a Java long.  The pointer may be indexed by any
 268      * given byte offset, simply by adding that offset (as a simple integer) to
 269      * the long representing the pointer.  The number of bytes actually read
 270      * from the target address may be determined by consulting {@link
 271      * #addressSize}.
 272      *
 273      * @see #allocateMemory
 274      * @see #getInt(Object, long)
 275      */
 276     @ForceInline
 277     public long getAddress(Object o, long offset) {
 278         if (ADDRESS_SIZE == 4) {
 279             return Integer.toUnsignedLong(getInt(o, offset));
 280         } else {
 281             return getLong(o, offset);
 282         }
 283     }
 284 
 285     /**
 286      * Stores a native pointer into a given memory address.  If the address is
 287      * zero, or does not point into a block obtained from {@link
 288      * #allocateMemory}, the results are undefined.
 289      *
 290      * <p>The number of bytes actually written at the target address may be
 291      * determined by consulting {@link #addressSize}.
 292      *
 293      * @see #allocateMemory
 294      * @see #putInt(Object, long, int)
 295      */
 296     @ForceInline
 297     public void putAddress(Object o, long offset, long x) {
 298         if (ADDRESS_SIZE == 4) {
 299             putInt(o, offset, (int)x);
 300         } else {
 301             putLong(o, offset, x);
 302         }
 303     }
 304 
 305     // These read VM internal data.
 306 
 307     /**
 308      * Fetches an uncompressed reference value from a given native variable
 309      * ignoring the VM's compressed references mode.
 310      *
 311      * @param address a memory address locating the variable
 312      * @return the value fetched from the indicated native variable
 313      */
 314     public native Object getUncompressedObject(long address);
 315 
 316     // These work on values in the C heap.
 317 
 318     /**
 319      * Fetches a value from a given memory address.  If the address is zero, or
 320      * does not point into a block obtained from {@link #allocateMemory}, the
 321      * results are undefined.
 322      *
 323      * @see #allocateMemory
 324      */
 325     @ForceInline
 326     public byte getByte(long address) {
 327         return getByte(null, address);
 328     }
 329 
 330     /**
 331      * Stores a value into a given memory address.  If the address is zero, or
 332      * does not point into a block obtained from {@link #allocateMemory}, the
 333      * results are undefined.
 334      *
 335      * @see #getByte(long)
 336      */
 337     @ForceInline
 338     public void putByte(long address, byte x) {
 339         putByte(null, address, x);
 340     }
 341 
 342     /** @see #getByte(long) */
 343     @ForceInline
 344     public short getShort(long address) {
 345         return getShort(null, address);
 346     }
 347 
 348     /** @see #putByte(long, byte) */
 349     @ForceInline
 350     public void putShort(long address, short x) {
 351         putShort(null, address, x);
 352     }
 353 
 354     /** @see #getByte(long) */
 355     @ForceInline
 356     public char getChar(long address) {
 357         return getChar(null, address);
 358     }
 359 
 360     /** @see #putByte(long, byte) */
 361     @ForceInline
 362     public void putChar(long address, char x) {
 363         putChar(null, address, x);
 364     }
 365 
 366     /** @see #getByte(long) */
 367     @ForceInline
 368     public int getInt(long address) {
 369         return getInt(null, address);
 370     }
 371 
 372     /** @see #putByte(long, byte) */
 373     @ForceInline
 374     public void putInt(long address, int x) {
 375         putInt(null, address, x);
 376     }
 377 
 378     /** @see #getByte(long) */
 379     @ForceInline
 380     public long getLong(long address) {
 381         return getLong(null, address);
 382     }
 383 
 384     /** @see #putByte(long, byte) */
 385     @ForceInline
 386     public void putLong(long address, long x) {
 387         putLong(null, address, x);
 388     }
 389 
 390     /** @see #getByte(long) */
 391     @ForceInline
 392     public float getFloat(long address) {
 393         return getFloat(null, address);
 394     }
 395 
 396     /** @see #putByte(long, byte) */
 397     @ForceInline
 398     public void putFloat(long address, float x) {
 399         putFloat(null, address, x);
 400     }
 401 
 402     /** @see #getByte(long) */
 403     @ForceInline
 404     public double getDouble(long address) {
 405         return getDouble(null, address);
 406     }
 407 
 408     /** @see #putByte(long, byte) */
 409     @ForceInline
 410     public void putDouble(long address, double x) {
 411         putDouble(null, address, x);
 412     }
 413 
 414     /** @see #getAddress(Object, long) */
 415     @ForceInline
 416     public long getAddress(long address) {
 417         return getAddress(null, address);
 418     }
 419 
 420     /** @see #putAddress(Object, long, long) */
 421     @ForceInline
 422     public void putAddress(long address, long x) {
 423         putAddress(null, address, x);
 424     }
 425 
 426 
 427 
 428     //--- helper methods for validating various types of objects/values
 429 
 430     /**
 431      * Create an exception reflecting that some of the input was invalid
 432      *
 433      * <em>Note:</em> It is the responsibility of the caller to make
 434      * sure arguments are checked before the methods are called. While
 435      * some rudimentary checks are performed on the input, the checks
 436      * are best effort and when performance is an overriding priority,
 437      * as when methods of this class are optimized by the runtime
 438      * compiler, some or all checks (if any) may be elided. Hence, the
 439      * caller must not rely on the checks and corresponding
 440      * exceptions!
 441      *
 442      * @return an exception object
 443      */
 444     private RuntimeException invalidInput() {
 445         return new IllegalArgumentException();
 446     }
 447 
 448     /**
 449      * Check if a value is 32-bit clean (32 MSB are all zero)
 450      *
 451      * @param value the 64-bit value to check
 452      *
 453      * @return true if the value is 32-bit clean
 454      */
 455     private boolean is32BitClean(long value) {
 456         return value >>> 32 == 0;
 457     }
 458 
 459     /**
 460      * Check the validity of a size (the equivalent of a size_t)
 461      *
 462      * @throws RuntimeException if the size is invalid
 463      *         (<em>Note:</em> after optimization, invalid inputs may
 464      *         go undetected, which will lead to unpredictable
 465      *         behavior)
 466      */
 467     private void checkSize(long size) {
 468         if (ADDRESS_SIZE == 4) {
 469             // Note: this will also check for negative sizes
 470             if (!is32BitClean(size)) {
 471                 throw invalidInput();
 472             }
 473         } else if (size < 0) {
 474             throw invalidInput();
 475         }
 476     }
 477 
 478     /**
 479      * Check the validity of a native address (the equivalent of void*)
 480      *
 481      * @throws RuntimeException if the address is invalid
 482      *         (<em>Note:</em> after optimization, invalid inputs may
 483      *         go undetected, which will lead to unpredictable
 484      *         behavior)
 485      */
 486     private void checkNativeAddress(long address) {
 487         if (ADDRESS_SIZE == 4) {
 488             // Accept both zero and sign extended pointers. A valid
 489             // pointer will, after the +1 below, either have produced
 490             // the value 0x0 or 0x1. Masking off the low bit allows
 491             // for testing against 0.
 492             if ((((address >> 32) + 1) & ~1) != 0) {
 493                 throw invalidInput();
 494             }
 495         }
 496     }
 497 
 498     /**
 499      * Check the validity of an offset, relative to a base object
 500      *
 501      * @param o the base object
 502      * @param offset the offset to check
 503      *
 504      * @throws RuntimeException if the size is invalid
 505      *         (<em>Note:</em> after optimization, invalid inputs may
 506      *         go undetected, which will lead to unpredictable
 507      *         behavior)
 508      */
 509     private void checkOffset(Object o, long offset) {
 510         if (ADDRESS_SIZE == 4) {
 511             // Note: this will also check for negative offsets
 512             if (!is32BitClean(offset)) {
 513                 throw invalidInput();
 514             }
 515         } else if (offset < 0) {
 516             throw invalidInput();
 517         }
 518     }
 519 
 520     /**
 521      * Check the validity of a double-register pointer
 522      *
 523      * Note: This code deliberately does *not* check for NPE for (at
 524      * least) three reasons:
 525      *
 526      * 1) NPE is not just NULL/0 - there is a range of values all
 527      * resulting in an NPE, which is not trivial to check for
 528      *
 529      * 2) It is the responsibility of the callers of Unsafe methods
 530      * to verify the input, so throwing an exception here is not really
 531      * useful - passing in a NULL pointer is a critical error and the
 532      * must not expect an exception to be thrown anyway.
 533      *
 534      * 3) the actual operations will detect NULL pointers anyway by
 535      * means of traps and signals (like SIGSEGV).
 536      *
 537      * @param o Java heap object, or null
 538      * @param offset indication of where the variable resides in a Java heap
 539      *        object, if any, else a memory address locating the variable
 540      *        statically
 541      *
 542      * @throws RuntimeException if the pointer is invalid
 543      *         (<em>Note:</em> after optimization, invalid inputs may
 544      *         go undetected, which will lead to unpredictable
 545      *         behavior)
 546      */
 547     private void checkPointer(Object o, long offset) {
 548         if (o == null) {
 549             checkNativeAddress(offset);
 550         } else {
 551             checkOffset(o, offset);
 552         }
 553     }
 554 
 555     /**
 556      * Check if a type is a primitive array type
 557      *
 558      * @param c the type to check
 559      *
 560      * @return true if the type is a primitive array type
 561      */
 562     private void checkPrimitiveArray(Class<?> c) {
 563         Class<?> componentType = c.getComponentType();
 564         if (componentType == null || !componentType.isPrimitive()) {
 565             throw invalidInput();
 566         }
 567     }
 568 
 569     /**
 570      * Check that a pointer is a valid primitive array type pointer
 571      *
 572      * Note: pointers off-heap are considered to be primitive arrays
 573      *
 574      * @throws RuntimeException if the pointer is invalid
 575      *         (<em>Note:</em> after optimization, invalid inputs may
 576      *         go undetected, which will lead to unpredictable
 577      *         behavior)
 578      */
 579     private void checkPrimitivePointer(Object o, long offset) {
 580         checkPointer(o, offset);
 581 
 582         if (o != null) {
 583             // If on heap, it must be a primitive array
 584             checkPrimitiveArray(o.getClass());
 585         }
 586     }
 587 
 588 
 589     //--- wrappers for malloc, realloc, free:
 590 
 591     /**
 592      * Round up allocation size to a multiple of HeapWordSize.
 593      */
 594     private long alignToHeapWordSize(long bytes) {
 595         if (bytes >= 0) {
 596             return (bytes + ADDRESS_SIZE - 1) & ~(ADDRESS_SIZE - 1);
 597         } else {
 598             throw invalidInput();
 599         }
 600     }
 601 
 602     /**
 603      * Allocates a new block of native memory, of the given size in bytes.  The
 604      * contents of the memory are uninitialized; they will generally be
 605      * garbage.  The resulting native pointer will be zero if and only if the
 606      * requested size is zero.  The resulting native pointer will be aligned for
 607      * all value types.   Dispose of this memory by calling {@link #freeMemory}
 608      * or resize it with {@link #reallocateMemory}.
 609      *
 610      * <em>Note:</em> It is the responsibility of the caller to make
 611      * sure arguments are checked before the methods are called. While
 612      * some rudimentary checks are performed on the input, the checks
 613      * are best effort and when performance is an overriding priority,
 614      * as when methods of this class are optimized by the runtime
 615      * compiler, some or all checks (if any) may be elided. Hence, the
 616      * caller must not rely on the checks and corresponding
 617      * exceptions!
 618      *
 619      * @throws RuntimeException if the size is negative or too large
 620      *         for the native size_t type
 621      *
 622      * @throws OutOfMemoryError if the allocation is refused by the system
 623      *
 624      * @see #getByte(long)
 625      * @see #putByte(long, byte)
 626      */
 627     public long allocateMemory(long bytes) {
 628         bytes = alignToHeapWordSize(bytes);
 629 
 630         allocateMemoryChecks(bytes);
 631 
 632         if (bytes == 0) {
 633             return 0;
 634         }
 635 
 636         long p = allocateMemory0(bytes);
 637         if (p == 0) {
 638             throw new OutOfMemoryError("Unable to allocate " + bytes + " bytes");
 639         }
 640 
 641         return p;
 642     }
 643 
 644     /**
 645      * Validate the arguments to allocateMemory
 646      *
 647      * @throws RuntimeException if the arguments are invalid
 648      *         (<em>Note:</em> after optimization, invalid inputs may
 649      *         go undetected, which will lead to unpredictable
 650      *         behavior)
 651      */
 652     private void allocateMemoryChecks(long bytes) {
 653         checkSize(bytes);
 654     }
 655 
 656     /**
 657      * Resizes a new block of native memory, to the given size in bytes.  The
 658      * contents of the new block past the size of the old block are
 659      * uninitialized; they will generally be garbage.  The resulting native
 660      * pointer will be zero if and only if the requested size is zero.  The
 661      * resulting native pointer will be aligned for all value types.  Dispose
 662      * of this memory by calling {@link #freeMemory}, or resize it with {@link
 663      * #reallocateMemory}.  The address passed to this method may be null, in
 664      * which case an allocation will be performed.
 665      *
 666      * <em>Note:</em> It is the responsibility of the caller to make
 667      * sure arguments are checked before the methods are called. While
 668      * some rudimentary checks are performed on the input, the checks
 669      * are best effort and when performance is an overriding priority,
 670      * as when methods of this class are optimized by the runtime
 671      * compiler, some or all checks (if any) may be elided. Hence, the
 672      * caller must not rely on the checks and corresponding
 673      * exceptions!
 674      *
 675      * @throws RuntimeException if the size is negative or too large
 676      *         for the native size_t type
 677      *
 678      * @throws OutOfMemoryError if the allocation is refused by the system
 679      *
 680      * @see #allocateMemory
 681      */
 682     public long reallocateMemory(long address, long bytes) {
 683         bytes = alignToHeapWordSize(bytes);
 684 
 685         reallocateMemoryChecks(address, bytes);
 686 
 687         if (bytes == 0) {
 688             freeMemory(address);
 689             return 0;
 690         }
 691 
 692         long p = (address == 0) ? allocateMemory0(bytes) : reallocateMemory0(address, bytes);
 693         if (p == 0) {
 694             throw new OutOfMemoryError("Unable to allocate " + bytes + " bytes");
 695         }
 696 
 697         return p;
 698     }
 699 
 700     /**
 701      * Validate the arguments to reallocateMemory
 702      *
 703      * @throws RuntimeException if the arguments are invalid
 704      *         (<em>Note:</em> after optimization, invalid inputs may
 705      *         go undetected, which will lead to unpredictable
 706      *         behavior)
 707      */
 708     private void reallocateMemoryChecks(long address, long bytes) {
 709         checkPointer(null, address);
 710         checkSize(bytes);
 711     }
 712 
 713     /**
 714      * Sets all bytes in a given block of memory to a fixed value
 715      * (usually zero).
 716      *
 717      * <p>This method determines a block's base address by means of two parameters,
 718      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 719      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 720      * the offset supplies an absolute base address.
 721      *
 722      * <p>The stores are in coherent (atomic) units of a size determined
 723      * by the address and length parameters.  If the effective address and
 724      * length are all even modulo 8, the stores take place in 'long' units.
 725      * If the effective address and length are (resp.) even modulo 4 or 2,
 726      * the stores take place in units of 'int' or 'short'.
 727      *
 728      * <em>Note:</em> It is the responsibility of the caller to make
 729      * sure arguments are checked before the methods are called. While
 730      * some rudimentary checks are performed on the input, the checks
 731      * are best effort and when performance is an overriding priority,
 732      * as when methods of this class are optimized by the runtime
 733      * compiler, some or all checks (if any) may be elided. Hence, the
 734      * caller must not rely on the checks and corresponding
 735      * exceptions!
 736      *
 737      * @throws RuntimeException if any of the arguments is invalid
 738      *
 739      * @since 1.7
 740      */
 741     public void setMemory(Object o, long offset, long bytes, byte value) {
 742         setMemoryChecks(o, offset, bytes, value);
 743 
 744         if (bytes == 0) {
 745             return;
 746         }
 747 
 748         setMemory0(o, offset, bytes, value);
 749     }
 750 
 751     /**
 752      * Sets all bytes in a given block of memory to a fixed value
 753      * (usually zero).  This provides a <em>single-register</em> addressing mode,
 754      * as discussed in {@link #getInt(Object,long)}.
 755      *
 756      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
 757      */
 758     public void setMemory(long address, long bytes, byte value) {
 759         setMemory(null, address, bytes, value);
 760     }
 761 
 762     /**
 763      * Validate the arguments to setMemory
 764      *
 765      * @throws RuntimeException if the arguments are invalid
 766      *         (<em>Note:</em> after optimization, invalid inputs may
 767      *         go undetected, which will lead to unpredictable
 768      *         behavior)
 769      */
 770     private void setMemoryChecks(Object o, long offset, long bytes, byte value) {
 771         checkPrimitivePointer(o, offset);
 772         checkSize(bytes);
 773     }
 774 
 775     /**
 776      * Sets all bytes in a given block of memory to a copy of another
 777      * block.
 778      *
 779      * <p>This method determines each block's base address by means of two parameters,
 780      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 781      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 782      * the offset supplies an absolute base address.
 783      *
 784      * <p>The transfers are in coherent (atomic) units of a size determined
 785      * by the address and length parameters.  If the effective addresses and
 786      * length are all even modulo 8, the transfer takes place in 'long' units.
 787      * If the effective addresses and length are (resp.) even modulo 4 or 2,
 788      * the transfer takes place in units of 'int' or 'short'.
 789      *
 790      * <em>Note:</em> It is the responsibility of the caller to make
 791      * sure arguments are checked before the methods are called. While
 792      * some rudimentary checks are performed on the input, the checks
 793      * are best effort and when performance is an overriding priority,
 794      * as when methods of this class are optimized by the runtime
 795      * compiler, some or all checks (if any) may be elided. Hence, the
 796      * caller must not rely on the checks and corresponding
 797      * exceptions!
 798      *
 799      * @throws RuntimeException if any of the arguments is invalid
 800      *
 801      * @since 1.7
 802      */
 803     public void copyMemory(Object srcBase, long srcOffset,
 804                            Object destBase, long destOffset,
 805                            long bytes) {
 806         copyMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes);
 807 
 808         if (bytes == 0) {
 809             return;
 810         }
 811 
 812         copyMemory0(srcBase, srcOffset, destBase, destOffset, bytes);
 813     }
 814 
 815     /**
 816      * Sets all bytes in a given block of memory to a copy of another
 817      * block.  This provides a <em>single-register</em> addressing mode,
 818      * as discussed in {@link #getInt(Object,long)}.
 819      *
 820      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
 821      */
 822     public void copyMemory(long srcAddress, long destAddress, long bytes) {
 823         copyMemory(null, srcAddress, null, destAddress, bytes);
 824     }
 825 
 826     /**
 827      * Validate the arguments to copyMemory
 828      *
 829      * @throws RuntimeException if any of the arguments is invalid
 830      *         (<em>Note:</em> after optimization, invalid inputs may
 831      *         go undetected, which will lead to unpredictable
 832      *         behavior)
 833      */
 834     private void copyMemoryChecks(Object srcBase, long srcOffset,
 835                                   Object destBase, long destOffset,
 836                                   long bytes) {
 837         checkSize(bytes);
 838         checkPrimitivePointer(srcBase, srcOffset);
 839         checkPrimitivePointer(destBase, destOffset);
 840     }
 841 
 842     /**
 843      * Copies all elements from one block of memory to another block,
 844      * *unconditionally* byte swapping the elements on the fly.
 845      *
 846      * <p>This method determines each block's base address by means of two parameters,
 847      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 848      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 849      * the offset supplies an absolute base address.
 850      *
 851      * <em>Note:</em> It is the responsibility of the caller to make
 852      * sure arguments are checked before the methods are called. While
 853      * some rudimentary checks are performed on the input, the checks
 854      * are best effort and when performance is an overriding priority,
 855      * as when methods of this class are optimized by the runtime
 856      * compiler, some or all checks (if any) may be elided. Hence, the
 857      * caller must not rely on the checks and corresponding
 858      * exceptions!
 859      *
 860      * @throws RuntimeException if any of the arguments is invalid
 861      *
 862      * @since 9
 863      */
 864     public void copySwapMemory(Object srcBase, long srcOffset,
 865                                Object destBase, long destOffset,
 866                                long bytes, long elemSize) {
 867         copySwapMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
 868 
 869         if (bytes == 0) {
 870             return;
 871         }
 872 
 873         copySwapMemory0(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
 874     }
 875 
 876     private void copySwapMemoryChecks(Object srcBase, long srcOffset,
 877                                       Object destBase, long destOffset,
 878                                       long bytes, long elemSize) {
 879         checkSize(bytes);
 880 
 881         if (elemSize != 2 && elemSize != 4 && elemSize != 8) {
 882             throw invalidInput();
 883         }
 884         if (bytes % elemSize != 0) {
 885             throw invalidInput();
 886         }
 887 
 888         checkPrimitivePointer(srcBase, srcOffset);
 889         checkPrimitivePointer(destBase, destOffset);
 890     }
 891 
 892     /**
 893      * Copies all elements from one block of memory to another block, byte swapping the
 894      * elements on the fly.
 895      *
 896      * This provides a <em>single-register</em> addressing mode, as
 897      * discussed in {@link #getInt(Object,long)}.
 898      *
 899      * Equivalent to {@code copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize)}.
 900      */
 901     public void copySwapMemory(long srcAddress, long destAddress, long bytes, long elemSize) {
 902         copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize);
 903     }
 904 
 905     /**
 906      * Disposes of a block of native memory, as obtained from {@link
 907      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
 908      * this method may be null, in which case no action is taken.
 909      *
 910      * <em>Note:</em> It is the responsibility of the caller to make
 911      * sure arguments are checked before the methods are called. While
 912      * some rudimentary checks are performed on the input, the checks
 913      * are best effort and when performance is an overriding priority,
 914      * as when methods of this class are optimized by the runtime
 915      * compiler, some or all checks (if any) may be elided. Hence, the
 916      * caller must not rely on the checks and corresponding
 917      * exceptions!
 918      *
 919      * @throws RuntimeException if any of the arguments is invalid
 920      *
 921      * @see #allocateMemory
 922      */
 923     public void freeMemory(long address) {
 924         freeMemoryChecks(address);
 925 
 926         if (address == 0) {
 927             return;
 928         }
 929 
 930         freeMemory0(address);
 931     }
 932 
 933     /**
 934      * Validate the arguments to freeMemory
 935      *
 936      * @throws RuntimeException if the arguments are invalid
 937      *         (<em>Note:</em> after optimization, invalid inputs may
 938      *         go undetected, which will lead to unpredictable
 939      *         behavior)
 940      */
 941     private void freeMemoryChecks(long address) {
 942         checkPointer(null, address);
 943     }
 944 
 945     /**
 946      * Ensure writeback of a specified virtual memory address range
 947      * from cache to physical memory. All bytes in the address range
 948      * are guaranteed to have been written back to physical memory on
 949      * return from this call i.e. subsequently executed store
 950      * instructions are guaranteed not to be visible before the
 951      * writeback is completed.
 952      *
 953      * @param address
 954      *        the lowest byte address that must be guaranteed written
 955      *        back to memory. bytes at lower addresses may also be
 956      *        written back.
 957      *
 958      * @param length
 959      *        the length in bytes of the region starting at address
 960      *        that must be guaranteed written back to memory.
 961      *
 962      * @throws RuntimeException if memory writeback is not supported
 963      *         on the current hardware of if the arguments are invalid.
 964      *         (<em>Note:</em> after optimization, invalid inputs may
 965      *         go undetected, which will lead to unpredictable
 966      *         behavior)
 967      *
 968      * @since 14
 969      */
 970 
 971     public void writebackMemory(long address, long length) {
 972         checkWritebackEnabled();
 973         checkWritebackMemory(address, length);
 974 
 975         // perform any required pre-writeback barrier
 976         writebackPreSync0();
 977 
 978         // write back one cache line at a time
 979         long line = dataCacheLineAlignDown(address);
 980         long end = address + length;
 981         while (line < end) {
 982             writeback0(line);
 983             line += dataCacheLineFlushSize();
 984         }
 985 
 986         // perform any required post-writeback barrier
 987         writebackPostSync0();
 988     }
 989 
 990     /**
 991      * Validate the arguments to writebackMemory
 992      *
 993      * @throws RuntimeException if the arguments are invalid
 994      *         (<em>Note:</em> after optimization, invalid inputs may
 995      *         go undetected, which will lead to unpredictable
 996      *         behavior)
 997      */
 998     private void checkWritebackMemory(long address, long length) {
 999         checkNativeAddress(address);
1000         checkSize(length);
1001     }
1002 
1003     /**
1004      * Validate that the current hardware supports memory writeback.
1005      * (<em>Note:</em> this is a belt and braces check.  Clients are
1006      * expected to test whether writeback is enabled by calling
1007      * ({@link isWritebackEnabled #isWritebackEnabled} and avoid
1008      * calling method {@link writeback #writeback} if it is disabled).
1009      *
1010      *
1011      * @throws RuntimeException if memory writeback is not supported
1012      */
1013     private void checkWritebackEnabled() {
1014         if (!isWritebackEnabled()) {
1015             throw new RuntimeException("writebackMemory not enabled!");
1016         }
1017     }
1018 
1019     /**
1020      * force writeback of an individual cache line.
1021      *
1022      * @param address
1023      *        the start address of the cache line to be written back
1024      */
1025     @IntrinsicCandidate
1026     private native void writeback0(long address);
1027 
1028      /**
1029       * Serialize writeback operations relative to preceding memory writes.
1030       */
1031     @IntrinsicCandidate
1032     private native void writebackPreSync0();
1033 
1034      /**
1035       * Serialize writeback operations relative to following memory writes.
1036       */
1037     @IntrinsicCandidate
1038     private native void writebackPostSync0();
1039 
1040     //--- random queries
1041 
1042     /**
1043      * This constant differs from all results that will ever be returned from
1044      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
1045      * or {@link #arrayBaseOffset}.
1046      * <p>
1047      * The static type is @code long} to emphasize that long arithmetic should
1048      * always be used for offset calculations to avoid overflows.
1049      */
1050     public static final long INVALID_FIELD_OFFSET = -1;
1051 
1052     /**
1053      * Reports the location of a given field in the storage allocation of its
1054      * class.  Do not expect to perform any sort of arithmetic on this offset;
1055      * it is just a cookie which is passed to the unsafe heap memory accessors.
1056      *
1057      * <p>Any given field will always have the same offset and base, and no
1058      * two distinct fields of the same class will ever have the same offset
1059      * and base.
1060      *
1061      * <p>As of 1.4.1, offsets for fields are represented as long values,
1062      * although the Sun JVM does not use the most significant 32 bits.
1063      * However, JVM implementations which store static fields at absolute
1064      * addresses can use long offsets and null base pointers to express
1065      * the field locations in a form usable by {@link #getInt(Object,long)}.
1066      * Therefore, code which will be ported to such JVMs on 64-bit platforms
1067      * must preserve all bits of static field offsets.
1068      * @see #getInt(Object, long)
1069      */
1070     public long objectFieldOffset(Field f) {
1071         if (f == null) {
1072             throw new NullPointerException();
1073         }
1074 
1075         return objectFieldOffset0(f);
1076     }
1077 
1078     /**
1079      * Reports the location of the field with a given name in the storage
1080      * allocation of its class.
1081      *
1082      * @throws NullPointerException if any parameter is {@code null}.
1083      * @throws InternalError if there is no field named {@code name} declared
1084      *         in class {@code c}, i.e., if {@code c.getDeclaredField(name)}
1085      *         would throw {@code java.lang.NoSuchFieldException}.
1086      *
1087      * @see #objectFieldOffset(Field)
1088      */
1089     public long objectFieldOffset(Class<?> c, String name) {
1090         if (c == null || name == null) {
1091             throw new NullPointerException();
1092         }
1093 
1094         return objectFieldOffset1(c, name);
1095     }
1096 
1097     /**
1098      * Reports the location of a given static field, in conjunction with {@link
1099      * #staticFieldBase}.
1100      * <p>Do not expect to perform any sort of arithmetic on this offset;
1101      * it is just a cookie which is passed to the unsafe heap memory accessors.
1102      *
1103      * <p>Any given field will always have the same offset, and no two distinct
1104      * fields of the same class will ever have the same offset.
1105      *
1106      * <p>As of 1.4.1, offsets for fields are represented as long values,
1107      * although the Sun JVM does not use the most significant 32 bits.
1108      * It is hard to imagine a JVM technology which needs more than
1109      * a few bits to encode an offset within a non-array object,
1110      * However, for consistency with other methods in this class,
1111      * this method reports its result as a long value.
1112      * @see #getInt(Object, long)
1113      */
1114     public long staticFieldOffset(Field f) {
1115         if (f == null) {
1116             throw new NullPointerException();
1117         }
1118 
1119         return staticFieldOffset0(f);
1120     }
1121 
1122     /**
1123      * Reports the location of a given static field, in conjunction with {@link
1124      * #staticFieldOffset}.
1125      * <p>Fetch the base "Object", if any, with which static fields of the
1126      * given class can be accessed via methods like {@link #getInt(Object,
1127      * long)}.  This value may be null.  This value may refer to an object
1128      * which is a "cookie", not guaranteed to be a real Object, and it should
1129      * not be used in any way except as argument to the get and put routines in
1130      * this class.
1131      */
1132     public Object staticFieldBase(Field f) {
1133         if (f == null) {
1134             throw new NullPointerException();
1135         }
1136 
1137         return staticFieldBase0(f);
1138     }
1139 
1140     /**
1141      * Detects if the given class may need to be initialized. This is often
1142      * needed in conjunction with obtaining the static field base of a
1143      * class.
1144      * @return false only if a call to {@code ensureClassInitialized} would have no effect
1145      */
1146     public boolean shouldBeInitialized(Class<?> c) {
1147         if (c == null) {
1148             throw new NullPointerException();
1149         }
1150 
1151         return shouldBeInitialized0(c);
1152     }
1153 
1154     /**
1155      * Ensures the given class has been initialized (see JVMS-5.5 for details).
1156      * This is often needed in conjunction with obtaining the static field base
1157      * of a class.
1158      *
1159      * The call returns when either class {@code c} is fully initialized or
1160      * class {@code c} is being initialized and the call is performed from
1161      * the initializing thread. In the latter case a subsequent call to
1162      * {@link #shouldBeInitialized} will return {@code true}.
1163      */
1164     public void ensureClassInitialized(Class<?> c) {
1165         if (c == null) {
1166             throw new NullPointerException();
1167         }
1168 
1169         ensureClassInitialized0(c);
1170     }
1171 
1172     /**
1173      * Reports the offset of the first element in the storage allocation of a
1174      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
1175      * for the same class, you may use that scale factor, together with this
1176      * base offset, to form new offsets to access elements of arrays of the
1177      * given class.
1178      * <p>
1179      * The return value is in the range of a {@code int}.  The return type is
1180      * {@code long} to emphasize that long arithmetic should always be used
1181      * for offset calculations to avoid overflows.
1182      *
1183      * @see #getInt(Object, long)
1184      * @see #putInt(Object, long, int)
1185      */
1186     public long arrayBaseOffset(Class<?> arrayClass) {
1187         if (arrayClass == null) {
1188             throw new NullPointerException();
1189         }
1190 
1191         return arrayBaseOffset0(arrayClass);
1192     }
1193 
1194 
1195     /** The value of {@code arrayBaseOffset(boolean[].class)} */
1196     public static final long ARRAY_BOOLEAN_BASE_OFFSET
1197             = theUnsafe.arrayBaseOffset(boolean[].class);
1198 
1199     /** The value of {@code arrayBaseOffset(byte[].class)} */
1200     public static final long ARRAY_BYTE_BASE_OFFSET
1201             = theUnsafe.arrayBaseOffset(byte[].class);
1202 
1203     /** The value of {@code arrayBaseOffset(short[].class)} */
1204     public static final long ARRAY_SHORT_BASE_OFFSET
1205             = theUnsafe.arrayBaseOffset(short[].class);
1206 
1207     /** The value of {@code arrayBaseOffset(char[].class)} */
1208     public static final long ARRAY_CHAR_BASE_OFFSET
1209             = theUnsafe.arrayBaseOffset(char[].class);
1210 
1211     /** The value of {@code arrayBaseOffset(int[].class)} */
1212     public static final long ARRAY_INT_BASE_OFFSET
1213             = theUnsafe.arrayBaseOffset(int[].class);
1214 
1215     /** The value of {@code arrayBaseOffset(long[].class)} */
1216     public static final long ARRAY_LONG_BASE_OFFSET
1217             = theUnsafe.arrayBaseOffset(long[].class);
1218 
1219     /** The value of {@code arrayBaseOffset(float[].class)} */
1220     public static final long ARRAY_FLOAT_BASE_OFFSET
1221             = theUnsafe.arrayBaseOffset(float[].class);
1222 
1223     /** The value of {@code arrayBaseOffset(double[].class)} */
1224     public static final long ARRAY_DOUBLE_BASE_OFFSET
1225             = theUnsafe.arrayBaseOffset(double[].class);
1226 
1227     /** The value of {@code arrayBaseOffset(Object[].class)} */
1228     public static final long ARRAY_OBJECT_BASE_OFFSET
1229             = theUnsafe.arrayBaseOffset(Object[].class);
1230 
1231     /**
1232      * Reports the scale factor for addressing elements in the storage
1233      * allocation of a given array class.  However, arrays of "narrow" types
1234      * will generally not work properly with accessors like {@link
1235      * #getByte(Object, long)}, so the scale factor for such classes is reported
1236      * as zero.
1237      * <p>
1238      * The computation of the actual memory offset should always use {@code
1239      * long} arithmetic to avoid overflows.
1240      *
1241      * @see #arrayBaseOffset
1242      * @see #getInt(Object, long)
1243      * @see #putInt(Object, long, int)
1244      */
1245     public int arrayIndexScale(Class<?> arrayClass) {
1246         if (arrayClass == null) {
1247             throw new NullPointerException();
1248         }
1249 
1250         return arrayIndexScale0(arrayClass);
1251     }
1252 
1253 
1254     /** The value of {@code arrayIndexScale(boolean[].class)} */
1255     public static final int ARRAY_BOOLEAN_INDEX_SCALE
1256             = theUnsafe.arrayIndexScale(boolean[].class);
1257 
1258     /** The value of {@code arrayIndexScale(byte[].class)} */
1259     public static final int ARRAY_BYTE_INDEX_SCALE
1260             = theUnsafe.arrayIndexScale(byte[].class);
1261 
1262     /** The value of {@code arrayIndexScale(short[].class)} */
1263     public static final int ARRAY_SHORT_INDEX_SCALE
1264             = theUnsafe.arrayIndexScale(short[].class);
1265 
1266     /** The value of {@code arrayIndexScale(char[].class)} */
1267     public static final int ARRAY_CHAR_INDEX_SCALE
1268             = theUnsafe.arrayIndexScale(char[].class);
1269 
1270     /** The value of {@code arrayIndexScale(int[].class)} */
1271     public static final int ARRAY_INT_INDEX_SCALE
1272             = theUnsafe.arrayIndexScale(int[].class);
1273 
1274     /** The value of {@code arrayIndexScale(long[].class)} */
1275     public static final int ARRAY_LONG_INDEX_SCALE
1276             = theUnsafe.arrayIndexScale(long[].class);
1277 
1278     /** The value of {@code arrayIndexScale(float[].class)} */
1279     public static final int ARRAY_FLOAT_INDEX_SCALE
1280             = theUnsafe.arrayIndexScale(float[].class);
1281 
1282     /** The value of {@code arrayIndexScale(double[].class)} */
1283     public static final int ARRAY_DOUBLE_INDEX_SCALE
1284             = theUnsafe.arrayIndexScale(double[].class);
1285 
1286     /** The value of {@code arrayIndexScale(Object[].class)} */
1287     public static final int ARRAY_OBJECT_INDEX_SCALE
1288             = theUnsafe.arrayIndexScale(Object[].class);
1289 
1290     /**
1291      * Reports the size in bytes of a native pointer, as stored via {@link
1292      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
1293      * other primitive types (as stored in native memory blocks) is determined
1294      * fully by their information content.
1295      */
1296     public int addressSize() {
1297         return ADDRESS_SIZE;
1298     }
1299 
1300     /** The value of {@code addressSize()} */
1301     public static final int ADDRESS_SIZE = ADDRESS_SIZE0;
1302 
1303     /**
1304      * Reports the size in bytes of a native memory page (whatever that is).
1305      * This value will always be a power of two.
1306      */
1307     public int pageSize() { return PAGE_SIZE; }
1308 
1309     /**
1310      * Reports the size in bytes of a data cache line written back by
1311      * the hardware cache line flush operation available to the JVM or
1312      * 0 if data cache line flushing is not enabled.
1313      */
1314     public int dataCacheLineFlushSize() { return DATA_CACHE_LINE_FLUSH_SIZE; }
1315 
1316     /**
1317      * Rounds down address to a data cache line boundary as
1318      * determined by {@link #dataCacheLineFlushSize}
1319      * @return the rounded down address
1320      */
1321     public long dataCacheLineAlignDown(long address) {
1322         return (address & ~(DATA_CACHE_LINE_FLUSH_SIZE - 1));
1323     }
1324 
1325     /**
1326      * Returns true if data cache line writeback
1327      */
1328     public static boolean isWritebackEnabled() { return DATA_CACHE_LINE_FLUSH_SIZE != 0; }
1329 
1330     //--- random trusted operations from JNI:
1331 
1332     /**
1333      * Tells the VM to define a class, without security checks.  By default, the
1334      * class loader and protection domain come from the caller's class.
1335      */
1336     public Class<?> defineClass(String name, byte[] b, int off, int len,
1337                                 ClassLoader loader,
1338                                 ProtectionDomain protectionDomain) {
1339         if (b == null) {
1340             throw new NullPointerException();
1341         }
1342         if (len < 0) {
1343             throw new ArrayIndexOutOfBoundsException();
1344         }
1345 
1346         return defineClass0(name, b, off, len, loader, protectionDomain);
1347     }
1348 
1349     public native Class<?> defineClass0(String name, byte[] b, int off, int len,
1350                                         ClassLoader loader,
1351                                         ProtectionDomain protectionDomain);
1352 
1353     /**
1354      * Allocates an instance but does not run any constructor.
1355      * Initializes the class if it has not yet been.
1356      */
1357     @IntrinsicCandidate
1358     public native Object allocateInstance(Class<?> cls)
1359         throws InstantiationException;
1360 
1361     /**
1362      * Allocates an array of a given type, but does not do zeroing.
1363      * <p>
1364      * This method should only be used in the very rare cases where a high-performance code
1365      * overwrites the destination array completely, and compilers cannot assist in zeroing elimination.
1366      * In an overwhelming majority of cases, a normal Java allocation should be used instead.
1367      * <p>
1368      * Users of this method are <b>required</b> to overwrite the initial (garbage) array contents
1369      * before allowing untrusted code, or code in other threads, to observe the reference
1370      * to the newly allocated array. In addition, the publication of the array reference must be
1371      * safe according to the Java Memory Model requirements.
1372      * <p>
1373      * The safest approach to deal with an uninitialized array is to keep the reference to it in local
1374      * variable at least until the initialization is complete, and then publish it <b>once</b>, either
1375      * by writing it to a <em>volatile</em> field, or storing it into a <em>final</em> field in constructor,
1376      * or issuing a {@link #storeFence} before publishing the reference.
1377      * <p>
1378      * @implnote This method can only allocate primitive arrays, to avoid garbage reference
1379      * elements that could break heap integrity.
1380      *
1381      * @param componentType array component type to allocate
1382      * @param length array size to allocate
1383      * @throws IllegalArgumentException if component type is null, or not a primitive class;
1384      *                                  or the length is negative
1385      */
1386     public Object allocateUninitializedArray(Class<?> componentType, int length) {
1387        if (componentType == null) {
1388            throw new IllegalArgumentException("Component type is null");
1389        }
1390        if (!componentType.isPrimitive()) {
1391            throw new IllegalArgumentException("Component type is not primitive");
1392        }
1393        if (length < 0) {
1394            throw new IllegalArgumentException("Negative length");
1395        }
1396        return allocateUninitializedArray0(componentType, length);
1397     }
1398 
1399     @IntrinsicCandidate
1400     private Object allocateUninitializedArray0(Class<?> componentType, int length) {
1401        // These fallbacks provide zeroed arrays, but intrinsic is not required to
1402        // return the zeroed arrays.
1403        if (componentType == byte.class)    return new byte[length];
1404        if (componentType == boolean.class) return new boolean[length];
1405        if (componentType == short.class)   return new short[length];
1406        if (componentType == char.class)    return new char[length];
1407        if (componentType == int.class)     return new int[length];
1408        if (componentType == float.class)   return new float[length];
1409        if (componentType == long.class)    return new long[length];
1410        if (componentType == double.class)  return new double[length];
1411        return null;
1412     }
1413 
1414     /** Throws the exception without telling the verifier. */
1415     public native void throwException(Throwable ee);
1416 
1417     /**
1418      * Atomically updates Java variable to {@code x} if it is currently
1419      * holding {@code expected}.
1420      *
1421      * <p>This operation has memory semantics of a {@code volatile} read
1422      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1423      *
1424      * @return {@code true} if successful
1425      */
1426     @IntrinsicCandidate
1427     public final native boolean compareAndSetReference(Object o, long offset,
1428                                                        Object expected,
1429                                                        Object x);
1430 
1431     @IntrinsicCandidate
1432     public final native Object compareAndExchangeReference(Object o, long offset,
1433                                                            Object expected,
1434                                                            Object x);
1435 
1436     @IntrinsicCandidate
1437     public final Object compareAndExchangeReferenceAcquire(Object o, long offset,
1438                                                            Object expected,
1439                                                            Object x) {
1440         return compareAndExchangeReference(o, offset, expected, x);
1441     }
1442 
1443     @IntrinsicCandidate
1444     public final Object compareAndExchangeReferenceRelease(Object o, long offset,
1445                                                            Object expected,
1446                                                            Object x) {
1447         return compareAndExchangeReference(o, offset, expected, x);
1448     }
1449 
1450     @IntrinsicCandidate
1451     public final boolean weakCompareAndSetReferencePlain(Object o, long offset,
1452                                                          Object expected,
1453                                                          Object x) {
1454         return compareAndSetReference(o, offset, expected, x);
1455     }
1456 
1457     @IntrinsicCandidate
1458     public final boolean weakCompareAndSetReferenceAcquire(Object o, long offset,
1459                                                            Object expected,
1460                                                            Object x) {
1461         return compareAndSetReference(o, offset, expected, x);
1462     }
1463 
1464     @IntrinsicCandidate
1465     public final boolean weakCompareAndSetReferenceRelease(Object o, long offset,
1466                                                            Object expected,
1467                                                            Object x) {
1468         return compareAndSetReference(o, offset, expected, x);
1469     }
1470 
1471     @IntrinsicCandidate
1472     public final boolean weakCompareAndSetReference(Object o, long offset,
1473                                                     Object expected,
1474                                                     Object x) {
1475         return compareAndSetReference(o, offset, expected, x);
1476     }
1477 
1478     /**
1479      * Atomically updates Java variable to {@code x} if it is currently
1480      * holding {@code expected}.
1481      *
1482      * <p>This operation has memory semantics of a {@code volatile} read
1483      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1484      *
1485      * @return {@code true} if successful
1486      */
1487     @IntrinsicCandidate
1488     public final native boolean compareAndSetInt(Object o, long offset,
1489                                                  int expected,
1490                                                  int x);
1491 
1492     @IntrinsicCandidate
1493     public final native int compareAndExchangeInt(Object o, long offset,
1494                                                   int expected,
1495                                                   int x);
1496 
1497     @IntrinsicCandidate
1498     public final int compareAndExchangeIntAcquire(Object o, long offset,
1499                                                          int expected,
1500                                                          int x) {
1501         return compareAndExchangeInt(o, offset, expected, x);
1502     }
1503 
1504     @IntrinsicCandidate
1505     public final int compareAndExchangeIntRelease(Object o, long offset,
1506                                                          int expected,
1507                                                          int x) {
1508         return compareAndExchangeInt(o, offset, expected, x);
1509     }
1510 
1511     @IntrinsicCandidate
1512     public final boolean weakCompareAndSetIntPlain(Object o, long offset,
1513                                                    int expected,
1514                                                    int x) {
1515         return compareAndSetInt(o, offset, expected, x);
1516     }
1517 
1518     @IntrinsicCandidate
1519     public final boolean weakCompareAndSetIntAcquire(Object o, long offset,
1520                                                      int expected,
1521                                                      int x) {
1522         return compareAndSetInt(o, offset, expected, x);
1523     }
1524 
1525     @IntrinsicCandidate
1526     public final boolean weakCompareAndSetIntRelease(Object o, long offset,
1527                                                      int expected,
1528                                                      int x) {
1529         return compareAndSetInt(o, offset, expected, x);
1530     }
1531 
1532     @IntrinsicCandidate
1533     public final boolean weakCompareAndSetInt(Object o, long offset,
1534                                               int expected,
1535                                               int x) {
1536         return compareAndSetInt(o, offset, expected, x);
1537     }
1538 
1539     @IntrinsicCandidate
1540     public final byte compareAndExchangeByte(Object o, long offset,
1541                                              byte expected,
1542                                              byte x) {
1543         long wordOffset = offset & ~3;
1544         int shift = (int) (offset & 3) << 3;
1545         if (BIG_ENDIAN) {
1546             shift = 24 - shift;
1547         }
1548         int mask           = 0xFF << shift;
1549         int maskedExpected = (expected & 0xFF) << shift;
1550         int maskedX        = (x & 0xFF) << shift;
1551         int fullWord;
1552         do {
1553             fullWord = getIntVolatile(o, wordOffset);
1554             if ((fullWord & mask) != maskedExpected)
1555                 return (byte) ((fullWord & mask) >> shift);
1556         } while (!weakCompareAndSetInt(o, wordOffset,
1557                                                 fullWord, (fullWord & ~mask) | maskedX));
1558         return expected;
1559     }
1560 
1561     @IntrinsicCandidate
1562     public final boolean compareAndSetByte(Object o, long offset,
1563                                            byte expected,
1564                                            byte x) {
1565         return compareAndExchangeByte(o, offset, expected, x) == expected;
1566     }
1567 
1568     @IntrinsicCandidate
1569     public final boolean weakCompareAndSetByte(Object o, long offset,
1570                                                byte expected,
1571                                                byte x) {
1572         return compareAndSetByte(o, offset, expected, x);
1573     }
1574 
1575     @IntrinsicCandidate
1576     public final boolean weakCompareAndSetByteAcquire(Object o, long offset,
1577                                                       byte expected,
1578                                                       byte x) {
1579         return weakCompareAndSetByte(o, offset, expected, x);
1580     }
1581 
1582     @IntrinsicCandidate
1583     public final boolean weakCompareAndSetByteRelease(Object o, long offset,
1584                                                       byte expected,
1585                                                       byte x) {
1586         return weakCompareAndSetByte(o, offset, expected, x);
1587     }
1588 
1589     @IntrinsicCandidate
1590     public final boolean weakCompareAndSetBytePlain(Object o, long offset,
1591                                                     byte expected,
1592                                                     byte x) {
1593         return weakCompareAndSetByte(o, offset, expected, x);
1594     }
1595 
1596     @IntrinsicCandidate
1597     public final byte compareAndExchangeByteAcquire(Object o, long offset,
1598                                                     byte expected,
1599                                                     byte x) {
1600         return compareAndExchangeByte(o, offset, expected, x);
1601     }
1602 
1603     @IntrinsicCandidate
1604     public final byte compareAndExchangeByteRelease(Object o, long offset,
1605                                                     byte expected,
1606                                                     byte x) {
1607         return compareAndExchangeByte(o, offset, expected, x);
1608     }
1609 
1610     @IntrinsicCandidate
1611     public final short compareAndExchangeShort(Object o, long offset,
1612                                                short expected,
1613                                                short x) {
1614         if ((offset & 3) == 3) {
1615             throw new IllegalArgumentException("Update spans the word, not supported");
1616         }
1617         long wordOffset = offset & ~3;
1618         int shift = (int) (offset & 3) << 3;
1619         if (BIG_ENDIAN) {
1620             shift = 16 - shift;
1621         }
1622         int mask           = 0xFFFF << shift;
1623         int maskedExpected = (expected & 0xFFFF) << shift;
1624         int maskedX        = (x & 0xFFFF) << shift;
1625         int fullWord;
1626         do {
1627             fullWord = getIntVolatile(o, wordOffset);
1628             if ((fullWord & mask) != maskedExpected) {
1629                 return (short) ((fullWord & mask) >> shift);
1630             }
1631         } while (!weakCompareAndSetInt(o, wordOffset,
1632                                                 fullWord, (fullWord & ~mask) | maskedX));
1633         return expected;
1634     }
1635 
1636     @IntrinsicCandidate
1637     public final boolean compareAndSetShort(Object o, long offset,
1638                                             short expected,
1639                                             short x) {
1640         return compareAndExchangeShort(o, offset, expected, x) == expected;
1641     }
1642 
1643     @IntrinsicCandidate
1644     public final boolean weakCompareAndSetShort(Object o, long offset,
1645                                                 short expected,
1646                                                 short x) {
1647         return compareAndSetShort(o, offset, expected, x);
1648     }
1649 
1650     @IntrinsicCandidate
1651     public final boolean weakCompareAndSetShortAcquire(Object o, long offset,
1652                                                        short expected,
1653                                                        short x) {
1654         return weakCompareAndSetShort(o, offset, expected, x);
1655     }
1656 
1657     @IntrinsicCandidate
1658     public final boolean weakCompareAndSetShortRelease(Object o, long offset,
1659                                                        short expected,
1660                                                        short x) {
1661         return weakCompareAndSetShort(o, offset, expected, x);
1662     }
1663 
1664     @IntrinsicCandidate
1665     public final boolean weakCompareAndSetShortPlain(Object o, long offset,
1666                                                      short expected,
1667                                                      short x) {
1668         return weakCompareAndSetShort(o, offset, expected, x);
1669     }
1670 
1671 
1672     @IntrinsicCandidate
1673     public final short compareAndExchangeShortAcquire(Object o, long offset,
1674                                                      short expected,
1675                                                      short x) {
1676         return compareAndExchangeShort(o, offset, expected, x);
1677     }
1678 
1679     @IntrinsicCandidate
1680     public final short compareAndExchangeShortRelease(Object o, long offset,
1681                                                     short expected,
1682                                                     short x) {
1683         return compareAndExchangeShort(o, offset, expected, x);
1684     }
1685 
1686     @ForceInline
1687     private char s2c(short s) {
1688         return (char) s;
1689     }
1690 
1691     @ForceInline
1692     private short c2s(char s) {
1693         return (short) s;
1694     }
1695 
1696     @ForceInline
1697     public final boolean compareAndSetChar(Object o, long offset,
1698                                            char expected,
1699                                            char x) {
1700         return compareAndSetShort(o, offset, c2s(expected), c2s(x));
1701     }
1702 
1703     @ForceInline
1704     public final char compareAndExchangeChar(Object o, long offset,
1705                                              char expected,
1706                                              char x) {
1707         return s2c(compareAndExchangeShort(o, offset, c2s(expected), c2s(x)));
1708     }
1709 
1710     @ForceInline
1711     public final char compareAndExchangeCharAcquire(Object o, long offset,
1712                                             char expected,
1713                                             char x) {
1714         return s2c(compareAndExchangeShortAcquire(o, offset, c2s(expected), c2s(x)));
1715     }
1716 
1717     @ForceInline
1718     public final char compareAndExchangeCharRelease(Object o, long offset,
1719                                             char expected,
1720                                             char x) {
1721         return s2c(compareAndExchangeShortRelease(o, offset, c2s(expected), c2s(x)));
1722     }
1723 
1724     @ForceInline
1725     public final boolean weakCompareAndSetChar(Object o, long offset,
1726                                                char expected,
1727                                                char x) {
1728         return weakCompareAndSetShort(o, offset, c2s(expected), c2s(x));
1729     }
1730 
1731     @ForceInline
1732     public final boolean weakCompareAndSetCharAcquire(Object o, long offset,
1733                                                       char expected,
1734                                                       char x) {
1735         return weakCompareAndSetShortAcquire(o, offset, c2s(expected), c2s(x));
1736     }
1737 
1738     @ForceInline
1739     public final boolean weakCompareAndSetCharRelease(Object o, long offset,
1740                                                       char expected,
1741                                                       char x) {
1742         return weakCompareAndSetShortRelease(o, offset, c2s(expected), c2s(x));
1743     }
1744 
1745     @ForceInline
1746     public final boolean weakCompareAndSetCharPlain(Object o, long offset,
1747                                                     char expected,
1748                                                     char x) {
1749         return weakCompareAndSetShortPlain(o, offset, c2s(expected), c2s(x));
1750     }
1751 
1752     /**
1753      * The JVM converts integral values to boolean values using two
1754      * different conventions, byte testing against zero and truncation
1755      * to least-significant bit.
1756      *
1757      * <p>The JNI documents specify that, at least for returning
1758      * values from native methods, a Java boolean value is converted
1759      * to the value-set 0..1 by first truncating to a byte (0..255 or
1760      * maybe -128..127) and then testing against zero. Thus, Java
1761      * booleans in non-Java data structures are by convention
1762      * represented as 8-bit containers containing either zero (for
1763      * false) or any non-zero value (for true).
1764      *
1765      * <p>Java booleans in the heap are also stored in bytes, but are
1766      * strongly normalized to the value-set 0..1 (i.e., they are
1767      * truncated to the least-significant bit).
1768      *
1769      * <p>The main reason for having different conventions for
1770      * conversion is performance: Truncation to the least-significant
1771      * bit can be usually implemented with fewer (machine)
1772      * instructions than byte testing against zero.
1773      *
1774      * <p>A number of Unsafe methods load boolean values from the heap
1775      * as bytes. Unsafe converts those values according to the JNI
1776      * rules (i.e, using the "testing against zero" convention). The
1777      * method {@code byte2bool} implements that conversion.
1778      *
1779      * @param b the byte to be converted to boolean
1780      * @return the result of the conversion
1781      */
1782     @ForceInline
1783     private boolean byte2bool(byte b) {
1784         return b != 0;
1785     }
1786 
1787     /**
1788      * Convert a boolean value to a byte. The return value is strongly
1789      * normalized to the value-set 0..1 (i.e., the value is truncated
1790      * to the least-significant bit). See {@link #byte2bool(byte)} for
1791      * more details on conversion conventions.
1792      *
1793      * @param b the boolean to be converted to byte (and then normalized)
1794      * @return the result of the conversion
1795      */
1796     @ForceInline
1797     private byte bool2byte(boolean b) {
1798         return b ? (byte)1 : (byte)0;
1799     }
1800 
1801     @ForceInline
1802     public final boolean compareAndSetBoolean(Object o, long offset,
1803                                               boolean expected,
1804                                               boolean x) {
1805         return compareAndSetByte(o, offset, bool2byte(expected), bool2byte(x));
1806     }
1807 
1808     @ForceInline
1809     public final boolean compareAndExchangeBoolean(Object o, long offset,
1810                                                    boolean expected,
1811                                                    boolean x) {
1812         return byte2bool(compareAndExchangeByte(o, offset, bool2byte(expected), bool2byte(x)));
1813     }
1814 
1815     @ForceInline
1816     public final boolean compareAndExchangeBooleanAcquire(Object o, long offset,
1817                                                     boolean expected,
1818                                                     boolean x) {
1819         return byte2bool(compareAndExchangeByteAcquire(o, offset, bool2byte(expected), bool2byte(x)));
1820     }
1821 
1822     @ForceInline
1823     public final boolean compareAndExchangeBooleanRelease(Object o, long offset,
1824                                                        boolean expected,
1825                                                        boolean x) {
1826         return byte2bool(compareAndExchangeByteRelease(o, offset, bool2byte(expected), bool2byte(x)));
1827     }
1828 
1829     @ForceInline
1830     public final boolean weakCompareAndSetBoolean(Object o, long offset,
1831                                                   boolean expected,
1832                                                   boolean x) {
1833         return weakCompareAndSetByte(o, offset, bool2byte(expected), bool2byte(x));
1834     }
1835 
1836     @ForceInline
1837     public final boolean weakCompareAndSetBooleanAcquire(Object o, long offset,
1838                                                          boolean expected,
1839                                                          boolean x) {
1840         return weakCompareAndSetByteAcquire(o, offset, bool2byte(expected), bool2byte(x));
1841     }
1842 
1843     @ForceInline
1844     public final boolean weakCompareAndSetBooleanRelease(Object o, long offset,
1845                                                          boolean expected,
1846                                                          boolean x) {
1847         return weakCompareAndSetByteRelease(o, offset, bool2byte(expected), bool2byte(x));
1848     }
1849 
1850     @ForceInline
1851     public final boolean weakCompareAndSetBooleanPlain(Object o, long offset,
1852                                                        boolean expected,
1853                                                        boolean x) {
1854         return weakCompareAndSetBytePlain(o, offset, bool2byte(expected), bool2byte(x));
1855     }
1856 
1857     /**
1858      * Atomically updates Java variable to {@code x} if it is currently
1859      * holding {@code expected}.
1860      *
1861      * <p>This operation has memory semantics of a {@code volatile} read
1862      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1863      *
1864      * @return {@code true} if successful
1865      */
1866     @ForceInline
1867     public final boolean compareAndSetFloat(Object o, long offset,
1868                                             float expected,
1869                                             float x) {
1870         return compareAndSetInt(o, offset,
1871                                  Float.floatToRawIntBits(expected),
1872                                  Float.floatToRawIntBits(x));
1873     }
1874 
1875     @ForceInline
1876     public final float compareAndExchangeFloat(Object o, long offset,
1877                                                float expected,
1878                                                float x) {
1879         int w = compareAndExchangeInt(o, offset,
1880                                       Float.floatToRawIntBits(expected),
1881                                       Float.floatToRawIntBits(x));
1882         return Float.intBitsToFloat(w);
1883     }
1884 
1885     @ForceInline
1886     public final float compareAndExchangeFloatAcquire(Object o, long offset,
1887                                                   float expected,
1888                                                   float x) {
1889         int w = compareAndExchangeIntAcquire(o, offset,
1890                                              Float.floatToRawIntBits(expected),
1891                                              Float.floatToRawIntBits(x));
1892         return Float.intBitsToFloat(w);
1893     }
1894 
1895     @ForceInline
1896     public final float compareAndExchangeFloatRelease(Object o, long offset,
1897                                                   float expected,
1898                                                   float x) {
1899         int w = compareAndExchangeIntRelease(o, offset,
1900                                              Float.floatToRawIntBits(expected),
1901                                              Float.floatToRawIntBits(x));
1902         return Float.intBitsToFloat(w);
1903     }
1904 
1905     @ForceInline
1906     public final boolean weakCompareAndSetFloatPlain(Object o, long offset,
1907                                                      float expected,
1908                                                      float x) {
1909         return weakCompareAndSetIntPlain(o, offset,
1910                                      Float.floatToRawIntBits(expected),
1911                                      Float.floatToRawIntBits(x));
1912     }
1913 
1914     @ForceInline
1915     public final boolean weakCompareAndSetFloatAcquire(Object o, long offset,
1916                                                        float expected,
1917                                                        float x) {
1918         return weakCompareAndSetIntAcquire(o, offset,
1919                                             Float.floatToRawIntBits(expected),
1920                                             Float.floatToRawIntBits(x));
1921     }
1922 
1923     @ForceInline
1924     public final boolean weakCompareAndSetFloatRelease(Object o, long offset,
1925                                                        float expected,
1926                                                        float x) {
1927         return weakCompareAndSetIntRelease(o, offset,
1928                                             Float.floatToRawIntBits(expected),
1929                                             Float.floatToRawIntBits(x));
1930     }
1931 
1932     @ForceInline
1933     public final boolean weakCompareAndSetFloat(Object o, long offset,
1934                                                 float expected,
1935                                                 float x) {
1936         return weakCompareAndSetInt(o, offset,
1937                                              Float.floatToRawIntBits(expected),
1938                                              Float.floatToRawIntBits(x));
1939     }
1940 
1941     /**
1942      * Atomically updates Java variable to {@code x} if it is currently
1943      * holding {@code expected}.
1944      *
1945      * <p>This operation has memory semantics of a {@code volatile} read
1946      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1947      *
1948      * @return {@code true} if successful
1949      */
1950     @ForceInline
1951     public final boolean compareAndSetDouble(Object o, long offset,
1952                                              double expected,
1953                                              double x) {
1954         return compareAndSetLong(o, offset,
1955                                  Double.doubleToRawLongBits(expected),
1956                                  Double.doubleToRawLongBits(x));
1957     }
1958 
1959     @ForceInline
1960     public final double compareAndExchangeDouble(Object o, long offset,
1961                                                  double expected,
1962                                                  double x) {
1963         long w = compareAndExchangeLong(o, offset,
1964                                         Double.doubleToRawLongBits(expected),
1965                                         Double.doubleToRawLongBits(x));
1966         return Double.longBitsToDouble(w);
1967     }
1968 
1969     @ForceInline
1970     public final double compareAndExchangeDoubleAcquire(Object o, long offset,
1971                                                         double expected,
1972                                                         double x) {
1973         long w = compareAndExchangeLongAcquire(o, offset,
1974                                                Double.doubleToRawLongBits(expected),
1975                                                Double.doubleToRawLongBits(x));
1976         return Double.longBitsToDouble(w);
1977     }
1978 
1979     @ForceInline
1980     public final double compareAndExchangeDoubleRelease(Object o, long offset,
1981                                                         double expected,
1982                                                         double x) {
1983         long w = compareAndExchangeLongRelease(o, offset,
1984                                                Double.doubleToRawLongBits(expected),
1985                                                Double.doubleToRawLongBits(x));
1986         return Double.longBitsToDouble(w);
1987     }
1988 
1989     @ForceInline
1990     public final boolean weakCompareAndSetDoublePlain(Object o, long offset,
1991                                                       double expected,
1992                                                       double x) {
1993         return weakCompareAndSetLongPlain(o, offset,
1994                                      Double.doubleToRawLongBits(expected),
1995                                      Double.doubleToRawLongBits(x));
1996     }
1997 
1998     @ForceInline
1999     public final boolean weakCompareAndSetDoubleAcquire(Object o, long offset,
2000                                                         double expected,
2001                                                         double x) {
2002         return weakCompareAndSetLongAcquire(o, offset,
2003                                              Double.doubleToRawLongBits(expected),
2004                                              Double.doubleToRawLongBits(x));
2005     }
2006 
2007     @ForceInline
2008     public final boolean weakCompareAndSetDoubleRelease(Object o, long offset,
2009                                                         double expected,
2010                                                         double x) {
2011         return weakCompareAndSetLongRelease(o, offset,
2012                                              Double.doubleToRawLongBits(expected),
2013                                              Double.doubleToRawLongBits(x));
2014     }
2015 
2016     @ForceInline
2017     public final boolean weakCompareAndSetDouble(Object o, long offset,
2018                                                  double expected,
2019                                                  double x) {
2020         return weakCompareAndSetLong(o, offset,
2021                                               Double.doubleToRawLongBits(expected),
2022                                               Double.doubleToRawLongBits(x));
2023     }
2024 
2025     /**
2026      * Atomically updates Java variable to {@code x} if it is currently
2027      * holding {@code expected}.
2028      *
2029      * <p>This operation has memory semantics of a {@code volatile} read
2030      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
2031      *
2032      * @return {@code true} if successful
2033      */
2034     @IntrinsicCandidate
2035     public final native boolean compareAndSetLong(Object o, long offset,
2036                                                   long expected,
2037                                                   long x);
2038 
2039     @IntrinsicCandidate
2040     public final native long compareAndExchangeLong(Object o, long offset,
2041                                                     long expected,
2042                                                     long x);
2043 
2044     @IntrinsicCandidate
2045     public final long compareAndExchangeLongAcquire(Object o, long offset,
2046                                                            long expected,
2047                                                            long x) {
2048         return compareAndExchangeLong(o, offset, expected, x);
2049     }
2050 
2051     @IntrinsicCandidate
2052     public final long compareAndExchangeLongRelease(Object o, long offset,
2053                                                            long expected,
2054                                                            long x) {
2055         return compareAndExchangeLong(o, offset, expected, x);
2056     }
2057 
2058     @IntrinsicCandidate
2059     public final boolean weakCompareAndSetLongPlain(Object o, long offset,
2060                                                     long expected,
2061                                                     long x) {
2062         return compareAndSetLong(o, offset, expected, x);
2063     }
2064 
2065     @IntrinsicCandidate
2066     public final boolean weakCompareAndSetLongAcquire(Object o, long offset,
2067                                                       long expected,
2068                                                       long x) {
2069         return compareAndSetLong(o, offset, expected, x);
2070     }
2071 
2072     @IntrinsicCandidate
2073     public final boolean weakCompareAndSetLongRelease(Object o, long offset,
2074                                                       long expected,
2075                                                       long x) {
2076         return compareAndSetLong(o, offset, expected, x);
2077     }
2078 
2079     @IntrinsicCandidate
2080     public final boolean weakCompareAndSetLong(Object o, long offset,
2081                                                long expected,
2082                                                long x) {
2083         return compareAndSetLong(o, offset, expected, x);
2084     }
2085 
2086     /**
2087      * Fetches a reference value from a given Java variable, with volatile
2088      * load semantics. Otherwise identical to {@link #getReference(Object, long)}
2089      */
2090     @IntrinsicCandidate
2091     public native Object getReferenceVolatile(Object o, long offset);
2092 
2093     /**
2094      * Stores a reference value into a given Java variable, with
2095      * volatile store semantics. Otherwise identical to {@link #putReference(Object, long, Object)}
2096      */
2097     @IntrinsicCandidate
2098     public native void putReferenceVolatile(Object o, long offset, Object x);
2099 
2100     /** Volatile version of {@link #getInt(Object, long)}  */
2101     @IntrinsicCandidate
2102     public native int     getIntVolatile(Object o, long offset);
2103 
2104     /** Volatile version of {@link #putInt(Object, long, int)}  */
2105     @IntrinsicCandidate
2106     public native void    putIntVolatile(Object o, long offset, int x);
2107 
2108     /** Volatile version of {@link #getBoolean(Object, long)}  */
2109     @IntrinsicCandidate
2110     public native boolean getBooleanVolatile(Object o, long offset);
2111 
2112     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
2113     @IntrinsicCandidate
2114     public native void    putBooleanVolatile(Object o, long offset, boolean x);
2115 
2116     /** Volatile version of {@link #getByte(Object, long)}  */
2117     @IntrinsicCandidate
2118     public native byte    getByteVolatile(Object o, long offset);
2119 
2120     /** Volatile version of {@link #putByte(Object, long, byte)}  */
2121     @IntrinsicCandidate
2122     public native void    putByteVolatile(Object o, long offset, byte x);
2123 
2124     /** Volatile version of {@link #getShort(Object, long)}  */
2125     @IntrinsicCandidate
2126     public native short   getShortVolatile(Object o, long offset);
2127 
2128     /** Volatile version of {@link #putShort(Object, long, short)}  */
2129     @IntrinsicCandidate
2130     public native void    putShortVolatile(Object o, long offset, short x);
2131 
2132     /** Volatile version of {@link #getChar(Object, long)}  */
2133     @IntrinsicCandidate
2134     public native char    getCharVolatile(Object o, long offset);
2135 
2136     /** Volatile version of {@link #putChar(Object, long, char)}  */
2137     @IntrinsicCandidate
2138     public native void    putCharVolatile(Object o, long offset, char x);
2139 
2140     /** Volatile version of {@link #getLong(Object, long)}  */
2141     @IntrinsicCandidate
2142     public native long    getLongVolatile(Object o, long offset);
2143 
2144     /** Volatile version of {@link #putLong(Object, long, long)}  */
2145     @IntrinsicCandidate
2146     public native void    putLongVolatile(Object o, long offset, long x);
2147 
2148     /** Volatile version of {@link #getFloat(Object, long)}  */
2149     @IntrinsicCandidate
2150     public native float   getFloatVolatile(Object o, long offset);
2151 
2152     /** Volatile version of {@link #putFloat(Object, long, float)}  */
2153     @IntrinsicCandidate
2154     public native void    putFloatVolatile(Object o, long offset, float x);
2155 
2156     /** Volatile version of {@link #getDouble(Object, long)}  */
2157     @IntrinsicCandidate
2158     public native double  getDoubleVolatile(Object o, long offset);
2159 
2160     /** Volatile version of {@link #putDouble(Object, long, double)}  */
2161     @IntrinsicCandidate
2162     public native void    putDoubleVolatile(Object o, long offset, double x);
2163 
2164 
2165 
2166     /** Acquire version of {@link #getReferenceVolatile(Object, long)} */
2167     @IntrinsicCandidate
2168     public final Object getReferenceAcquire(Object o, long offset) {
2169         return getReferenceVolatile(o, offset);
2170     }
2171 
2172     /** Acquire version of {@link #getBooleanVolatile(Object, long)} */
2173     @IntrinsicCandidate
2174     public final boolean getBooleanAcquire(Object o, long offset) {
2175         return getBooleanVolatile(o, offset);
2176     }
2177 
2178     /** Acquire version of {@link #getByteVolatile(Object, long)} */
2179     @IntrinsicCandidate
2180     public final byte getByteAcquire(Object o, long offset) {
2181         return getByteVolatile(o, offset);
2182     }
2183 
2184     /** Acquire version of {@link #getShortVolatile(Object, long)} */
2185     @IntrinsicCandidate
2186     public final short getShortAcquire(Object o, long offset) {
2187         return getShortVolatile(o, offset);
2188     }
2189 
2190     /** Acquire version of {@link #getCharVolatile(Object, long)} */
2191     @IntrinsicCandidate
2192     public final char getCharAcquire(Object o, long offset) {
2193         return getCharVolatile(o, offset);
2194     }
2195 
2196     /** Acquire version of {@link #getIntVolatile(Object, long)} */
2197     @IntrinsicCandidate
2198     public final int getIntAcquire(Object o, long offset) {
2199         return getIntVolatile(o, offset);
2200     }
2201 
2202     /** Acquire version of {@link #getFloatVolatile(Object, long)} */
2203     @IntrinsicCandidate
2204     public final float getFloatAcquire(Object o, long offset) {
2205         return getFloatVolatile(o, offset);
2206     }
2207 
2208     /** Acquire version of {@link #getLongVolatile(Object, long)} */
2209     @IntrinsicCandidate
2210     public final long getLongAcquire(Object o, long offset) {
2211         return getLongVolatile(o, offset);
2212     }
2213 
2214     /** Acquire version of {@link #getDoubleVolatile(Object, long)} */
2215     @IntrinsicCandidate
2216     public final double getDoubleAcquire(Object o, long offset) {
2217         return getDoubleVolatile(o, offset);
2218     }
2219 
2220     /*
2221      * Versions of {@link #putReferenceVolatile(Object, long, Object)}
2222      * that do not guarantee immediate visibility of the store to
2223      * other threads. This method is generally only useful if the
2224      * underlying field is a Java volatile (or if an array cell, one
2225      * that is otherwise only accessed using volatile accesses).
2226      *
2227      * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
2228      */
2229 
2230     /** Release version of {@link #putReferenceVolatile(Object, long, Object)} */
2231     @IntrinsicCandidate
2232     public final void putReferenceRelease(Object o, long offset, Object x) {
2233         putReferenceVolatile(o, offset, x);
2234     }
2235 
2236     /** Release version of {@link #putBooleanVolatile(Object, long, boolean)} */
2237     @IntrinsicCandidate
2238     public final void putBooleanRelease(Object o, long offset, boolean x) {
2239         putBooleanVolatile(o, offset, x);
2240     }
2241 
2242     /** Release version of {@link #putByteVolatile(Object, long, byte)} */
2243     @IntrinsicCandidate
2244     public final void putByteRelease(Object o, long offset, byte x) {
2245         putByteVolatile(o, offset, x);
2246     }
2247 
2248     /** Release version of {@link #putShortVolatile(Object, long, short)} */
2249     @IntrinsicCandidate
2250     public final void putShortRelease(Object o, long offset, short x) {
2251         putShortVolatile(o, offset, x);
2252     }
2253 
2254     /** Release version of {@link #putCharVolatile(Object, long, char)} */
2255     @IntrinsicCandidate
2256     public final void putCharRelease(Object o, long offset, char x) {
2257         putCharVolatile(o, offset, x);
2258     }
2259 
2260     /** Release version of {@link #putIntVolatile(Object, long, int)} */
2261     @IntrinsicCandidate
2262     public final void putIntRelease(Object o, long offset, int x) {
2263         putIntVolatile(o, offset, x);
2264     }
2265 
2266     /** Release version of {@link #putFloatVolatile(Object, long, float)} */
2267     @IntrinsicCandidate
2268     public final void putFloatRelease(Object o, long offset, float x) {
2269         putFloatVolatile(o, offset, x);
2270     }
2271 
2272     /** Release version of {@link #putLongVolatile(Object, long, long)} */
2273     @IntrinsicCandidate
2274     public final void putLongRelease(Object o, long offset, long x) {
2275         putLongVolatile(o, offset, x);
2276     }
2277 
2278     /** Release version of {@link #putDoubleVolatile(Object, long, double)} */
2279     @IntrinsicCandidate
2280     public final void putDoubleRelease(Object o, long offset, double x) {
2281         putDoubleVolatile(o, offset, x);
2282     }
2283 
2284     // ------------------------------ Opaque --------------------------------------
2285 
2286     /** Opaque version of {@link #getReferenceVolatile(Object, long)} */
2287     @IntrinsicCandidate
2288     public final Object getReferenceOpaque(Object o, long offset) {
2289         return getReferenceVolatile(o, offset);
2290     }
2291 
2292     /** Opaque version of {@link #getBooleanVolatile(Object, long)} */
2293     @IntrinsicCandidate
2294     public final boolean getBooleanOpaque(Object o, long offset) {
2295         return getBooleanVolatile(o, offset);
2296     }
2297 
2298     /** Opaque version of {@link #getByteVolatile(Object, long)} */
2299     @IntrinsicCandidate
2300     public final byte getByteOpaque(Object o, long offset) {
2301         return getByteVolatile(o, offset);
2302     }
2303 
2304     /** Opaque version of {@link #getShortVolatile(Object, long)} */
2305     @IntrinsicCandidate
2306     public final short getShortOpaque(Object o, long offset) {
2307         return getShortVolatile(o, offset);
2308     }
2309 
2310     /** Opaque version of {@link #getCharVolatile(Object, long)} */
2311     @IntrinsicCandidate
2312     public final char getCharOpaque(Object o, long offset) {
2313         return getCharVolatile(o, offset);
2314     }
2315 
2316     /** Opaque version of {@link #getIntVolatile(Object, long)} */
2317     @IntrinsicCandidate
2318     public final int getIntOpaque(Object o, long offset) {
2319         return getIntVolatile(o, offset);
2320     }
2321 
2322     /** Opaque version of {@link #getFloatVolatile(Object, long)} */
2323     @IntrinsicCandidate
2324     public final float getFloatOpaque(Object o, long offset) {
2325         return getFloatVolatile(o, offset);
2326     }
2327 
2328     /** Opaque version of {@link #getLongVolatile(Object, long)} */
2329     @IntrinsicCandidate
2330     public final long getLongOpaque(Object o, long offset) {
2331         return getLongVolatile(o, offset);
2332     }
2333 
2334     /** Opaque version of {@link #getDoubleVolatile(Object, long)} */
2335     @IntrinsicCandidate
2336     public final double getDoubleOpaque(Object o, long offset) {
2337         return getDoubleVolatile(o, offset);
2338     }
2339 
2340     /** Opaque version of {@link #putReferenceVolatile(Object, long, Object)} */
2341     @IntrinsicCandidate
2342     public final void putReferenceOpaque(Object o, long offset, Object x) {
2343         putReferenceVolatile(o, offset, x);
2344     }
2345 
2346     /** Opaque version of {@link #putBooleanVolatile(Object, long, boolean)} */
2347     @IntrinsicCandidate
2348     public final void putBooleanOpaque(Object o, long offset, boolean x) {
2349         putBooleanVolatile(o, offset, x);
2350     }
2351 
2352     /** Opaque version of {@link #putByteVolatile(Object, long, byte)} */
2353     @IntrinsicCandidate
2354     public final void putByteOpaque(Object o, long offset, byte x) {
2355         putByteVolatile(o, offset, x);
2356     }
2357 
2358     /** Opaque version of {@link #putShortVolatile(Object, long, short)} */
2359     @IntrinsicCandidate
2360     public final void putShortOpaque(Object o, long offset, short x) {
2361         putShortVolatile(o, offset, x);
2362     }
2363 
2364     /** Opaque version of {@link #putCharVolatile(Object, long, char)} */
2365     @IntrinsicCandidate
2366     public final void putCharOpaque(Object o, long offset, char x) {
2367         putCharVolatile(o, offset, x);
2368     }
2369 
2370     /** Opaque version of {@link #putIntVolatile(Object, long, int)} */
2371     @IntrinsicCandidate
2372     public final void putIntOpaque(Object o, long offset, int x) {
2373         putIntVolatile(o, offset, x);
2374     }
2375 
2376     /** Opaque version of {@link #putFloatVolatile(Object, long, float)} */
2377     @IntrinsicCandidate
2378     public final void putFloatOpaque(Object o, long offset, float x) {
2379         putFloatVolatile(o, offset, x);
2380     }
2381 
2382     /** Opaque version of {@link #putLongVolatile(Object, long, long)} */
2383     @IntrinsicCandidate
2384     public final void putLongOpaque(Object o, long offset, long x) {
2385         putLongVolatile(o, offset, x);
2386     }
2387 
2388     /** Opaque version of {@link #putDoubleVolatile(Object, long, double)} */
2389     @IntrinsicCandidate
2390     public final void putDoubleOpaque(Object o, long offset, double x) {
2391         putDoubleVolatile(o, offset, x);
2392     }
2393 
2394     /**
2395      * Unblocks the given thread blocked on {@code park}, or, if it is
2396      * not blocked, causes the subsequent call to {@code park} not to
2397      * block.  Note: this operation is "unsafe" solely because the
2398      * caller must somehow ensure that the thread has not been
2399      * destroyed. Nothing special is usually required to ensure this
2400      * when called from Java (in which there will ordinarily be a live
2401      * reference to the thread) but this is not nearly-automatically
2402      * so when calling from native code.
2403      *
2404      * @param thread the thread to unpark.
2405      */
2406     @IntrinsicCandidate
2407     public native void unpark(Object thread);
2408 
2409     /**
2410      * Blocks current thread, returning when a balancing
2411      * {@code unpark} occurs, or a balancing {@code unpark} has
2412      * already occurred, or the thread is interrupted, or, if not
2413      * absolute and time is not zero, the given time nanoseconds have
2414      * elapsed, or if absolute, the given deadline in milliseconds
2415      * since Epoch has passed, or spuriously (i.e., returning for no
2416      * "reason"). Note: This operation is in the Unsafe class only
2417      * because {@code unpark} is, so it would be strange to place it
2418      * elsewhere.
2419      */
2420     @IntrinsicCandidate
2421     public native void park(boolean isAbsolute, long time);
2422 
2423     /**
2424      * Gets the load average in the system run queue assigned
2425      * to the available processors averaged over various periods of time.
2426      * This method retrieves the given {@code nelem} samples and
2427      * assigns to the elements of the given {@code loadavg} array.
2428      * The system imposes a maximum of 3 samples, representing
2429      * averages over the last 1,  5,  and  15 minutes, respectively.
2430      *
2431      * @param loadavg an array of double of size nelems
2432      * @param nelems the number of samples to be retrieved and
2433      *        must be 1 to 3.
2434      *
2435      * @return the number of samples actually retrieved; or -1
2436      *         if the load average is unobtainable.
2437      */
2438     public int getLoadAverage(double[] loadavg, int nelems) {
2439         if (nelems < 0 || nelems > 3 || nelems > loadavg.length) {
2440             throw new ArrayIndexOutOfBoundsException();
2441         }
2442 
2443         return getLoadAverage0(loadavg, nelems);
2444     }
2445 
2446     // The following contain CAS-based Java implementations used on
2447     // platforms not supporting native instructions
2448 
2449     /**
2450      * Atomically adds the given value to the current value of a field
2451      * or array element within the given object {@code o}
2452      * at the given {@code offset}.
2453      *
2454      * @param o object/array to update the field/element in
2455      * @param offset field/element offset
2456      * @param delta the value to add
2457      * @return the previous value
2458      * @since 1.8
2459      */
2460     @IntrinsicCandidate
2461     public final int getAndAddInt(Object o, long offset, int delta) {
2462         int v;
2463         do {
2464             v = getIntVolatile(o, offset);
2465         } while (!weakCompareAndSetInt(o, offset, v, v + delta));
2466         return v;
2467     }
2468 
2469     @ForceInline
2470     public final int getAndAddIntRelease(Object o, long offset, int delta) {
2471         int v;
2472         do {
2473             v = getInt(o, offset);
2474         } while (!weakCompareAndSetIntRelease(o, offset, v, v + delta));
2475         return v;
2476     }
2477 
2478     @ForceInline
2479     public final int getAndAddIntAcquire(Object o, long offset, int delta) {
2480         int v;
2481         do {
2482             v = getIntAcquire(o, offset);
2483         } while (!weakCompareAndSetIntAcquire(o, offset, v, v + delta));
2484         return v;
2485     }
2486 
2487     /**
2488      * Atomically adds the given value to the current value of a field
2489      * or array element within the given object {@code o}
2490      * at the given {@code offset}.
2491      *
2492      * @param o object/array to update the field/element in
2493      * @param offset field/element offset
2494      * @param delta the value to add
2495      * @return the previous value
2496      * @since 1.8
2497      */
2498     @IntrinsicCandidate
2499     public final long getAndAddLong(Object o, long offset, long delta) {
2500         long v;
2501         do {
2502             v = getLongVolatile(o, offset);
2503         } while (!weakCompareAndSetLong(o, offset, v, v + delta));
2504         return v;
2505     }
2506 
2507     @ForceInline
2508     public final long getAndAddLongRelease(Object o, long offset, long delta) {
2509         long v;
2510         do {
2511             v = getLong(o, offset);
2512         } while (!weakCompareAndSetLongRelease(o, offset, v, v + delta));
2513         return v;
2514     }
2515 
2516     @ForceInline
2517     public final long getAndAddLongAcquire(Object o, long offset, long delta) {
2518         long v;
2519         do {
2520             v = getLongAcquire(o, offset);
2521         } while (!weakCompareAndSetLongAcquire(o, offset, v, v + delta));
2522         return v;
2523     }
2524 
2525     @IntrinsicCandidate
2526     public final byte getAndAddByte(Object o, long offset, byte delta) {
2527         byte v;
2528         do {
2529             v = getByteVolatile(o, offset);
2530         } while (!weakCompareAndSetByte(o, offset, v, (byte) (v + delta)));
2531         return v;
2532     }
2533 
2534     @ForceInline
2535     public final byte getAndAddByteRelease(Object o, long offset, byte delta) {
2536         byte v;
2537         do {
2538             v = getByte(o, offset);
2539         } while (!weakCompareAndSetByteRelease(o, offset, v, (byte) (v + delta)));
2540         return v;
2541     }
2542 
2543     @ForceInline
2544     public final byte getAndAddByteAcquire(Object o, long offset, byte delta) {
2545         byte v;
2546         do {
2547             v = getByteAcquire(o, offset);
2548         } while (!weakCompareAndSetByteAcquire(o, offset, v, (byte) (v + delta)));
2549         return v;
2550     }
2551 
2552     @IntrinsicCandidate
2553     public final short getAndAddShort(Object o, long offset, short delta) {
2554         short v;
2555         do {
2556             v = getShortVolatile(o, offset);
2557         } while (!weakCompareAndSetShort(o, offset, v, (short) (v + delta)));
2558         return v;
2559     }
2560 
2561     @ForceInline
2562     public final short getAndAddShortRelease(Object o, long offset, short delta) {
2563         short v;
2564         do {
2565             v = getShort(o, offset);
2566         } while (!weakCompareAndSetShortRelease(o, offset, v, (short) (v + delta)));
2567         return v;
2568     }
2569 
2570     @ForceInline
2571     public final short getAndAddShortAcquire(Object o, long offset, short delta) {
2572         short v;
2573         do {
2574             v = getShortAcquire(o, offset);
2575         } while (!weakCompareAndSetShortAcquire(o, offset, v, (short) (v + delta)));
2576         return v;
2577     }
2578 
2579     @ForceInline
2580     public final char getAndAddChar(Object o, long offset, char delta) {
2581         return (char) getAndAddShort(o, offset, (short) delta);
2582     }
2583 
2584     @ForceInline
2585     public final char getAndAddCharRelease(Object o, long offset, char delta) {
2586         return (char) getAndAddShortRelease(o, offset, (short) delta);
2587     }
2588 
2589     @ForceInline
2590     public final char getAndAddCharAcquire(Object o, long offset, char delta) {
2591         return (char) getAndAddShortAcquire(o, offset, (short) delta);
2592     }
2593 
2594     @ForceInline
2595     public final float getAndAddFloat(Object o, long offset, float delta) {
2596         int expectedBits;
2597         float v;
2598         do {
2599             // Load and CAS with the raw bits to avoid issues with NaNs and
2600             // possible bit conversion from signaling NaNs to quiet NaNs that
2601             // may result in the loop not terminating.
2602             expectedBits = getIntVolatile(o, offset);
2603             v = Float.intBitsToFloat(expectedBits);
2604         } while (!weakCompareAndSetInt(o, offset,
2605                                                 expectedBits, Float.floatToRawIntBits(v + delta)));
2606         return v;
2607     }
2608 
2609     @ForceInline
2610     public final float getAndAddFloatRelease(Object o, long offset, float delta) {
2611         int expectedBits;
2612         float v;
2613         do {
2614             // Load and CAS with the raw bits to avoid issues with NaNs and
2615             // possible bit conversion from signaling NaNs to quiet NaNs that
2616             // may result in the loop not terminating.
2617             expectedBits = getInt(o, offset);
2618             v = Float.intBitsToFloat(expectedBits);
2619         } while (!weakCompareAndSetIntRelease(o, offset,
2620                                                expectedBits, Float.floatToRawIntBits(v + delta)));
2621         return v;
2622     }
2623 
2624     @ForceInline
2625     public final float getAndAddFloatAcquire(Object o, long offset, float delta) {
2626         int expectedBits;
2627         float v;
2628         do {
2629             // Load and CAS with the raw bits to avoid issues with NaNs and
2630             // possible bit conversion from signaling NaNs to quiet NaNs that
2631             // may result in the loop not terminating.
2632             expectedBits = getIntAcquire(o, offset);
2633             v = Float.intBitsToFloat(expectedBits);
2634         } while (!weakCompareAndSetIntAcquire(o, offset,
2635                                                expectedBits, Float.floatToRawIntBits(v + delta)));
2636         return v;
2637     }
2638 
2639     @ForceInline
2640     public final double getAndAddDouble(Object o, long offset, double delta) {
2641         long expectedBits;
2642         double v;
2643         do {
2644             // Load and CAS with the raw bits to avoid issues with NaNs and
2645             // possible bit conversion from signaling NaNs to quiet NaNs that
2646             // may result in the loop not terminating.
2647             expectedBits = getLongVolatile(o, offset);
2648             v = Double.longBitsToDouble(expectedBits);
2649         } while (!weakCompareAndSetLong(o, offset,
2650                                                  expectedBits, Double.doubleToRawLongBits(v + delta)));
2651         return v;
2652     }
2653 
2654     @ForceInline
2655     public final double getAndAddDoubleRelease(Object o, long offset, double delta) {
2656         long expectedBits;
2657         double v;
2658         do {
2659             // Load and CAS with the raw bits to avoid issues with NaNs and
2660             // possible bit conversion from signaling NaNs to quiet NaNs that
2661             // may result in the loop not terminating.
2662             expectedBits = getLong(o, offset);
2663             v = Double.longBitsToDouble(expectedBits);
2664         } while (!weakCompareAndSetLongRelease(o, offset,
2665                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
2666         return v;
2667     }
2668 
2669     @ForceInline
2670     public final double getAndAddDoubleAcquire(Object o, long offset, double delta) {
2671         long expectedBits;
2672         double v;
2673         do {
2674             // Load and CAS with the raw bits to avoid issues with NaNs and
2675             // possible bit conversion from signaling NaNs to quiet NaNs that
2676             // may result in the loop not terminating.
2677             expectedBits = getLongAcquire(o, offset);
2678             v = Double.longBitsToDouble(expectedBits);
2679         } while (!weakCompareAndSetLongAcquire(o, offset,
2680                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
2681         return v;
2682     }
2683 
2684     /**
2685      * Atomically exchanges the given value with the current value of
2686      * a field or array element within the given object {@code o}
2687      * at the given {@code offset}.
2688      *
2689      * @param o object/array to update the field/element in
2690      * @param offset field/element offset
2691      * @param newValue new value
2692      * @return the previous value
2693      * @since 1.8
2694      */
2695     @IntrinsicCandidate
2696     public final int getAndSetInt(Object o, long offset, int newValue) {
2697         int v;
2698         do {
2699             v = getIntVolatile(o, offset);
2700         } while (!weakCompareAndSetInt(o, offset, v, newValue));
2701         return v;
2702     }
2703 
2704     @ForceInline
2705     public final int getAndSetIntRelease(Object o, long offset, int newValue) {
2706         int v;
2707         do {
2708             v = getInt(o, offset);
2709         } while (!weakCompareAndSetIntRelease(o, offset, v, newValue));
2710         return v;
2711     }
2712 
2713     @ForceInline
2714     public final int getAndSetIntAcquire(Object o, long offset, int newValue) {
2715         int v;
2716         do {
2717             v = getIntAcquire(o, offset);
2718         } while (!weakCompareAndSetIntAcquire(o, offset, v, newValue));
2719         return v;
2720     }
2721 
2722     /**
2723      * Atomically exchanges the given value with the current value of
2724      * a field or array element within the given object {@code o}
2725      * at the given {@code offset}.
2726      *
2727      * @param o object/array to update the field/element in
2728      * @param offset field/element offset
2729      * @param newValue new value
2730      * @return the previous value
2731      * @since 1.8
2732      */
2733     @IntrinsicCandidate
2734     public final long getAndSetLong(Object o, long offset, long newValue) {
2735         long v;
2736         do {
2737             v = getLongVolatile(o, offset);
2738         } while (!weakCompareAndSetLong(o, offset, v, newValue));
2739         return v;
2740     }
2741 
2742     @ForceInline
2743     public final long getAndSetLongRelease(Object o, long offset, long newValue) {
2744         long v;
2745         do {
2746             v = getLong(o, offset);
2747         } while (!weakCompareAndSetLongRelease(o, offset, v, newValue));
2748         return v;
2749     }
2750 
2751     @ForceInline
2752     public final long getAndSetLongAcquire(Object o, long offset, long newValue) {
2753         long v;
2754         do {
2755             v = getLongAcquire(o, offset);
2756         } while (!weakCompareAndSetLongAcquire(o, offset, v, newValue));
2757         return v;
2758     }
2759 
2760     /**
2761      * Atomically exchanges the given reference value with the current
2762      * reference value of a field or array element within the given
2763      * object {@code o} at the given {@code offset}.
2764      *
2765      * @param o object/array to update the field/element in
2766      * @param offset field/element offset
2767      * @param newValue new value
2768      * @return the previous value
2769      * @since 1.8
2770      */
2771     @IntrinsicCandidate
2772     public final Object getAndSetReference(Object o, long offset, Object newValue) {
2773         Object v;
2774         do {
2775             v = getReferenceVolatile(o, offset);
2776         } while (!weakCompareAndSetReference(o, offset, v, newValue));
2777         return v;
2778     }
2779 
2780     @ForceInline
2781     public final Object getAndSetReferenceRelease(Object o, long offset, Object newValue) {
2782         Object v;
2783         do {
2784             v = getReference(o, offset);
2785         } while (!weakCompareAndSetReferenceRelease(o, offset, v, newValue));
2786         return v;
2787     }
2788 
2789     @ForceInline
2790     public final Object getAndSetReferenceAcquire(Object o, long offset, Object newValue) {
2791         Object v;
2792         do {
2793             v = getReferenceAcquire(o, offset);
2794         } while (!weakCompareAndSetReferenceAcquire(o, offset, v, newValue));
2795         return v;
2796     }
2797 
2798     @IntrinsicCandidate
2799     public final byte getAndSetByte(Object o, long offset, byte newValue) {
2800         byte v;
2801         do {
2802             v = getByteVolatile(o, offset);
2803         } while (!weakCompareAndSetByte(o, offset, v, newValue));
2804         return v;
2805     }
2806 
2807     @ForceInline
2808     public final byte getAndSetByteRelease(Object o, long offset, byte newValue) {
2809         byte v;
2810         do {
2811             v = getByte(o, offset);
2812         } while (!weakCompareAndSetByteRelease(o, offset, v, newValue));
2813         return v;
2814     }
2815 
2816     @ForceInline
2817     public final byte getAndSetByteAcquire(Object o, long offset, byte newValue) {
2818         byte v;
2819         do {
2820             v = getByteAcquire(o, offset);
2821         } while (!weakCompareAndSetByteAcquire(o, offset, v, newValue));
2822         return v;
2823     }
2824 
2825     @ForceInline
2826     public final boolean getAndSetBoolean(Object o, long offset, boolean newValue) {
2827         return byte2bool(getAndSetByte(o, offset, bool2byte(newValue)));
2828     }
2829 
2830     @ForceInline
2831     public final boolean getAndSetBooleanRelease(Object o, long offset, boolean newValue) {
2832         return byte2bool(getAndSetByteRelease(o, offset, bool2byte(newValue)));
2833     }
2834 
2835     @ForceInline
2836     public final boolean getAndSetBooleanAcquire(Object o, long offset, boolean newValue) {
2837         return byte2bool(getAndSetByteAcquire(o, offset, bool2byte(newValue)));
2838     }
2839 
2840     @IntrinsicCandidate
2841     public final short getAndSetShort(Object o, long offset, short newValue) {
2842         short v;
2843         do {
2844             v = getShortVolatile(o, offset);
2845         } while (!weakCompareAndSetShort(o, offset, v, newValue));
2846         return v;
2847     }
2848 
2849     @ForceInline
2850     public final short getAndSetShortRelease(Object o, long offset, short newValue) {
2851         short v;
2852         do {
2853             v = getShort(o, offset);
2854         } while (!weakCompareAndSetShortRelease(o, offset, v, newValue));
2855         return v;
2856     }
2857 
2858     @ForceInline
2859     public final short getAndSetShortAcquire(Object o, long offset, short newValue) {
2860         short v;
2861         do {
2862             v = getShortAcquire(o, offset);
2863         } while (!weakCompareAndSetShortAcquire(o, offset, v, newValue));
2864         return v;
2865     }
2866 
2867     @ForceInline
2868     public final char getAndSetChar(Object o, long offset, char newValue) {
2869         return s2c(getAndSetShort(o, offset, c2s(newValue)));
2870     }
2871 
2872     @ForceInline
2873     public final char getAndSetCharRelease(Object o, long offset, char newValue) {
2874         return s2c(getAndSetShortRelease(o, offset, c2s(newValue)));
2875     }
2876 
2877     @ForceInline
2878     public final char getAndSetCharAcquire(Object o, long offset, char newValue) {
2879         return s2c(getAndSetShortAcquire(o, offset, c2s(newValue)));
2880     }
2881 
2882     @ForceInline
2883     public final float getAndSetFloat(Object o, long offset, float newValue) {
2884         int v = getAndSetInt(o, offset, Float.floatToRawIntBits(newValue));
2885         return Float.intBitsToFloat(v);
2886     }
2887 
2888     @ForceInline
2889     public final float getAndSetFloatRelease(Object o, long offset, float newValue) {
2890         int v = getAndSetIntRelease(o, offset, Float.floatToRawIntBits(newValue));
2891         return Float.intBitsToFloat(v);
2892     }
2893 
2894     @ForceInline
2895     public final float getAndSetFloatAcquire(Object o, long offset, float newValue) {
2896         int v = getAndSetIntAcquire(o, offset, Float.floatToRawIntBits(newValue));
2897         return Float.intBitsToFloat(v);
2898     }
2899 
2900     @ForceInline
2901     public final double getAndSetDouble(Object o, long offset, double newValue) {
2902         long v = getAndSetLong(o, offset, Double.doubleToRawLongBits(newValue));
2903         return Double.longBitsToDouble(v);
2904     }
2905 
2906     @ForceInline
2907     public final double getAndSetDoubleRelease(Object o, long offset, double newValue) {
2908         long v = getAndSetLongRelease(o, offset, Double.doubleToRawLongBits(newValue));
2909         return Double.longBitsToDouble(v);
2910     }
2911 
2912     @ForceInline
2913     public final double getAndSetDoubleAcquire(Object o, long offset, double newValue) {
2914         long v = getAndSetLongAcquire(o, offset, Double.doubleToRawLongBits(newValue));
2915         return Double.longBitsToDouble(v);
2916     }
2917 
2918 
2919     // The following contain CAS-based Java implementations used on
2920     // platforms not supporting native instructions
2921 
2922     @ForceInline
2923     public final boolean getAndBitwiseOrBoolean(Object o, long offset, boolean mask) {
2924         return byte2bool(getAndBitwiseOrByte(o, offset, bool2byte(mask)));
2925     }
2926 
2927     @ForceInline
2928     public final boolean getAndBitwiseOrBooleanRelease(Object o, long offset, boolean mask) {
2929         return byte2bool(getAndBitwiseOrByteRelease(o, offset, bool2byte(mask)));
2930     }
2931 
2932     @ForceInline
2933     public final boolean getAndBitwiseOrBooleanAcquire(Object o, long offset, boolean mask) {
2934         return byte2bool(getAndBitwiseOrByteAcquire(o, offset, bool2byte(mask)));
2935     }
2936 
2937     @ForceInline
2938     public final boolean getAndBitwiseAndBoolean(Object o, long offset, boolean mask) {
2939         return byte2bool(getAndBitwiseAndByte(o, offset, bool2byte(mask)));
2940     }
2941 
2942     @ForceInline
2943     public final boolean getAndBitwiseAndBooleanRelease(Object o, long offset, boolean mask) {
2944         return byte2bool(getAndBitwiseAndByteRelease(o, offset, bool2byte(mask)));
2945     }
2946 
2947     @ForceInline
2948     public final boolean getAndBitwiseAndBooleanAcquire(Object o, long offset, boolean mask) {
2949         return byte2bool(getAndBitwiseAndByteAcquire(o, offset, bool2byte(mask)));
2950     }
2951 
2952     @ForceInline
2953     public final boolean getAndBitwiseXorBoolean(Object o, long offset, boolean mask) {
2954         return byte2bool(getAndBitwiseXorByte(o, offset, bool2byte(mask)));
2955     }
2956 
2957     @ForceInline
2958     public final boolean getAndBitwiseXorBooleanRelease(Object o, long offset, boolean mask) {
2959         return byte2bool(getAndBitwiseXorByteRelease(o, offset, bool2byte(mask)));
2960     }
2961 
2962     @ForceInline
2963     public final boolean getAndBitwiseXorBooleanAcquire(Object o, long offset, boolean mask) {
2964         return byte2bool(getAndBitwiseXorByteAcquire(o, offset, bool2byte(mask)));
2965     }
2966 
2967 
2968     @ForceInline
2969     public final byte getAndBitwiseOrByte(Object o, long offset, byte mask) {
2970         byte current;
2971         do {
2972             current = getByteVolatile(o, offset);
2973         } while (!weakCompareAndSetByte(o, offset,
2974                                                   current, (byte) (current | mask)));
2975         return current;
2976     }
2977 
2978     @ForceInline
2979     public final byte getAndBitwiseOrByteRelease(Object o, long offset, byte mask) {
2980         byte current;
2981         do {
2982             current = getByte(o, offset);
2983         } while (!weakCompareAndSetByteRelease(o, offset,
2984                                                  current, (byte) (current | mask)));
2985         return current;
2986     }
2987 
2988     @ForceInline
2989     public final byte getAndBitwiseOrByteAcquire(Object o, long offset, byte mask) {
2990         byte current;
2991         do {
2992             // Plain read, the value is a hint, the acquire CAS does the work
2993             current = getByte(o, offset);
2994         } while (!weakCompareAndSetByteAcquire(o, offset,
2995                                                  current, (byte) (current | mask)));
2996         return current;
2997     }
2998 
2999     @ForceInline
3000     public final byte getAndBitwiseAndByte(Object o, long offset, byte mask) {
3001         byte current;
3002         do {
3003             current = getByteVolatile(o, offset);
3004         } while (!weakCompareAndSetByte(o, offset,
3005                                                   current, (byte) (current & mask)));
3006         return current;
3007     }
3008 
3009     @ForceInline
3010     public final byte getAndBitwiseAndByteRelease(Object o, long offset, byte mask) {
3011         byte current;
3012         do {
3013             current = getByte(o, offset);
3014         } while (!weakCompareAndSetByteRelease(o, offset,
3015                                                  current, (byte) (current & mask)));
3016         return current;
3017     }
3018 
3019     @ForceInline
3020     public final byte getAndBitwiseAndByteAcquire(Object o, long offset, byte mask) {
3021         byte current;
3022         do {
3023             // Plain read, the value is a hint, the acquire CAS does the work
3024             current = getByte(o, offset);
3025         } while (!weakCompareAndSetByteAcquire(o, offset,
3026                                                  current, (byte) (current & mask)));
3027         return current;
3028     }
3029 
3030     @ForceInline
3031     public final byte getAndBitwiseXorByte(Object o, long offset, byte mask) {
3032         byte current;
3033         do {
3034             current = getByteVolatile(o, offset);
3035         } while (!weakCompareAndSetByte(o, offset,
3036                                                   current, (byte) (current ^ mask)));
3037         return current;
3038     }
3039 
3040     @ForceInline
3041     public final byte getAndBitwiseXorByteRelease(Object o, long offset, byte mask) {
3042         byte current;
3043         do {
3044             current = getByte(o, offset);
3045         } while (!weakCompareAndSetByteRelease(o, offset,
3046                                                  current, (byte) (current ^ mask)));
3047         return current;
3048     }
3049 
3050     @ForceInline
3051     public final byte getAndBitwiseXorByteAcquire(Object o, long offset, byte mask) {
3052         byte current;
3053         do {
3054             // Plain read, the value is a hint, the acquire CAS does the work
3055             current = getByte(o, offset);
3056         } while (!weakCompareAndSetByteAcquire(o, offset,
3057                                                  current, (byte) (current ^ mask)));
3058         return current;
3059     }
3060 
3061 
3062     @ForceInline
3063     public final char getAndBitwiseOrChar(Object o, long offset, char mask) {
3064         return s2c(getAndBitwiseOrShort(o, offset, c2s(mask)));
3065     }
3066 
3067     @ForceInline
3068     public final char getAndBitwiseOrCharRelease(Object o, long offset, char mask) {
3069         return s2c(getAndBitwiseOrShortRelease(o, offset, c2s(mask)));
3070     }
3071 
3072     @ForceInline
3073     public final char getAndBitwiseOrCharAcquire(Object o, long offset, char mask) {
3074         return s2c(getAndBitwiseOrShortAcquire(o, offset, c2s(mask)));
3075     }
3076 
3077     @ForceInline
3078     public final char getAndBitwiseAndChar(Object o, long offset, char mask) {
3079         return s2c(getAndBitwiseAndShort(o, offset, c2s(mask)));
3080     }
3081 
3082     @ForceInline
3083     public final char getAndBitwiseAndCharRelease(Object o, long offset, char mask) {
3084         return s2c(getAndBitwiseAndShortRelease(o, offset, c2s(mask)));
3085     }
3086 
3087     @ForceInline
3088     public final char getAndBitwiseAndCharAcquire(Object o, long offset, char mask) {
3089         return s2c(getAndBitwiseAndShortAcquire(o, offset, c2s(mask)));
3090     }
3091 
3092     @ForceInline
3093     public final char getAndBitwiseXorChar(Object o, long offset, char mask) {
3094         return s2c(getAndBitwiseXorShort(o, offset, c2s(mask)));
3095     }
3096 
3097     @ForceInline
3098     public final char getAndBitwiseXorCharRelease(Object o, long offset, char mask) {
3099         return s2c(getAndBitwiseXorShortRelease(o, offset, c2s(mask)));
3100     }
3101 
3102     @ForceInline
3103     public final char getAndBitwiseXorCharAcquire(Object o, long offset, char mask) {
3104         return s2c(getAndBitwiseXorShortAcquire(o, offset, c2s(mask)));
3105     }
3106 
3107 
3108     @ForceInline
3109     public final short getAndBitwiseOrShort(Object o, long offset, short mask) {
3110         short current;
3111         do {
3112             current = getShortVolatile(o, offset);
3113         } while (!weakCompareAndSetShort(o, offset,
3114                                                 current, (short) (current | mask)));
3115         return current;
3116     }
3117 
3118     @ForceInline
3119     public final short getAndBitwiseOrShortRelease(Object o, long offset, short mask) {
3120         short current;
3121         do {
3122             current = getShort(o, offset);
3123         } while (!weakCompareAndSetShortRelease(o, offset,
3124                                                current, (short) (current | mask)));
3125         return current;
3126     }
3127 
3128     @ForceInline
3129     public final short getAndBitwiseOrShortAcquire(Object o, long offset, short mask) {
3130         short current;
3131         do {
3132             // Plain read, the value is a hint, the acquire CAS does the work
3133             current = getShort(o, offset);
3134         } while (!weakCompareAndSetShortAcquire(o, offset,
3135                                                current, (short) (current | mask)));
3136         return current;
3137     }
3138 
3139     @ForceInline
3140     public final short getAndBitwiseAndShort(Object o, long offset, short mask) {
3141         short current;
3142         do {
3143             current = getShortVolatile(o, offset);
3144         } while (!weakCompareAndSetShort(o, offset,
3145                                                 current, (short) (current & mask)));
3146         return current;
3147     }
3148 
3149     @ForceInline
3150     public final short getAndBitwiseAndShortRelease(Object o, long offset, short mask) {
3151         short current;
3152         do {
3153             current = getShort(o, offset);
3154         } while (!weakCompareAndSetShortRelease(o, offset,
3155                                                current, (short) (current & mask)));
3156         return current;
3157     }
3158 
3159     @ForceInline
3160     public final short getAndBitwiseAndShortAcquire(Object o, long offset, short mask) {
3161         short current;
3162         do {
3163             // Plain read, the value is a hint, the acquire CAS does the work
3164             current = getShort(o, offset);
3165         } while (!weakCompareAndSetShortAcquire(o, offset,
3166                                                current, (short) (current & mask)));
3167         return current;
3168     }
3169 
3170     @ForceInline
3171     public final short getAndBitwiseXorShort(Object o, long offset, short mask) {
3172         short current;
3173         do {
3174             current = getShortVolatile(o, offset);
3175         } while (!weakCompareAndSetShort(o, offset,
3176                                                 current, (short) (current ^ mask)));
3177         return current;
3178     }
3179 
3180     @ForceInline
3181     public final short getAndBitwiseXorShortRelease(Object o, long offset, short mask) {
3182         short current;
3183         do {
3184             current = getShort(o, offset);
3185         } while (!weakCompareAndSetShortRelease(o, offset,
3186                                                current, (short) (current ^ mask)));
3187         return current;
3188     }
3189 
3190     @ForceInline
3191     public final short getAndBitwiseXorShortAcquire(Object o, long offset, short mask) {
3192         short current;
3193         do {
3194             // Plain read, the value is a hint, the acquire CAS does the work
3195             current = getShort(o, offset);
3196         } while (!weakCompareAndSetShortAcquire(o, offset,
3197                                                current, (short) (current ^ mask)));
3198         return current;
3199     }
3200 
3201 
3202     @ForceInline
3203     public final int getAndBitwiseOrInt(Object o, long offset, int mask) {
3204         int current;
3205         do {
3206             current = getIntVolatile(o, offset);
3207         } while (!weakCompareAndSetInt(o, offset,
3208                                                 current, current | mask));
3209         return current;
3210     }
3211 
3212     @ForceInline
3213     public final int getAndBitwiseOrIntRelease(Object o, long offset, int mask) {
3214         int current;
3215         do {
3216             current = getInt(o, offset);
3217         } while (!weakCompareAndSetIntRelease(o, offset,
3218                                                current, current | mask));
3219         return current;
3220     }
3221 
3222     @ForceInline
3223     public final int getAndBitwiseOrIntAcquire(Object o, long offset, int mask) {
3224         int current;
3225         do {
3226             // Plain read, the value is a hint, the acquire CAS does the work
3227             current = getInt(o, offset);
3228         } while (!weakCompareAndSetIntAcquire(o, offset,
3229                                                current, current | mask));
3230         return current;
3231     }
3232 
3233     /**
3234      * Atomically replaces the current value of a field or array element within
3235      * the given object with the result of bitwise AND between the current value
3236      * and mask.
3237      *
3238      * @param o object/array to update the field/element in
3239      * @param offset field/element offset
3240      * @param mask the mask value
3241      * @return the previous value
3242      * @since 9
3243      */
3244     @ForceInline
3245     public final int getAndBitwiseAndInt(Object o, long offset, int mask) {
3246         int current;
3247         do {
3248             current = getIntVolatile(o, offset);
3249         } while (!weakCompareAndSetInt(o, offset,
3250                                                 current, current & mask));
3251         return current;
3252     }
3253 
3254     @ForceInline
3255     public final int getAndBitwiseAndIntRelease(Object o, long offset, int mask) {
3256         int current;
3257         do {
3258             current = getInt(o, offset);
3259         } while (!weakCompareAndSetIntRelease(o, offset,
3260                                                current, current & mask));
3261         return current;
3262     }
3263 
3264     @ForceInline
3265     public final int getAndBitwiseAndIntAcquire(Object o, long offset, int mask) {
3266         int current;
3267         do {
3268             // Plain read, the value is a hint, the acquire CAS does the work
3269             current = getInt(o, offset);
3270         } while (!weakCompareAndSetIntAcquire(o, offset,
3271                                                current, current & mask));
3272         return current;
3273     }
3274 
3275     @ForceInline
3276     public final int getAndBitwiseXorInt(Object o, long offset, int mask) {
3277         int current;
3278         do {
3279             current = getIntVolatile(o, offset);
3280         } while (!weakCompareAndSetInt(o, offset,
3281                                                 current, current ^ mask));
3282         return current;
3283     }
3284 
3285     @ForceInline
3286     public final int getAndBitwiseXorIntRelease(Object o, long offset, int mask) {
3287         int current;
3288         do {
3289             current = getInt(o, offset);
3290         } while (!weakCompareAndSetIntRelease(o, offset,
3291                                                current, current ^ mask));
3292         return current;
3293     }
3294 
3295     @ForceInline
3296     public final int getAndBitwiseXorIntAcquire(Object o, long offset, int mask) {
3297         int current;
3298         do {
3299             // Plain read, the value is a hint, the acquire CAS does the work
3300             current = getInt(o, offset);
3301         } while (!weakCompareAndSetIntAcquire(o, offset,
3302                                                current, current ^ mask));
3303         return current;
3304     }
3305 
3306 
3307     @ForceInline
3308     public final long getAndBitwiseOrLong(Object o, long offset, long mask) {
3309         long current;
3310         do {
3311             current = getLongVolatile(o, offset);
3312         } while (!weakCompareAndSetLong(o, offset,
3313                                                 current, current | mask));
3314         return current;
3315     }
3316 
3317     @ForceInline
3318     public final long getAndBitwiseOrLongRelease(Object o, long offset, long mask) {
3319         long current;
3320         do {
3321             current = getLong(o, offset);
3322         } while (!weakCompareAndSetLongRelease(o, offset,
3323                                                current, current | mask));
3324         return current;
3325     }
3326 
3327     @ForceInline
3328     public final long getAndBitwiseOrLongAcquire(Object o, long offset, long mask) {
3329         long current;
3330         do {
3331             // Plain read, the value is a hint, the acquire CAS does the work
3332             current = getLong(o, offset);
3333         } while (!weakCompareAndSetLongAcquire(o, offset,
3334                                                current, current | mask));
3335         return current;
3336     }
3337 
3338     @ForceInline
3339     public final long getAndBitwiseAndLong(Object o, long offset, long mask) {
3340         long current;
3341         do {
3342             current = getLongVolatile(o, offset);
3343         } while (!weakCompareAndSetLong(o, offset,
3344                                                 current, current & mask));
3345         return current;
3346     }
3347 
3348     @ForceInline
3349     public final long getAndBitwiseAndLongRelease(Object o, long offset, long mask) {
3350         long current;
3351         do {
3352             current = getLong(o, offset);
3353         } while (!weakCompareAndSetLongRelease(o, offset,
3354                                                current, current & mask));
3355         return current;
3356     }
3357 
3358     @ForceInline
3359     public final long getAndBitwiseAndLongAcquire(Object o, long offset, long mask) {
3360         long current;
3361         do {
3362             // Plain read, the value is a hint, the acquire CAS does the work
3363             current = getLong(o, offset);
3364         } while (!weakCompareAndSetLongAcquire(o, offset,
3365                                                current, current & mask));
3366         return current;
3367     }
3368 
3369     @ForceInline
3370     public final long getAndBitwiseXorLong(Object o, long offset, long mask) {
3371         long current;
3372         do {
3373             current = getLongVolatile(o, offset);
3374         } while (!weakCompareAndSetLong(o, offset,
3375                                                 current, current ^ mask));
3376         return current;
3377     }
3378 
3379     @ForceInline
3380     public final long getAndBitwiseXorLongRelease(Object o, long offset, long mask) {
3381         long current;
3382         do {
3383             current = getLong(o, offset);
3384         } while (!weakCompareAndSetLongRelease(o, offset,
3385                                                current, current ^ mask));
3386         return current;
3387     }
3388 
3389     @ForceInline
3390     public final long getAndBitwiseXorLongAcquire(Object o, long offset, long mask) {
3391         long current;
3392         do {
3393             // Plain read, the value is a hint, the acquire CAS does the work
3394             current = getLong(o, offset);
3395         } while (!weakCompareAndSetLongAcquire(o, offset,
3396                                                current, current ^ mask));
3397         return current;
3398     }
3399 
3400 
3401 
3402     /**
3403      * Ensures that loads before the fence will not be reordered with loads and
3404      * stores after the fence; a "LoadLoad plus LoadStore barrier".
3405      *
3406      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
3407      * (an "acquire fence").
3408      *
3409      * Provides a LoadLoad barrier followed by a LoadStore barrier.
3410      *
3411      * @since 1.8
3412      */
3413     @IntrinsicCandidate
3414     public final void loadFence() {
3415         // If loadFence intrinsic is not available, fall back to full fence.
3416         fullFence();
3417     }
3418 
3419     /**
3420      * Ensures that loads and stores before the fence will not be reordered with
3421      * stores after the fence; a "StoreStore plus LoadStore barrier".
3422      *
3423      * Corresponds to C11 atomic_thread_fence(memory_order_release)
3424      * (a "release fence").
3425      *
3426      * Provides a StoreStore barrier followed by a LoadStore barrier.
3427      *
3428      * @since 1.8
3429      */
3430     @IntrinsicCandidate
3431     public final void storeFence() {
3432         // If storeFence intrinsic is not available, fall back to full fence.
3433         fullFence();
3434     }
3435 
3436     /**
3437      * Ensures that loads and stores before the fence will not be reordered
3438      * with loads and stores after the fence.  Implies the effects of both
3439      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
3440      * barrier.
3441      *
3442      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
3443      * @since 1.8
3444      */
3445     @IntrinsicCandidate
3446     public native void fullFence();
3447 
3448     /**
3449      * Ensures that loads before the fence will not be reordered with
3450      * loads after the fence.
3451      *
3452      * @implNote
3453      * This method is operationally equivalent to {@link #loadFence()}.
3454      *
3455      * @since 9
3456      */
3457     public final void loadLoadFence() {
3458         loadFence();
3459     }
3460 
3461     /**
3462      * Ensures that stores before the fence will not be reordered with
3463      * stores after the fence.
3464      *
3465      * @since 9
3466      */
3467     @IntrinsicCandidate
3468     public final void storeStoreFence() {
3469         // If storeStoreFence intrinsic is not available, fall back to storeFence.
3470         storeFence();
3471     }
3472 
3473     /**
3474      * Throws IllegalAccessError; for use by the VM for access control
3475      * error support.
3476      * @since 1.8
3477      */
3478     private static void throwIllegalAccessError() {
3479         throw new IllegalAccessError();
3480     }
3481 
3482     /**
3483      * Throws NoSuchMethodError; for use by the VM for redefinition support.
3484      * @since 13
3485      */
3486     private static void throwNoSuchMethodError() {
3487         throw new NoSuchMethodError();
3488     }
3489 
3490     /**
3491      * @return Returns true if the native byte ordering of this
3492      * platform is big-endian, false if it is little-endian.
3493      */
3494     public final boolean isBigEndian() { return BIG_ENDIAN; }
3495 
3496     /**
3497      * @return Returns true if this platform is capable of performing
3498      * accesses at addresses which are not aligned for the type of the
3499      * primitive type being accessed, false otherwise.
3500      */
3501     public final boolean unalignedAccess() { return UNALIGNED_ACCESS; }
3502 
3503     /**
3504      * Fetches a value at some byte offset into a given Java object.
3505      * More specifically, fetches a value within the given object
3506      * <code>o</code> at the given offset, or (if <code>o</code> is
3507      * null) from the memory address whose numerical value is the
3508      * given offset.  <p>
3509      *
3510      * The specification of this method is the same as {@link
3511      * #getLong(Object, long)} except that the offset does not need to
3512      * have been obtained from {@link #objectFieldOffset} on the
3513      * {@link java.lang.reflect.Field} of some Java field.  The value
3514      * in memory is raw data, and need not correspond to any Java
3515      * variable.  Unless <code>o</code> is null, the value accessed
3516      * must be entirely within the allocated object.  The endianness
3517      * of the value in memory is the endianness of the native platform.
3518      *
3519      * <p> The read will be atomic with respect to the largest power
3520      * of two that divides the GCD of the offset and the storage size.
3521      * For example, getLongUnaligned will make atomic reads of 2-, 4-,
3522      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
3523      * respectively.  There are no other guarantees of atomicity.
3524      * <p>
3525      * 8-byte atomicity is only guaranteed on platforms on which
3526      * support atomic accesses to longs.
3527      *
3528      * @param o Java heap object in which the value resides, if any, else
3529      *        null
3530      * @param offset The offset in bytes from the start of the object
3531      * @return the value fetched from the indicated object
3532      * @throws RuntimeException No defined exceptions are thrown, not even
3533      *         {@link NullPointerException}
3534      * @since 9
3535      */
3536     @IntrinsicCandidate
3537     public final long getLongUnaligned(Object o, long offset) {
3538         if ((offset & 7) == 0) {
3539             return getLong(o, offset);
3540         } else if ((offset & 3) == 0) {
3541             return makeLong(getInt(o, offset),
3542                             getInt(o, offset + 4));
3543         } else if ((offset & 1) == 0) {
3544             return makeLong(getShort(o, offset),
3545                             getShort(o, offset + 2),
3546                             getShort(o, offset + 4),
3547                             getShort(o, offset + 6));
3548         } else {
3549             return makeLong(getByte(o, offset),
3550                             getByte(o, offset + 1),
3551                             getByte(o, offset + 2),
3552                             getByte(o, offset + 3),
3553                             getByte(o, offset + 4),
3554                             getByte(o, offset + 5),
3555                             getByte(o, offset + 6),
3556                             getByte(o, offset + 7));
3557         }
3558     }
3559     /**
3560      * As {@link #getLongUnaligned(Object, long)} but with an
3561      * additional argument which specifies the endianness of the value
3562      * as stored in memory.
3563      *
3564      * @param o Java heap object in which the variable resides
3565      * @param offset The offset in bytes from the start of the object
3566      * @param bigEndian The endianness of the value
3567      * @return the value fetched from the indicated object
3568      * @since 9
3569      */
3570     public final long getLongUnaligned(Object o, long offset, boolean bigEndian) {
3571         return convEndian(bigEndian, getLongUnaligned(o, offset));
3572     }
3573 
3574     /** @see #getLongUnaligned(Object, long) */
3575     @IntrinsicCandidate
3576     public final int getIntUnaligned(Object o, long offset) {
3577         if ((offset & 3) == 0) {
3578             return getInt(o, offset);
3579         } else if ((offset & 1) == 0) {
3580             return makeInt(getShort(o, offset),
3581                            getShort(o, offset + 2));
3582         } else {
3583             return makeInt(getByte(o, offset),
3584                            getByte(o, offset + 1),
3585                            getByte(o, offset + 2),
3586                            getByte(o, offset + 3));
3587         }
3588     }
3589     /** @see #getLongUnaligned(Object, long, boolean) */
3590     public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
3591         return convEndian(bigEndian, getIntUnaligned(o, offset));
3592     }
3593 
3594     /** @see #getLongUnaligned(Object, long) */
3595     @IntrinsicCandidate
3596     public final short getShortUnaligned(Object o, long offset) {
3597         if ((offset & 1) == 0) {
3598             return getShort(o, offset);
3599         } else {
3600             return makeShort(getByte(o, offset),
3601                              getByte(o, offset + 1));
3602         }
3603     }
3604     /** @see #getLongUnaligned(Object, long, boolean) */
3605     public final short getShortUnaligned(Object o, long offset, boolean bigEndian) {
3606         return convEndian(bigEndian, getShortUnaligned(o, offset));
3607     }
3608 
3609     /** @see #getLongUnaligned(Object, long) */
3610     @IntrinsicCandidate
3611     public final char getCharUnaligned(Object o, long offset) {
3612         if ((offset & 1) == 0) {
3613             return getChar(o, offset);
3614         } else {
3615             return (char)makeShort(getByte(o, offset),
3616                                    getByte(o, offset + 1));
3617         }
3618     }
3619 
3620     /** @see #getLongUnaligned(Object, long, boolean) */
3621     public final char getCharUnaligned(Object o, long offset, boolean bigEndian) {
3622         return convEndian(bigEndian, getCharUnaligned(o, offset));
3623     }
3624 
3625     /**
3626      * Stores a value at some byte offset into a given Java object.
3627      * <p>
3628      * The specification of this method is the same as {@link
3629      * #getLong(Object, long)} except that the offset does not need to
3630      * have been obtained from {@link #objectFieldOffset} on the
3631      * {@link java.lang.reflect.Field} of some Java field.  The value
3632      * in memory is raw data, and need not correspond to any Java
3633      * variable.  The endianness of the value in memory is the
3634      * endianness of the native platform.
3635      * <p>
3636      * The write will be atomic with respect to the largest power of
3637      * two that divides the GCD of the offset and the storage size.
3638      * For example, putLongUnaligned will make atomic writes of 2-, 4-,
3639      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
3640      * respectively.  There are no other guarantees of atomicity.
3641      * <p>
3642      * 8-byte atomicity is only guaranteed on platforms on which
3643      * support atomic accesses to longs.
3644      *
3645      * @param o Java heap object in which the value resides, if any, else
3646      *        null
3647      * @param offset The offset in bytes from the start of the object
3648      * @param x the value to store
3649      * @throws RuntimeException No defined exceptions are thrown, not even
3650      *         {@link NullPointerException}
3651      * @since 9
3652      */
3653     @IntrinsicCandidate
3654     public final void putLongUnaligned(Object o, long offset, long x) {
3655         if ((offset & 7) == 0) {
3656             putLong(o, offset, x);
3657         } else if ((offset & 3) == 0) {
3658             putLongParts(o, offset,
3659                          (int)(x >> 0),
3660                          (int)(x >>> 32));
3661         } else if ((offset & 1) == 0) {
3662             putLongParts(o, offset,
3663                          (short)(x >>> 0),
3664                          (short)(x >>> 16),
3665                          (short)(x >>> 32),
3666                          (short)(x >>> 48));
3667         } else {
3668             putLongParts(o, offset,
3669                          (byte)(x >>> 0),
3670                          (byte)(x >>> 8),
3671                          (byte)(x >>> 16),
3672                          (byte)(x >>> 24),
3673                          (byte)(x >>> 32),
3674                          (byte)(x >>> 40),
3675                          (byte)(x >>> 48),
3676                          (byte)(x >>> 56));
3677         }
3678     }
3679 
3680     /**
3681      * As {@link #putLongUnaligned(Object, long, long)} but with an additional
3682      * argument which specifies the endianness of the value as stored in memory.
3683      * @param o Java heap object in which the value resides
3684      * @param offset The offset in bytes from the start of the object
3685      * @param x the value to store
3686      * @param bigEndian The endianness of the value
3687      * @throws RuntimeException No defined exceptions are thrown, not even
3688      *         {@link NullPointerException}
3689      * @since 9
3690      */
3691     public final void putLongUnaligned(Object o, long offset, long x, boolean bigEndian) {
3692         putLongUnaligned(o, offset, convEndian(bigEndian, x));
3693     }
3694 
3695     /** @see #putLongUnaligned(Object, long, long) */
3696     @IntrinsicCandidate
3697     public final void putIntUnaligned(Object o, long offset, int x) {
3698         if ((offset & 3) == 0) {
3699             putInt(o, offset, x);
3700         } else if ((offset & 1) == 0) {
3701             putIntParts(o, offset,
3702                         (short)(x >> 0),
3703                         (short)(x >>> 16));
3704         } else {
3705             putIntParts(o, offset,
3706                         (byte)(x >>> 0),
3707                         (byte)(x >>> 8),
3708                         (byte)(x >>> 16),
3709                         (byte)(x >>> 24));
3710         }
3711     }
3712     /** @see #putLongUnaligned(Object, long, long, boolean) */
3713     public final void putIntUnaligned(Object o, long offset, int x, boolean bigEndian) {
3714         putIntUnaligned(o, offset, convEndian(bigEndian, x));
3715     }
3716 
3717     /** @see #putLongUnaligned(Object, long, long) */
3718     @IntrinsicCandidate
3719     public final void putShortUnaligned(Object o, long offset, short x) {
3720         if ((offset & 1) == 0) {
3721             putShort(o, offset, x);
3722         } else {
3723             putShortParts(o, offset,
3724                           (byte)(x >>> 0),
3725                           (byte)(x >>> 8));
3726         }
3727     }
3728     /** @see #putLongUnaligned(Object, long, long, boolean) */
3729     public final void putShortUnaligned(Object o, long offset, short x, boolean bigEndian) {
3730         putShortUnaligned(o, offset, convEndian(bigEndian, x));
3731     }
3732 
3733     /** @see #putLongUnaligned(Object, long, long) */
3734     @IntrinsicCandidate
3735     public final void putCharUnaligned(Object o, long offset, char x) {
3736         putShortUnaligned(o, offset, (short)x);
3737     }
3738     /** @see #putLongUnaligned(Object, long, long, boolean) */
3739     public final void putCharUnaligned(Object o, long offset, char x, boolean bigEndian) {
3740         putCharUnaligned(o, offset, convEndian(bigEndian, x));
3741     }
3742 
3743     private static int pickPos(int top, int pos) { return BIG_ENDIAN ? top - pos : pos; }
3744 
3745     // These methods construct integers from bytes.  The byte ordering
3746     // is the native endianness of this platform.
3747     private static long makeLong(byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
3748         return ((toUnsignedLong(i0) << pickPos(56, 0))
3749               | (toUnsignedLong(i1) << pickPos(56, 8))
3750               | (toUnsignedLong(i2) << pickPos(56, 16))
3751               | (toUnsignedLong(i3) << pickPos(56, 24))
3752               | (toUnsignedLong(i4) << pickPos(56, 32))
3753               | (toUnsignedLong(i5) << pickPos(56, 40))
3754               | (toUnsignedLong(i6) << pickPos(56, 48))
3755               | (toUnsignedLong(i7) << pickPos(56, 56)));
3756     }
3757     private static long makeLong(short i0, short i1, short i2, short i3) {
3758         return ((toUnsignedLong(i0) << pickPos(48, 0))
3759               | (toUnsignedLong(i1) << pickPos(48, 16))
3760               | (toUnsignedLong(i2) << pickPos(48, 32))
3761               | (toUnsignedLong(i3) << pickPos(48, 48)));
3762     }
3763     private static long makeLong(int i0, int i1) {
3764         return (toUnsignedLong(i0) << pickPos(32, 0))
3765              | (toUnsignedLong(i1) << pickPos(32, 32));
3766     }
3767     private static int makeInt(short i0, short i1) {
3768         return (toUnsignedInt(i0) << pickPos(16, 0))
3769              | (toUnsignedInt(i1) << pickPos(16, 16));
3770     }
3771     private static int makeInt(byte i0, byte i1, byte i2, byte i3) {
3772         return ((toUnsignedInt(i0) << pickPos(24, 0))
3773               | (toUnsignedInt(i1) << pickPos(24, 8))
3774               | (toUnsignedInt(i2) << pickPos(24, 16))
3775               | (toUnsignedInt(i3) << pickPos(24, 24)));
3776     }
3777     private static short makeShort(byte i0, byte i1) {
3778         return (short)((toUnsignedInt(i0) << pickPos(8, 0))
3779                      | (toUnsignedInt(i1) << pickPos(8, 8)));
3780     }
3781 
3782     private static byte  pick(byte  le, byte  be) { return BIG_ENDIAN ? be : le; }
3783     private static short pick(short le, short be) { return BIG_ENDIAN ? be : le; }
3784     private static int   pick(int   le, int   be) { return BIG_ENDIAN ? be : le; }
3785 
3786     // These methods write integers to memory from smaller parts
3787     // provided by their caller.  The ordering in which these parts
3788     // are written is the native endianness of this platform.
3789     private void putLongParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
3790         putByte(o, offset + 0, pick(i0, i7));
3791         putByte(o, offset + 1, pick(i1, i6));
3792         putByte(o, offset + 2, pick(i2, i5));
3793         putByte(o, offset + 3, pick(i3, i4));
3794         putByte(o, offset + 4, pick(i4, i3));
3795         putByte(o, offset + 5, pick(i5, i2));
3796         putByte(o, offset + 6, pick(i6, i1));
3797         putByte(o, offset + 7, pick(i7, i0));
3798     }
3799     private void putLongParts(Object o, long offset, short i0, short i1, short i2, short i3) {
3800         putShort(o, offset + 0, pick(i0, i3));
3801         putShort(o, offset + 2, pick(i1, i2));
3802         putShort(o, offset + 4, pick(i2, i1));
3803         putShort(o, offset + 6, pick(i3, i0));
3804     }
3805     private void putLongParts(Object o, long offset, int i0, int i1) {
3806         putInt(o, offset + 0, pick(i0, i1));
3807         putInt(o, offset + 4, pick(i1, i0));
3808     }
3809     private void putIntParts(Object o, long offset, short i0, short i1) {
3810         putShort(o, offset + 0, pick(i0, i1));
3811         putShort(o, offset + 2, pick(i1, i0));
3812     }
3813     private void putIntParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3) {
3814         putByte(o, offset + 0, pick(i0, i3));
3815         putByte(o, offset + 1, pick(i1, i2));
3816         putByte(o, offset + 2, pick(i2, i1));
3817         putByte(o, offset + 3, pick(i3, i0));
3818     }
3819     private void putShortParts(Object o, long offset, byte i0, byte i1) {
3820         putByte(o, offset + 0, pick(i0, i1));
3821         putByte(o, offset + 1, pick(i1, i0));
3822     }
3823 
3824     // Zero-extend an integer
3825     private static int toUnsignedInt(byte n)    { return n & 0xff; }
3826     private static int toUnsignedInt(short n)   { return n & 0xffff; }
3827     private static long toUnsignedLong(byte n)  { return n & 0xffl; }
3828     private static long toUnsignedLong(short n) { return n & 0xffffl; }
3829     private static long toUnsignedLong(int n)   { return n & 0xffffffffl; }
3830 
3831     // Maybe byte-reverse an integer
3832     private static char convEndian(boolean big, char n)   { return big == BIG_ENDIAN ? n : Character.reverseBytes(n); }
3833     private static short convEndian(boolean big, short n) { return big == BIG_ENDIAN ? n : Short.reverseBytes(n)    ; }
3834     private static int convEndian(boolean big, int n)     { return big == BIG_ENDIAN ? n : Integer.reverseBytes(n)  ; }
3835     private static long convEndian(boolean big, long n)   { return big == BIG_ENDIAN ? n : Long.reverseBytes(n)     ; }
3836 
3837 
3838 
3839     private native long allocateMemory0(long bytes);
3840     private native long reallocateMemory0(long address, long bytes);
3841     private native void freeMemory0(long address);
3842     @IntrinsicCandidate
3843     private native void setMemory0(Object o, long offset, long bytes, byte value);
3844     @IntrinsicCandidate
3845     private native void copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
3846     private native void copySwapMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes, long elemSize);
3847     private native long objectFieldOffset0(Field f);
3848     private native long objectFieldOffset1(Class<?> c, String name);
3849     private native long staticFieldOffset0(Field f);
3850     private native Object staticFieldBase0(Field f);
3851     private native boolean shouldBeInitialized0(Class<?> c);
3852     private native void ensureClassInitialized0(Class<?> c);
3853     private native int arrayBaseOffset0(Class<?> arrayClass); // public version returns long to promote correct arithmetic
3854     private native int arrayIndexScale0(Class<?> arrayClass);
3855     private native int getLoadAverage0(double[] loadavg, int nelems);
3856 
3857 
3858     /**
3859      * Invokes the given direct byte buffer's cleaner, if any.
3860      *
3861      * @param directBuffer a direct byte buffer
3862      * @throws NullPointerException     if {@code directBuffer} is null
3863      * @throws IllegalArgumentException if {@code directBuffer} is non-direct,
3864      *                                  or is a {@link java.nio.Buffer#slice slice}, or is a
3865      *                                  {@link java.nio.Buffer#duplicate duplicate}
3866      */
3867     public void invokeCleaner(java.nio.ByteBuffer directBuffer) {
3868         if (!directBuffer.isDirect())
3869             throw new IllegalArgumentException("buffer is non-direct");
3870 
3871         DirectBuffer db = (DirectBuffer) directBuffer;
3872         if (db.attachment() != null)
3873             throw new IllegalArgumentException("duplicate or slice");
3874 
3875         Cleaner cleaner = db.cleaner();
3876         if (cleaner != null) {
3877             cleaner.clean();
3878         }
3879     }
3880 }