1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package com.sun.tools.javac.comp; 27 28 import java.util.*; 29 import java.util.function.BiConsumer; 30 import java.util.function.Consumer; 31 import java.util.stream.Stream; 32 33 import javax.lang.model.element.ElementKind; 34 import javax.tools.JavaFileObject; 35 36 import com.sun.source.tree.CaseTree; 37 import com.sun.source.tree.IdentifierTree; 38 import com.sun.source.tree.MemberReferenceTree.ReferenceMode; 39 import com.sun.source.tree.MemberSelectTree; 40 import com.sun.source.tree.TreeVisitor; 41 import com.sun.source.util.SimpleTreeVisitor; 42 import com.sun.tools.javac.code.*; 43 import com.sun.tools.javac.code.Lint.LintCategory; 44 import com.sun.tools.javac.code.Scope.WriteableScope; 45 import com.sun.tools.javac.code.Source.Feature; 46 import com.sun.tools.javac.code.Symbol.*; 47 import com.sun.tools.javac.code.Type.*; 48 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError; 49 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext; 50 import com.sun.tools.javac.comp.Check.CheckContext; 51 import com.sun.tools.javac.comp.DeferredAttr.AttrMode; 52 import com.sun.tools.javac.comp.MatchBindingsComputer.MatchBindings; 53 import com.sun.tools.javac.jvm.*; 54 55 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond; 56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg; 57 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs; 58 59 import com.sun.tools.javac.resources.CompilerProperties.Errors; 60 import com.sun.tools.javac.resources.CompilerProperties.Fragments; 61 import com.sun.tools.javac.resources.CompilerProperties.LintWarnings; 62 import com.sun.tools.javac.resources.CompilerProperties.Warnings; 63 import com.sun.tools.javac.tree.*; 64 import com.sun.tools.javac.tree.JCTree.*; 65 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*; 66 import com.sun.tools.javac.util.*; 67 import com.sun.tools.javac.util.DefinedBy.Api; 68 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition; 69 import com.sun.tools.javac.util.JCDiagnostic.Error; 70 import com.sun.tools.javac.util.JCDiagnostic.Fragment; 71 import com.sun.tools.javac.util.JCDiagnostic.Warning; 72 import com.sun.tools.javac.util.List; 73 74 import static com.sun.tools.javac.code.Flags.*; 75 import static com.sun.tools.javac.code.Flags.ANNOTATION; 76 import static com.sun.tools.javac.code.Flags.BLOCK; 77 import static com.sun.tools.javac.code.Kinds.*; 78 import static com.sun.tools.javac.code.Kinds.Kind.*; 79 import static com.sun.tools.javac.code.TypeTag.*; 80 import static com.sun.tools.javac.code.TypeTag.WILDCARD; 81 import static com.sun.tools.javac.tree.JCTree.Tag.*; 82 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag; 83 84 /** This is the main context-dependent analysis phase in GJC. It 85 * encompasses name resolution, type checking and constant folding as 86 * subtasks. Some subtasks involve auxiliary classes. 87 * @see Check 88 * @see Resolve 89 * @see ConstFold 90 * @see Infer 91 * 92 * <p><b>This is NOT part of any supported API. 93 * If you write code that depends on this, you do so at your own risk. 94 * This code and its internal interfaces are subject to change or 95 * deletion without notice.</b> 96 */ 97 public class Attr extends JCTree.Visitor { 98 protected static final Context.Key<Attr> attrKey = new Context.Key<>(); 99 100 final Names names; 101 final Log log; 102 final Symtab syms; 103 final Resolve rs; 104 final Operators operators; 105 final Infer infer; 106 final Analyzer analyzer; 107 final DeferredAttr deferredAttr; 108 final Check chk; 109 final Flow flow; 110 final MemberEnter memberEnter; 111 final TypeEnter typeEnter; 112 final TreeMaker make; 113 final ConstFold cfolder; 114 final Enter enter; 115 final Target target; 116 final Types types; 117 final Preview preview; 118 final JCDiagnostic.Factory diags; 119 final TypeAnnotations typeAnnotations; 120 final DeferredLintHandler deferredLintHandler; 121 final TypeEnvs typeEnvs; 122 final Dependencies dependencies; 123 final Annotate annotate; 124 final ArgumentAttr argumentAttr; 125 final MatchBindingsComputer matchBindingsComputer; 126 final AttrRecover attrRecover; 127 128 public static Attr instance(Context context) { 129 Attr instance = context.get(attrKey); 130 if (instance == null) 131 instance = new Attr(context); 132 return instance; 133 } 134 135 @SuppressWarnings("this-escape") 136 protected Attr(Context context) { 137 context.put(attrKey, this); 138 139 names = Names.instance(context); 140 log = Log.instance(context); 141 syms = Symtab.instance(context); 142 rs = Resolve.instance(context); 143 operators = Operators.instance(context); 144 chk = Check.instance(context); 145 flow = Flow.instance(context); 146 memberEnter = MemberEnter.instance(context); 147 typeEnter = TypeEnter.instance(context); 148 make = TreeMaker.instance(context); 149 enter = Enter.instance(context); 150 infer = Infer.instance(context); 151 analyzer = Analyzer.instance(context); 152 deferredAttr = DeferredAttr.instance(context); 153 cfolder = ConstFold.instance(context); 154 target = Target.instance(context); 155 types = Types.instance(context); 156 preview = Preview.instance(context); 157 diags = JCDiagnostic.Factory.instance(context); 158 annotate = Annotate.instance(context); 159 typeAnnotations = TypeAnnotations.instance(context); 160 deferredLintHandler = DeferredLintHandler.instance(context); 161 typeEnvs = TypeEnvs.instance(context); 162 dependencies = Dependencies.instance(context); 163 argumentAttr = ArgumentAttr.instance(context); 164 matchBindingsComputer = MatchBindingsComputer.instance(context); 165 attrRecover = AttrRecover.instance(context); 166 167 Options options = Options.instance(context); 168 169 Source source = Source.instance(context); 170 allowReifiableTypesInInstanceof = Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source); 171 allowRecords = Feature.RECORDS.allowedInSource(source); 172 allowPatternSwitch = (preview.isEnabled() || !preview.isPreview(Feature.PATTERN_SWITCH)) && 173 Feature.PATTERN_SWITCH.allowedInSource(source); 174 allowUnconditionalPatternsInstanceOf = 175 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.allowedInSource(source); 176 sourceName = source.name; 177 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning"); 178 179 statInfo = new ResultInfo(KindSelector.NIL, Type.noType); 180 varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType); 181 unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType); 182 methodAttrInfo = new MethodAttrInfo(); 183 unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType); 184 unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType); 185 recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext); 186 initBlockType = new MethodType(List.nil(), syms.voidType, List.nil(), syms.methodClass); 187 } 188 189 /** Switch: reifiable types in instanceof enabled? 190 */ 191 boolean allowReifiableTypesInInstanceof; 192 193 /** Are records allowed 194 */ 195 private final boolean allowRecords; 196 197 /** Are patterns in switch allowed 198 */ 199 private final boolean allowPatternSwitch; 200 201 /** Are unconditional patterns in instanceof allowed 202 */ 203 private final boolean allowUnconditionalPatternsInstanceOf; 204 205 /** 206 * Switch: warn about use of variable before declaration? 207 * RFE: 6425594 208 */ 209 boolean useBeforeDeclarationWarning; 210 211 /** 212 * Switch: name of source level; used for error reporting. 213 */ 214 String sourceName; 215 216 /** Check kind and type of given tree against protokind and prototype. 217 * If check succeeds, store type in tree and return it. 218 * If check fails, store errType in tree and return it. 219 * No checks are performed if the prototype is a method type. 220 * It is not necessary in this case since we know that kind and type 221 * are correct. 222 * 223 * @param tree The tree whose kind and type is checked 224 * @param found The computed type of the tree 225 * @param ownkind The computed kind of the tree 226 * @param resultInfo The expected result of the tree 227 */ 228 Type check(final JCTree tree, 229 final Type found, 230 final KindSelector ownkind, 231 final ResultInfo resultInfo) { 232 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 233 Type owntype; 234 boolean shouldCheck = !found.hasTag(ERROR) && 235 !resultInfo.pt.hasTag(METHOD) && 236 !resultInfo.pt.hasTag(FORALL); 237 if (shouldCheck && !ownkind.subset(resultInfo.pkind)) { 238 log.error(tree.pos(), 239 Errors.UnexpectedType(resultInfo.pkind.kindNames(), 240 ownkind.kindNames())); 241 owntype = types.createErrorType(found); 242 } else if (inferenceContext.free(found)) { 243 //delay the check if there are inference variables in the found type 244 //this means we are dealing with a partially inferred poly expression 245 owntype = shouldCheck ? resultInfo.pt : found; 246 if (resultInfo.checkMode.installPostInferenceHook()) { 247 inferenceContext.addFreeTypeListener(List.of(found), 248 instantiatedContext -> { 249 ResultInfo pendingResult = 250 resultInfo.dup(inferenceContext.asInstType(resultInfo.pt)); 251 check(tree, inferenceContext.asInstType(found), ownkind, pendingResult); 252 }); 253 } 254 } else { 255 owntype = shouldCheck ? 256 resultInfo.check(tree, found) : 257 found; 258 } 259 if (resultInfo.checkMode.updateTreeType()) { 260 tree.type = owntype; 261 } 262 return owntype; 263 } 264 265 /** Is given blank final variable assignable, i.e. in a scope where it 266 * may be assigned to even though it is final? 267 * @param v The blank final variable. 268 * @param env The current environment. 269 */ 270 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) { 271 Symbol owner = env.info.scope.owner; 272 // owner refers to the innermost variable, method or 273 // initializer block declaration at this point. 274 boolean isAssignable = 275 v.owner == owner 276 || 277 ((owner.name == names.init || // i.e. we are in a constructor 278 owner.kind == VAR || // i.e. we are in a variable initializer 279 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block 280 && 281 v.owner == owner.owner 282 && 283 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env)); 284 boolean insideCompactConstructor = env.enclMethod != null && TreeInfo.isCompactConstructor(env.enclMethod); 285 return isAssignable & !insideCompactConstructor; 286 } 287 288 /** Check that variable can be assigned to. 289 * @param pos The current source code position. 290 * @param v The assigned variable 291 * @param base If the variable is referred to in a Select, the part 292 * to the left of the `.', null otherwise. 293 * @param env The current environment. 294 */ 295 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) { 296 if (v.name == names._this) { 297 log.error(pos, Errors.CantAssignValToThis); 298 return; 299 } 300 if ((v.flags() & FINAL) != 0 && 301 ((v.flags() & HASINIT) != 0 302 || 303 !((base == null || 304 TreeInfo.isThisQualifier(base)) && 305 isAssignableAsBlankFinal(v, env)))) { 306 if (v.isResourceVariable()) { //TWR resource 307 log.error(pos, Errors.TryResourceMayNotBeAssigned(v)); 308 } else { 309 log.error(pos, Errors.CantAssignValToVar(Flags.toSource(v.flags() & (STATIC | FINAL)), v)); 310 } 311 return; 312 } 313 314 // Check instance field assignments that appear in constructor prologues 315 if (rs.isEarlyReference(env, base, v)) { 316 317 // Field may not be inherited from a superclass 318 if (v.owner != env.enclClass.sym) { 319 log.error(pos, Errors.CantRefBeforeCtorCalled(v)); 320 return; 321 } 322 323 // Field may not have an initializer 324 if ((v.flags() & HASINIT) != 0) { 325 log.error(pos, Errors.CantAssignInitializedBeforeCtorCalled(v)); 326 return; 327 } 328 } 329 } 330 331 /** Does tree represent a static reference to an identifier? 332 * It is assumed that tree is either a SELECT or an IDENT. 333 * We have to weed out selects from non-type names here. 334 * @param tree The candidate tree. 335 */ 336 boolean isStaticReference(JCTree tree) { 337 if (tree.hasTag(SELECT)) { 338 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected); 339 if (lsym == null || lsym.kind != TYP) { 340 return false; 341 } 342 } 343 return true; 344 } 345 346 /** Is this symbol a type? 347 */ 348 static boolean isType(Symbol sym) { 349 return sym != null && sym.kind == TYP; 350 } 351 352 /** Attribute a parsed identifier. 353 * @param tree Parsed identifier name 354 * @param topLevel The toplevel to use 355 */ 356 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) { 357 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel); 358 localEnv.enclClass = make.ClassDef(make.Modifiers(0), 359 syms.errSymbol.name, 360 null, null, null, null); 361 localEnv.enclClass.sym = syms.errSymbol; 362 return attribIdent(tree, localEnv); 363 } 364 365 /** Attribute a parsed identifier. 366 * @param tree Parsed identifier name 367 * @param env The env to use 368 */ 369 public Symbol attribIdent(JCTree tree, Env<AttrContext> env) { 370 return tree.accept(identAttributer, env); 371 } 372 // where 373 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer(); 374 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> { 375 @Override @DefinedBy(Api.COMPILER_TREE) 376 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) { 377 Symbol site = visit(node.getExpression(), env); 378 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN) 379 return site; 380 Name name = (Name)node.getIdentifier(); 381 if (site.kind == PCK) { 382 env.toplevel.packge = (PackageSymbol)site; 383 return rs.findIdentInPackage(null, env, (TypeSymbol)site, name, 384 KindSelector.TYP_PCK); 385 } else { 386 env.enclClass.sym = (ClassSymbol)site; 387 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site); 388 } 389 } 390 391 @Override @DefinedBy(Api.COMPILER_TREE) 392 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) { 393 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK); 394 } 395 } 396 397 public Type coerce(Type etype, Type ttype) { 398 return cfolder.coerce(etype, ttype); 399 } 400 401 public Type attribType(JCTree node, TypeSymbol sym) { 402 Env<AttrContext> env = typeEnvs.get(sym); 403 Env<AttrContext> localEnv = env.dup(node, env.info.dup()); 404 return attribTree(node, localEnv, unknownTypeInfo); 405 } 406 407 public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) { 408 // Attribute qualifying package or class. 409 JCFieldAccess s = tree.qualid; 410 return attribTree(s.selected, env, 411 new ResultInfo(tree.staticImport ? 412 KindSelector.TYP : KindSelector.TYP_PCK, 413 Type.noType)); 414 } 415 416 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) { 417 return attribToTree(expr, env, tree, unknownExprInfo); 418 } 419 420 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) { 421 return attribToTree(stmt, env, tree, statInfo); 422 } 423 424 private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) { 425 breakTree = tree; 426 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 427 try { 428 deferredAttr.attribSpeculative(root, env, resultInfo, 429 null, DeferredAttr.AttributionMode.ATTRIB_TO_TREE, 430 argumentAttr.withLocalCacheContext()); 431 attrRecover.doRecovery(); 432 } catch (BreakAttr b) { 433 return b.env; 434 } catch (AssertionError ae) { 435 if (ae.getCause() instanceof BreakAttr breakAttr) { 436 return breakAttr.env; 437 } else { 438 throw ae; 439 } 440 } finally { 441 breakTree = null; 442 log.useSource(prev); 443 } 444 return env; 445 } 446 447 private JCTree breakTree = null; 448 449 private static class BreakAttr extends RuntimeException { 450 static final long serialVersionUID = -6924771130405446405L; 451 private transient Env<AttrContext> env; 452 private BreakAttr(Env<AttrContext> env) { 453 this.env = env; 454 } 455 } 456 457 /** 458 * Mode controlling behavior of Attr.Check 459 */ 460 enum CheckMode { 461 462 NORMAL, 463 464 /** 465 * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is 466 * that the captured var cache in {@code InferenceContext} will be used in read-only 467 * mode when performing inference checks. 468 */ 469 NO_TREE_UPDATE { 470 @Override 471 public boolean updateTreeType() { 472 return false; 473 } 474 }, 475 /** 476 * Mode signalling that caller will manage free types in tree decorations. 477 */ 478 NO_INFERENCE_HOOK { 479 @Override 480 public boolean installPostInferenceHook() { 481 return false; 482 } 483 }; 484 485 public boolean updateTreeType() { 486 return true; 487 } 488 public boolean installPostInferenceHook() { 489 return true; 490 } 491 } 492 493 494 class ResultInfo { 495 final KindSelector pkind; 496 final Type pt; 497 final CheckContext checkContext; 498 final CheckMode checkMode; 499 500 ResultInfo(KindSelector pkind, Type pt) { 501 this(pkind, pt, chk.basicHandler, CheckMode.NORMAL); 502 } 503 504 ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) { 505 this(pkind, pt, chk.basicHandler, checkMode); 506 } 507 508 protected ResultInfo(KindSelector pkind, 509 Type pt, CheckContext checkContext) { 510 this(pkind, pt, checkContext, CheckMode.NORMAL); 511 } 512 513 protected ResultInfo(KindSelector pkind, 514 Type pt, CheckContext checkContext, CheckMode checkMode) { 515 this.pkind = pkind; 516 this.pt = pt; 517 this.checkContext = checkContext; 518 this.checkMode = checkMode; 519 } 520 521 /** 522 * Should {@link Attr#attribTree} use the {@code ArgumentAttr} visitor instead of this one? 523 * @param tree The tree to be type-checked. 524 * @return true if {@code ArgumentAttr} should be used. 525 */ 526 protected boolean needsArgumentAttr(JCTree tree) { return false; } 527 528 protected Type check(final DiagnosticPosition pos, final Type found) { 529 return chk.checkType(pos, found, pt, checkContext); 530 } 531 532 protected ResultInfo dup(Type newPt) { 533 return new ResultInfo(pkind, newPt, checkContext, checkMode); 534 } 535 536 protected ResultInfo dup(CheckContext newContext) { 537 return new ResultInfo(pkind, pt, newContext, checkMode); 538 } 539 540 protected ResultInfo dup(Type newPt, CheckContext newContext) { 541 return new ResultInfo(pkind, newPt, newContext, checkMode); 542 } 543 544 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 545 return new ResultInfo(pkind, newPt, newContext, newMode); 546 } 547 548 protected ResultInfo dup(CheckMode newMode) { 549 return new ResultInfo(pkind, pt, checkContext, newMode); 550 } 551 552 @Override 553 public String toString() { 554 if (pt != null) { 555 return pt.toString(); 556 } else { 557 return ""; 558 } 559 } 560 } 561 562 class MethodAttrInfo extends ResultInfo { 563 public MethodAttrInfo() { 564 this(chk.basicHandler); 565 } 566 567 public MethodAttrInfo(CheckContext checkContext) { 568 super(KindSelector.VAL, Infer.anyPoly, checkContext); 569 } 570 571 @Override 572 protected boolean needsArgumentAttr(JCTree tree) { 573 return true; 574 } 575 576 protected ResultInfo dup(Type newPt) { 577 throw new IllegalStateException(); 578 } 579 580 protected ResultInfo dup(CheckContext newContext) { 581 return new MethodAttrInfo(newContext); 582 } 583 584 protected ResultInfo dup(Type newPt, CheckContext newContext) { 585 throw new IllegalStateException(); 586 } 587 588 protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) { 589 throw new IllegalStateException(); 590 } 591 592 protected ResultInfo dup(CheckMode newMode) { 593 throw new IllegalStateException(); 594 } 595 } 596 597 class RecoveryInfo extends ResultInfo { 598 599 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) { 600 this(deferredAttrContext, Type.recoveryType); 601 } 602 603 public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) { 604 super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) { 605 @Override 606 public DeferredAttr.DeferredAttrContext deferredAttrContext() { 607 return deferredAttrContext; 608 } 609 @Override 610 public boolean compatible(Type found, Type req, Warner warn) { 611 return true; 612 } 613 @Override 614 public void report(DiagnosticPosition pos, JCDiagnostic details) { 615 boolean needsReport = pt == Type.recoveryType || 616 (details.getDiagnosticPosition() != null && 617 details.getDiagnosticPosition().getTree().hasTag(LAMBDA)); 618 if (needsReport) { 619 chk.basicHandler.report(pos, details); 620 } 621 } 622 }); 623 } 624 } 625 626 final ResultInfo statInfo; 627 final ResultInfo varAssignmentInfo; 628 final ResultInfo methodAttrInfo; 629 final ResultInfo unknownExprInfo; 630 final ResultInfo unknownTypeInfo; 631 final ResultInfo unknownTypeExprInfo; 632 final ResultInfo recoveryInfo; 633 final MethodType initBlockType; 634 635 Type pt() { 636 return resultInfo.pt; 637 } 638 639 KindSelector pkind() { 640 return resultInfo.pkind; 641 } 642 643 /* ************************************************************************ 644 * Visitor methods 645 *************************************************************************/ 646 647 /** Visitor argument: the current environment. 648 */ 649 Env<AttrContext> env; 650 651 /** Visitor argument: the currently expected attribution result. 652 */ 653 ResultInfo resultInfo; 654 655 /** Visitor result: the computed type. 656 */ 657 Type result; 658 659 MatchBindings matchBindings = MatchBindingsComputer.EMPTY; 660 661 /** Visitor method: attribute a tree, catching any completion failure 662 * exceptions. Return the tree's type. 663 * 664 * @param tree The tree to be visited. 665 * @param env The environment visitor argument. 666 * @param resultInfo The result info visitor argument. 667 */ 668 Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) { 669 Env<AttrContext> prevEnv = this.env; 670 ResultInfo prevResult = this.resultInfo; 671 try { 672 this.env = env; 673 this.resultInfo = resultInfo; 674 if (resultInfo.needsArgumentAttr(tree)) { 675 result = argumentAttr.attribArg(tree, env); 676 } else { 677 tree.accept(this); 678 } 679 matchBindings = matchBindingsComputer.finishBindings(tree, 680 matchBindings); 681 if (tree == breakTree && 682 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 683 breakTreeFound(copyEnv(env)); 684 } 685 return result; 686 } catch (CompletionFailure ex) { 687 tree.type = syms.errType; 688 return chk.completionError(tree.pos(), ex); 689 } finally { 690 this.env = prevEnv; 691 this.resultInfo = prevResult; 692 } 693 } 694 695 protected void breakTreeFound(Env<AttrContext> env) { 696 throw new BreakAttr(env); 697 } 698 699 Env<AttrContext> copyEnv(Env<AttrContext> env) { 700 Env<AttrContext> newEnv = 701 env.dup(env.tree, env.info.dup(copyScope(env.info.scope))); 702 if (newEnv.outer != null) { 703 newEnv.outer = copyEnv(newEnv.outer); 704 } 705 return newEnv; 706 } 707 708 WriteableScope copyScope(WriteableScope sc) { 709 WriteableScope newScope = WriteableScope.create(sc.owner); 710 List<Symbol> elemsList = List.nil(); 711 for (Symbol sym : sc.getSymbols()) { 712 elemsList = elemsList.prepend(sym); 713 } 714 for (Symbol s : elemsList) { 715 newScope.enter(s); 716 } 717 return newScope; 718 } 719 720 /** Derived visitor method: attribute an expression tree. 721 */ 722 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) { 723 return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType)); 724 } 725 726 /** Derived visitor method: attribute an expression tree with 727 * no constraints on the computed type. 728 */ 729 public Type attribExpr(JCTree tree, Env<AttrContext> env) { 730 return attribTree(tree, env, unknownExprInfo); 731 } 732 733 /** Derived visitor method: attribute a type tree. 734 */ 735 public Type attribType(JCTree tree, Env<AttrContext> env) { 736 Type result = attribType(tree, env, Type.noType); 737 return result; 738 } 739 740 /** Derived visitor method: attribute a type tree. 741 */ 742 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) { 743 Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt)); 744 return result; 745 } 746 747 /** Derived visitor method: attribute a statement or definition tree. 748 */ 749 public Type attribStat(JCTree tree, Env<AttrContext> env) { 750 Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env); 751 Type result = attribTree(tree, env, statInfo); 752 analyzer.analyzeIfNeeded(tree, analyzeEnv); 753 attrRecover.doRecovery(); 754 return result; 755 } 756 757 /** Attribute a list of expressions, returning a list of types. 758 */ 759 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) { 760 ListBuffer<Type> ts = new ListBuffer<>(); 761 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 762 ts.append(attribExpr(l.head, env, pt)); 763 return ts.toList(); 764 } 765 766 /** Attribute a list of statements, returning nothing. 767 */ 768 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) { 769 for (List<T> l = trees; l.nonEmpty(); l = l.tail) 770 attribStat(l.head, env); 771 } 772 773 /** Attribute the arguments in a method call, returning the method kind. 774 */ 775 KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) { 776 KindSelector kind = initialKind; 777 for (JCExpression arg : trees) { 778 Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, methodAttrInfo)); 779 if (argtype.hasTag(DEFERRED)) { 780 kind = KindSelector.of(KindSelector.POLY, kind); 781 } 782 argtypes.append(argtype); 783 } 784 return kind; 785 } 786 787 /** Attribute a type argument list, returning a list of types. 788 * Caller is responsible for calling checkRefTypes. 789 */ 790 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) { 791 ListBuffer<Type> argtypes = new ListBuffer<>(); 792 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) 793 argtypes.append(attribType(l.head, env)); 794 return argtypes.toList(); 795 } 796 797 /** Attribute a type argument list, returning a list of types. 798 * Check that all the types are references. 799 */ 800 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) { 801 List<Type> types = attribAnyTypes(trees, env); 802 return chk.checkRefTypes(trees, types); 803 } 804 805 /** 806 * Attribute type variables (of generic classes or methods). 807 * Compound types are attributed later in attribBounds. 808 * @param typarams the type variables to enter 809 * @param env the current environment 810 */ 811 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) { 812 for (JCTypeParameter tvar : typarams) { 813 TypeVar a = (TypeVar)tvar.type; 814 a.tsym.flags_field |= UNATTRIBUTED; 815 a.setUpperBound(Type.noType); 816 if (!tvar.bounds.isEmpty()) { 817 List<Type> bounds = List.of(attribType(tvar.bounds.head, env)); 818 for (JCExpression bound : tvar.bounds.tail) 819 bounds = bounds.prepend(attribType(bound, env)); 820 types.setBounds(a, bounds.reverse()); 821 } else { 822 // if no bounds are given, assume a single bound of 823 // java.lang.Object. 824 types.setBounds(a, List.of(syms.objectType)); 825 } 826 a.tsym.flags_field &= ~UNATTRIBUTED; 827 } 828 if (checkCyclic) { 829 for (JCTypeParameter tvar : typarams) { 830 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type); 831 } 832 } 833 } 834 835 /** 836 * Attribute the type references in a list of annotations. 837 */ 838 void attribAnnotationTypes(List<JCAnnotation> annotations, 839 Env<AttrContext> env) { 840 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) { 841 JCAnnotation a = al.head; 842 attribType(a.annotationType, env); 843 } 844 } 845 846 /** 847 * Attribute a "lazy constant value". 848 * @param env The env for the const value 849 * @param variable The initializer for the const value 850 * @param type The expected type, or null 851 * @see VarSymbol#setLazyConstValue 852 */ 853 public Object attribLazyConstantValue(Env<AttrContext> env, 854 Env<AttrContext> enclosingEnv, 855 JCVariableDecl variable, 856 Type type) { 857 deferredLintHandler.push(variable); 858 final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile); 859 try { 860 doQueueScanTreeAndTypeAnnotateForVarInit(variable, enclosingEnv); 861 Type itype = attribExpr(variable.init, env, type); 862 if (variable.isImplicitlyTyped()) { 863 //fixup local variable type 864 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype, variable.name); 865 } 866 if (itype.constValue() != null) { 867 return coerce(itype, type).constValue(); 868 } else { 869 return null; 870 } 871 } finally { 872 log.useSource(prevSource); 873 deferredLintHandler.pop(); 874 } 875 } 876 877 /** Attribute type reference in an `extends', `implements', or 'permits' clause. 878 * Supertypes of anonymous inner classes are usually already attributed. 879 * 880 * @param tree The tree making up the type reference. 881 * @param env The environment current at the reference. 882 * @param classExpected true if only a class is expected here. 883 * @param interfaceExpected true if only an interface is expected here. 884 */ 885 Type attribBase(JCTree tree, 886 Env<AttrContext> env, 887 boolean classExpected, 888 boolean interfaceExpected, 889 boolean checkExtensible) { 890 Type t = tree.type != null ? 891 tree.type : 892 attribType(tree, env); 893 try { 894 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible); 895 } catch (CompletionFailure ex) { 896 chk.completionError(tree.pos(), ex); 897 return t; 898 } 899 } 900 Type checkBase(Type t, 901 JCTree tree, 902 Env<AttrContext> env, 903 boolean classExpected, 904 boolean interfaceExpected, 905 boolean checkExtensible) { 906 final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ? 907 (((JCTypeApply) tree).clazz).pos() : tree.pos(); 908 if (t.tsym.isAnonymous()) { 909 log.error(pos, Errors.CantInheritFromAnon); 910 return types.createErrorType(t); 911 } 912 if (t.isErroneous()) 913 return t; 914 if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) { 915 // check that type variable is already visible 916 if (t.getUpperBound() == null) { 917 log.error(pos, Errors.IllegalForwardRef); 918 return types.createErrorType(t); 919 } 920 } else { 921 t = chk.checkClassType(pos, t, checkExtensible); 922 } 923 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) { 924 log.error(pos, Errors.IntfExpectedHere); 925 // return errType is necessary since otherwise there might 926 // be undetected cycles which cause attribution to loop 927 return types.createErrorType(t); 928 } else if (checkExtensible && 929 classExpected && 930 (t.tsym.flags() & INTERFACE) != 0) { 931 log.error(pos, Errors.NoIntfExpectedHere); 932 return types.createErrorType(t); 933 } 934 if (checkExtensible && 935 ((t.tsym.flags() & FINAL) != 0)) { 936 log.error(pos, 937 Errors.CantInheritFromFinal(t.tsym)); 938 } 939 chk.checkNonCyclic(pos, t); 940 return t; 941 } 942 943 Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) { 944 Assert.check((env.enclClass.sym.flags() & ENUM) != 0); 945 id.type = env.info.scope.owner.enclClass().type; 946 id.sym = env.info.scope.owner.enclClass(); 947 return id.type; 948 } 949 950 public void visitClassDef(JCClassDecl tree) { 951 Optional<ArgumentAttr.LocalCacheContext> localCacheContext = 952 Optional.ofNullable(env.info.attributionMode.isSpeculative ? 953 argumentAttr.withLocalCacheContext() : null); 954 boolean ctorProloguePrev = env.info.ctorPrologue; 955 try { 956 // Local and anonymous classes have not been entered yet, so we need to 957 // do it now. 958 if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) { 959 enter.classEnter(tree, env); 960 } else { 961 // If this class declaration is part of a class level annotation, 962 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in 963 // order to simplify later steps and allow for sensible error 964 // messages. 965 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree)) 966 enter.classEnter(tree, env); 967 } 968 969 ClassSymbol c = tree.sym; 970 if (c == null) { 971 // exit in case something drastic went wrong during enter. 972 result = null; 973 } else { 974 // make sure class has been completed: 975 c.complete(); 976 977 // If a class declaration appears in a constructor prologue, 978 // that means it's either a local class or an anonymous class. 979 // Either way, there is no immediately enclosing instance. 980 if (ctorProloguePrev) { 981 c.flags_field |= NOOUTERTHIS; 982 } 983 attribClass(tree.pos(), c); 984 result = tree.type = c.type; 985 } 986 } finally { 987 localCacheContext.ifPresent(LocalCacheContext::leave); 988 env.info.ctorPrologue = ctorProloguePrev; 989 } 990 } 991 992 public void visitMethodDef(JCMethodDecl tree) { 993 MethodSymbol m = tree.sym; 994 boolean isDefaultMethod = (m.flags() & DEFAULT) != 0; 995 996 Lint lint = env.info.lint.augment(m); 997 Lint prevLint = chk.setLint(lint); 998 boolean ctorProloguePrev = env.info.ctorPrologue; 999 Assert.check(!env.info.ctorPrologue); 1000 MethodSymbol prevMethod = chk.setMethod(m); 1001 try { 1002 deferredLintHandler.flush(tree, lint); 1003 chk.checkDeprecatedAnnotation(tree.pos(), m); 1004 1005 1006 // Create a new environment with local scope 1007 // for attributing the method. 1008 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env); 1009 localEnv.info.lint = lint; 1010 1011 attribStats(tree.typarams, localEnv); 1012 1013 // If we override any other methods, check that we do so properly. 1014 // JLS ??? 1015 if (m.isStatic()) { 1016 chk.checkHideClashes(tree.pos(), env.enclClass.type, m); 1017 } else { 1018 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m); 1019 } 1020 chk.checkOverride(env, tree, m); 1021 1022 if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) { 1023 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location())); 1024 } 1025 1026 // Enter all type parameters into the local method scope. 1027 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail) 1028 localEnv.info.scope.enterIfAbsent(l.head.type.tsym); 1029 1030 ClassSymbol owner = env.enclClass.sym; 1031 if ((owner.flags() & ANNOTATION) != 0 && 1032 (tree.params.nonEmpty() || 1033 tree.recvparam != null)) 1034 log.error(tree.params.nonEmpty() ? 1035 tree.params.head.pos() : 1036 tree.recvparam.pos(), 1037 Errors.IntfAnnotationMembersCantHaveParams); 1038 1039 // Attribute all value parameters. 1040 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) { 1041 attribStat(l.head, localEnv); 1042 } 1043 1044 chk.checkVarargsMethodDecl(localEnv, tree); 1045 1046 // Check that type parameters are well-formed. 1047 chk.validate(tree.typarams, localEnv); 1048 1049 // Check that result type is well-formed. 1050 if (tree.restype != null && !tree.restype.type.hasTag(VOID)) 1051 chk.validate(tree.restype, localEnv); 1052 1053 // Check that receiver type is well-formed. 1054 if (tree.recvparam != null) { 1055 // Use a new environment to check the receiver parameter. 1056 // Otherwise I get "might not have been initialized" errors. 1057 // Is there a better way? 1058 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env); 1059 attribType(tree.recvparam, newEnv); 1060 chk.validate(tree.recvparam, newEnv); 1061 } 1062 1063 // Is this method a constructor? 1064 boolean isConstructor = TreeInfo.isConstructor(tree); 1065 1066 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) { 1067 // lets find if this method is an accessor 1068 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream() 1069 .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst(); 1070 if (recordComponent.isPresent()) { 1071 // the method is a user defined accessor lets check that everything is fine 1072 if (!tree.sym.isPublic()) { 1073 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic)); 1074 } 1075 if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) { 1076 log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, 1077 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get()))); 1078 } 1079 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1080 log.error(tree, 1081 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException)); 1082 } 1083 if (!tree.typarams.isEmpty()) { 1084 log.error(tree, 1085 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric)); 1086 } 1087 if (tree.sym.isStatic()) { 1088 log.error(tree, 1089 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic)); 1090 } 1091 } 1092 1093 if (isConstructor) { 1094 // if this a constructor other than the canonical one 1095 if ((tree.sym.flags_field & RECORD) == 0) { 1096 if (!TreeInfo.hasConstructorCall(tree, names._this)) { 1097 log.error(tree, Errors.NonCanonicalConstructorInvokeAnotherConstructor(env.enclClass.sym)); 1098 } 1099 } else { 1100 // but if it is the canonical: 1101 1102 /* if user generated, then it shouldn't: 1103 * - have an accessibility stricter than that of the record type 1104 * - explicitly invoke any other constructor 1105 */ 1106 if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) { 1107 if (Check.protection(m.flags()) > Check.protection(env.enclClass.sym.flags())) { 1108 log.error(tree, 1109 (env.enclClass.sym.flags() & AccessFlags) == 0 ? 1110 Errors.InvalidCanonicalConstructorInRecord( 1111 Fragments.Canonical, 1112 env.enclClass.sym.name, 1113 Fragments.CanonicalMustNotHaveStrongerAccess("package") 1114 ) : 1115 Errors.InvalidCanonicalConstructorInRecord( 1116 Fragments.Canonical, 1117 env.enclClass.sym.name, 1118 Fragments.CanonicalMustNotHaveStrongerAccess(asFlagSet(env.enclClass.sym.flags() & AccessFlags)) 1119 ) 1120 ); 1121 } 1122 1123 if (TreeInfo.hasAnyConstructorCall(tree)) { 1124 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1125 Fragments.Canonical, env.enclClass.sym.name, 1126 Fragments.CanonicalMustNotContainExplicitConstructorInvocation)); 1127 } 1128 } 1129 1130 // also we want to check that no type variables have been defined 1131 if (!tree.typarams.isEmpty()) { 1132 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1133 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalMustNotDeclareTypeVariables)); 1134 } 1135 1136 /* and now we need to check that the constructor's arguments are exactly the same as those of the 1137 * record components 1138 */ 1139 List<? extends RecordComponent> recordComponents = env.enclClass.sym.getRecordComponents(); 1140 List<Type> recordFieldTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type); 1141 for (JCVariableDecl param: tree.params) { 1142 boolean paramIsVarArgs = (param.sym.flags_field & VARARGS) != 0; 1143 if (!types.isSameType(param.type, recordFieldTypes.head) || 1144 (recordComponents.head.isVarargs() != paramIsVarArgs)) { 1145 log.error(param, Errors.InvalidCanonicalConstructorInRecord( 1146 Fragments.Canonical, env.enclClass.sym.name, 1147 Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType)); 1148 } 1149 recordComponents = recordComponents.tail; 1150 recordFieldTypes = recordFieldTypes.tail; 1151 } 1152 } 1153 } 1154 } 1155 1156 // annotation method checks 1157 if ((owner.flags() & ANNOTATION) != 0) { 1158 // annotation method cannot have throws clause 1159 if (tree.thrown.nonEmpty()) { 1160 log.error(tree.thrown.head.pos(), 1161 Errors.ThrowsNotAllowedInIntfAnnotation); 1162 } 1163 // annotation method cannot declare type-parameters 1164 if (tree.typarams.nonEmpty()) { 1165 log.error(tree.typarams.head.pos(), 1166 Errors.IntfAnnotationMembersCantHaveTypeParams); 1167 } 1168 // validate annotation method's return type (could be an annotation type) 1169 chk.validateAnnotationType(tree.restype); 1170 // ensure that annotation method does not clash with members of Object/Annotation 1171 chk.validateAnnotationMethod(tree.pos(), m); 1172 } 1173 1174 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail) 1175 chk.checkType(l.head.pos(), l.head.type, syms.throwableType); 1176 1177 if (tree.body == null) { 1178 // Empty bodies are only allowed for 1179 // abstract, native, or interface methods, or for methods 1180 // in a retrofit signature class. 1181 if (tree.defaultValue != null) { 1182 if ((owner.flags() & ANNOTATION) == 0) 1183 log.error(tree.pos(), 1184 Errors.DefaultAllowedInIntfAnnotationMember); 1185 } 1186 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0) 1187 log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract); 1188 } else { 1189 if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) { 1190 if ((owner.flags() & INTERFACE) != 0) { 1191 log.error(tree.body.pos(), Errors.IntfMethCantHaveBody); 1192 } else { 1193 log.error(tree.pos(), Errors.AbstractMethCantHaveBody); 1194 } 1195 } else if ((tree.mods.flags & NATIVE) != 0) { 1196 log.error(tree.pos(), Errors.NativeMethCantHaveBody); 1197 } 1198 // Add an implicit super() call unless an explicit call to 1199 // super(...) or this(...) is given 1200 // or we are compiling class java.lang.Object. 1201 if (isConstructor && owner.type != syms.objectType) { 1202 if (!TreeInfo.hasAnyConstructorCall(tree)) { 1203 JCStatement supCall = make.at(tree.body.pos).Exec(make.Apply(List.nil(), 1204 make.Ident(names._super), make.Idents(List.nil()))); 1205 if (owner.isValueClass() || owner.hasStrict()) { 1206 tree.body.stats = tree.body.stats.append(supCall); 1207 } else { 1208 tree.body.stats = tree.body.stats.prepend(supCall); 1209 } 1210 } else if ((env.enclClass.sym.flags() & ENUM) != 0 && 1211 (tree.mods.flags & GENERATEDCONSTR) == 0 && 1212 TreeInfo.hasConstructorCall(tree, names._super)) { 1213 // enum constructors are not allowed to call super 1214 // directly, so make sure there aren't any super calls 1215 // in enum constructors, except in the compiler 1216 // generated one. 1217 log.error(tree.body.stats.head.pos(), 1218 Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym)); 1219 } 1220 if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor 1221 List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name); 1222 List<Name> initParamNames = tree.sym.params.map(p -> p.name); 1223 if (!initParamNames.equals(recordComponentNames)) { 1224 log.error(tree, Errors.InvalidCanonicalConstructorInRecord( 1225 Fragments.Canonical, env.enclClass.sym.name, Fragments.CanonicalWithNameMismatch)); 1226 } 1227 if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) { 1228 log.error(tree, 1229 Errors.InvalidCanonicalConstructorInRecord( 1230 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical, 1231 env.enclClass.sym.name, 1232 Fragments.ThrowsClauseNotAllowedForCanonicalConstructor( 1233 TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical))); 1234 } 1235 } 1236 } 1237 1238 // Attribute all type annotations in the body 1239 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null); 1240 annotate.flush(); 1241 1242 // Start of constructor prologue 1243 localEnv.info.ctorPrologue = isConstructor; 1244 1245 // Attribute method body. 1246 attribStat(tree.body, localEnv); 1247 } 1248 1249 localEnv.info.scope.leave(); 1250 result = tree.type = m.type; 1251 } finally { 1252 chk.setLint(prevLint); 1253 chk.setMethod(prevMethod); 1254 env.info.ctorPrologue = ctorProloguePrev; 1255 } 1256 } 1257 1258 public void visitVarDef(JCVariableDecl tree) { 1259 // Local variables have not been entered yet, so we need to do it now: 1260 if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) { 1261 if (tree.sym != null) { 1262 // parameters have already been entered 1263 env.info.scope.enter(tree.sym); 1264 } else { 1265 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) { 1266 if (tree.init == null) { 1267 //cannot use 'var' without initializer 1268 log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit)); 1269 tree.vartype = make.Erroneous(); 1270 } else { 1271 Fragment msg = canInferLocalVarType(tree); 1272 if (msg != null) { 1273 //cannot use 'var' with initializer which require an explicit target 1274 //(e.g. lambda, method reference, array initializer). 1275 log.error(tree, Errors.CantInferLocalVarType(tree.name, msg)); 1276 tree.vartype = make.Erroneous(); 1277 } 1278 } 1279 } 1280 try { 1281 annotate.blockAnnotations(); 1282 memberEnter.memberEnter(tree, env); 1283 } finally { 1284 annotate.unblockAnnotations(); 1285 } 1286 } 1287 } else { 1288 doQueueScanTreeAndTypeAnnotateForVarInit(tree, env); 1289 } 1290 1291 VarSymbol v = tree.sym; 1292 Lint lint = env.info.lint.augment(v); 1293 Lint prevLint = chk.setLint(lint); 1294 1295 // Check that the variable's declared type is well-formed. 1296 boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) && 1297 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT && 1298 (tree.sym.flags() & PARAMETER) != 0; 1299 chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped()); 1300 1301 try { 1302 v.getConstValue(); // ensure compile-time constant initializer is evaluated 1303 deferredLintHandler.flush(tree, lint); 1304 chk.checkDeprecatedAnnotation(tree.pos(), v); 1305 1306 if (tree.init != null) { 1307 if ((v.flags_field & FINAL) == 0 || 1308 !memberEnter.needsLazyConstValue(tree.init)) { 1309 // Not a compile-time constant 1310 // Attribute initializer in a new environment 1311 // with the declared variable as owner. 1312 // Check that initializer conforms to variable's declared type. 1313 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env); 1314 initEnv.info.lint = lint; 1315 // In order to catch self-references, we set the variable's 1316 // declaration position to maximal possible value, effectively 1317 // marking the variable as undefined. 1318 initEnv.info.enclVar = v; 1319 boolean previousCtorPrologue = initEnv.info.ctorPrologue; 1320 try { 1321 if (v.owner.kind == TYP && !v.isStatic() && v.isStrict()) { 1322 // strict instance initializer in a value class 1323 initEnv.info.ctorPrologue = true; 1324 } 1325 attribExpr(tree.init, initEnv, v.type); 1326 if (tree.isImplicitlyTyped()) { 1327 //fixup local variable type 1328 v.type = chk.checkLocalVarType(tree, tree.init.type, tree.name); 1329 } 1330 } finally { 1331 initEnv.info.ctorPrologue = previousCtorPrologue; 1332 } 1333 } 1334 if (tree.isImplicitlyTyped()) { 1335 setSyntheticVariableType(tree, v.type); 1336 } 1337 } 1338 result = tree.type = v.type; 1339 if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) { 1340 if (isNonArgsMethodInObject(v.name)) { 1341 log.error(tree, Errors.IllegalRecordComponentName(v)); 1342 } 1343 } 1344 } 1345 finally { 1346 chk.setLint(prevLint); 1347 } 1348 } 1349 1350 private void doQueueScanTreeAndTypeAnnotateForVarInit(JCVariableDecl tree, Env<AttrContext> env) { 1351 if (tree.init != null && 1352 (tree.mods.flags & Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED) == 0 && 1353 env.info.scope.owner.kind != MTH && env.info.scope.owner.kind != VAR) { 1354 tree.mods.flags |= Flags.FIELD_INIT_TYPE_ANNOTATIONS_QUEUED; 1355 // Field initializer expression need to be entered. 1356 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree); 1357 annotate.flush(); 1358 } 1359 } 1360 1361 private boolean isNonArgsMethodInObject(Name name) { 1362 for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) { 1363 if (s.type.getParameterTypes().isEmpty()) { 1364 return true; 1365 } 1366 } 1367 return false; 1368 } 1369 1370 Fragment canInferLocalVarType(JCVariableDecl tree) { 1371 LocalInitScanner lis = new LocalInitScanner(); 1372 lis.scan(tree.init); 1373 return lis.badInferenceMsg; 1374 } 1375 1376 static class LocalInitScanner extends TreeScanner { 1377 Fragment badInferenceMsg = null; 1378 boolean needsTarget = true; 1379 1380 @Override 1381 public void visitNewArray(JCNewArray tree) { 1382 if (tree.elemtype == null && needsTarget) { 1383 badInferenceMsg = Fragments.LocalArrayMissingTarget; 1384 } 1385 } 1386 1387 @Override 1388 public void visitLambda(JCLambda tree) { 1389 if (needsTarget) { 1390 badInferenceMsg = Fragments.LocalLambdaMissingTarget; 1391 } 1392 } 1393 1394 @Override 1395 public void visitTypeCast(JCTypeCast tree) { 1396 boolean prevNeedsTarget = needsTarget; 1397 try { 1398 needsTarget = false; 1399 super.visitTypeCast(tree); 1400 } finally { 1401 needsTarget = prevNeedsTarget; 1402 } 1403 } 1404 1405 @Override 1406 public void visitReference(JCMemberReference tree) { 1407 if (needsTarget) { 1408 badInferenceMsg = Fragments.LocalMrefMissingTarget; 1409 } 1410 } 1411 1412 @Override 1413 public void visitNewClass(JCNewClass tree) { 1414 boolean prevNeedsTarget = needsTarget; 1415 try { 1416 needsTarget = false; 1417 super.visitNewClass(tree); 1418 } finally { 1419 needsTarget = prevNeedsTarget; 1420 } 1421 } 1422 1423 @Override 1424 public void visitApply(JCMethodInvocation tree) { 1425 boolean prevNeedsTarget = needsTarget; 1426 try { 1427 needsTarget = false; 1428 super.visitApply(tree); 1429 } finally { 1430 needsTarget = prevNeedsTarget; 1431 } 1432 } 1433 } 1434 1435 public void visitSkip(JCSkip tree) { 1436 result = null; 1437 } 1438 1439 public void visitBlock(JCBlock tree) { 1440 if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) { 1441 // Block is a static or instance initializer; 1442 // let the owner of the environment be a freshly 1443 // created BLOCK-method. 1444 Symbol fakeOwner = 1445 new MethodSymbol(tree.flags | BLOCK | 1446 env.info.scope.owner.flags() & STRICTFP, names.empty, initBlockType, 1447 env.info.scope.owner); 1448 final Env<AttrContext> localEnv = 1449 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner))); 1450 1451 if ((tree.flags & STATIC) != 0) { 1452 localEnv.info.staticLevel++; 1453 } else { 1454 localEnv.info.instanceInitializerBlock = true; 1455 } 1456 // Attribute all type annotations in the block 1457 annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null); 1458 annotate.flush(); 1459 attribStats(tree.stats, localEnv); 1460 1461 { 1462 // Store init and clinit type annotations with the ClassSymbol 1463 // to allow output in Gen.normalizeDefs. 1464 ClassSymbol cs = (ClassSymbol)env.info.scope.owner; 1465 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes(); 1466 if ((tree.flags & STATIC) != 0) { 1467 cs.appendClassInitTypeAttributes(tas); 1468 } else { 1469 cs.appendInitTypeAttributes(tas); 1470 } 1471 } 1472 } else { 1473 // Create a new local environment with a local scope. 1474 Env<AttrContext> localEnv = 1475 env.dup(tree, env.info.dup(env.info.scope.dup())); 1476 try { 1477 attribStats(tree.stats, localEnv); 1478 } finally { 1479 localEnv.info.scope.leave(); 1480 } 1481 } 1482 result = null; 1483 } 1484 1485 public void visitDoLoop(JCDoWhileLoop tree) { 1486 attribStat(tree.body, env.dup(tree)); 1487 attribExpr(tree.cond, env, syms.booleanType); 1488 handleLoopConditionBindings(matchBindings, tree, tree.body); 1489 result = null; 1490 } 1491 1492 public void visitWhileLoop(JCWhileLoop tree) { 1493 attribExpr(tree.cond, env, syms.booleanType); 1494 MatchBindings condBindings = matchBindings; 1495 // include condition's bindings when true in the body: 1496 Env<AttrContext> whileEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 1497 try { 1498 attribStat(tree.body, whileEnv.dup(tree)); 1499 } finally { 1500 whileEnv.info.scope.leave(); 1501 } 1502 handleLoopConditionBindings(condBindings, tree, tree.body); 1503 result = null; 1504 } 1505 1506 public void visitForLoop(JCForLoop tree) { 1507 Env<AttrContext> loopEnv = 1508 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1509 MatchBindings condBindings = MatchBindingsComputer.EMPTY; 1510 try { 1511 attribStats(tree.init, loopEnv); 1512 if (tree.cond != null) { 1513 attribExpr(tree.cond, loopEnv, syms.booleanType); 1514 // include condition's bindings when true in the body and step: 1515 condBindings = matchBindings; 1516 } 1517 Env<AttrContext> bodyEnv = bindingEnv(loopEnv, condBindings.bindingsWhenTrue); 1518 try { 1519 bodyEnv.tree = tree; // before, we were not in loop! 1520 attribStats(tree.step, bodyEnv); 1521 attribStat(tree.body, bodyEnv); 1522 } finally { 1523 bodyEnv.info.scope.leave(); 1524 } 1525 result = null; 1526 } 1527 finally { 1528 loopEnv.info.scope.leave(); 1529 } 1530 handleLoopConditionBindings(condBindings, tree, tree.body); 1531 } 1532 1533 /** 1534 * Include condition's bindings when false after the loop, if cannot get out of the loop 1535 */ 1536 private void handleLoopConditionBindings(MatchBindings condBindings, 1537 JCStatement loop, 1538 JCStatement loopBody) { 1539 if (condBindings.bindingsWhenFalse.nonEmpty() && 1540 !breaksTo(env, loop, loopBody)) { 1541 addBindings2Scope(loop, condBindings.bindingsWhenFalse); 1542 } 1543 } 1544 1545 private boolean breaksTo(Env<AttrContext> env, JCTree loop, JCTree body) { 1546 preFlow(body); 1547 return flow.breaksToTree(env, loop, body, make); 1548 } 1549 1550 /** 1551 * Add given bindings to the current scope, unless there's a break to 1552 * an immediately enclosing labeled statement. 1553 */ 1554 private void addBindings2Scope(JCStatement introducingStatement, 1555 List<BindingSymbol> bindings) { 1556 if (bindings.isEmpty()) { 1557 return ; 1558 } 1559 1560 var searchEnv = env; 1561 while (searchEnv.tree instanceof JCLabeledStatement labeled && 1562 labeled.body == introducingStatement) { 1563 if (breaksTo(env, labeled, labeled.body)) { 1564 //breaking to an immediately enclosing labeled statement 1565 return ; 1566 } 1567 searchEnv = searchEnv.next; 1568 introducingStatement = labeled; 1569 } 1570 1571 //include condition's body when false after the while, if cannot get out of the loop 1572 bindings.forEach(env.info.scope::enter); 1573 bindings.forEach(BindingSymbol::preserveBinding); 1574 } 1575 1576 public void visitForeachLoop(JCEnhancedForLoop tree) { 1577 Env<AttrContext> loopEnv = 1578 env.dup(env.tree, env.info.dup(env.info.scope.dup())); 1579 try { 1580 //the Formal Parameter of a for-each loop is not in the scope when 1581 //attributing the for-each expression; we mimic this by attributing 1582 //the for-each expression first (against original scope). 1583 Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv)); 1584 chk.checkNonVoid(tree.pos(), exprType); 1585 Type elemtype = types.elemtype(exprType); // perhaps expr is an array? 1586 if (elemtype == null) { 1587 // or perhaps expr implements Iterable<T>? 1588 Type base = types.asSuper(exprType, syms.iterableType.tsym); 1589 if (base == null) { 1590 log.error(tree.expr.pos(), 1591 Errors.ForeachNotApplicableToType(exprType, 1592 Fragments.TypeReqArrayOrIterable)); 1593 elemtype = types.createErrorType(exprType); 1594 } else { 1595 List<Type> iterableParams = base.allparams(); 1596 elemtype = iterableParams.isEmpty() 1597 ? syms.objectType 1598 : types.wildUpperBound(iterableParams.head); 1599 1600 // Check the return type of the method iterator(). 1601 // This is the bare minimum we need to verify to make sure code generation doesn't crash. 1602 Symbol iterSymbol = rs.resolveInternalMethod(tree.pos(), 1603 loopEnv, types.skipTypeVars(exprType, false), names.iterator, List.nil(), List.nil()); 1604 if (types.asSuper(iterSymbol.type.getReturnType(), syms.iteratorType.tsym) == null) { 1605 log.error(tree.pos(), 1606 Errors.ForeachNotApplicableToType(exprType, Fragments.TypeReqArrayOrIterable)); 1607 } 1608 } 1609 } 1610 if (tree.var.isImplicitlyTyped()) { 1611 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name); 1612 setSyntheticVariableType(tree.var, inferredType); 1613 } 1614 attribStat(tree.var, loopEnv); 1615 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type); 1616 loopEnv.tree = tree; // before, we were not in loop! 1617 attribStat(tree.body, loopEnv); 1618 result = null; 1619 } 1620 finally { 1621 loopEnv.info.scope.leave(); 1622 } 1623 } 1624 1625 public void visitLabelled(JCLabeledStatement tree) { 1626 // Check that label is not used in an enclosing statement 1627 Env<AttrContext> env1 = env; 1628 while (env1 != null && !env1.tree.hasTag(CLASSDEF)) { 1629 if (env1.tree.hasTag(LABELLED) && 1630 ((JCLabeledStatement) env1.tree).label == tree.label) { 1631 log.error(tree.pos(), 1632 Errors.LabelAlreadyInUse(tree.label)); 1633 break; 1634 } 1635 env1 = env1.next; 1636 } 1637 1638 attribStat(tree.body, env.dup(tree)); 1639 result = null; 1640 } 1641 1642 public void visitSwitch(JCSwitch tree) { 1643 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1644 attribStats(c.stats, caseEnv); 1645 }); 1646 result = null; 1647 } 1648 1649 public void visitSwitchExpression(JCSwitchExpression tree) { 1650 boolean wrongContext = false; 1651 1652 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ? 1653 PolyKind.STANDALONE : PolyKind.POLY; 1654 1655 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 1656 //this means we are returning a poly conditional from void-compatible lambda expression 1657 resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid)); 1658 resultInfo = recoveryInfo; 1659 wrongContext = true; 1660 } 1661 1662 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 1663 unknownExprInfo : 1664 resultInfo.dup(switchExpressionContext(resultInfo.checkContext)); 1665 1666 ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>(); 1667 ListBuffer<Type> caseTypes = new ListBuffer<>(); 1668 1669 handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> { 1670 caseEnv.info.yieldResult = condInfo; 1671 attribStats(c.stats, caseEnv); 1672 new TreeScanner() { 1673 @Override 1674 public void visitYield(JCYield brk) { 1675 if (brk.target == tree) { 1676 caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos()); 1677 caseTypes.append(brk.value != null ? brk.value.type : syms.errType); 1678 } 1679 super.visitYield(brk); 1680 } 1681 1682 @Override public void visitClassDef(JCClassDecl tree) {} 1683 @Override public void visitLambda(JCLambda tree) {} 1684 }.scan(c.stats); 1685 }); 1686 1687 if (tree.cases.isEmpty()) { 1688 log.error(tree.pos(), 1689 Errors.SwitchExpressionEmpty); 1690 } else if (caseTypes.isEmpty()) { 1691 log.error(tree.pos(), 1692 Errors.SwitchExpressionNoResultExpressions); 1693 } 1694 1695 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt(); 1696 1697 result = tree.type = wrongContext? types.createErrorType(pt()) : check(tree, owntype, KindSelector.VAL, resultInfo); 1698 } 1699 //where: 1700 CheckContext switchExpressionContext(CheckContext checkContext) { 1701 return new Check.NestedCheckContext(checkContext) { 1702 //this will use enclosing check context to check compatibility of 1703 //subexpression against target type; if we are in a method check context, 1704 //depending on whether boxing is allowed, we could have incompatibilities 1705 @Override 1706 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1707 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details))); 1708 } 1709 }; 1710 } 1711 1712 private void handleSwitch(JCTree switchTree, 1713 JCExpression selector, 1714 List<JCCase> cases, 1715 BiConsumer<JCCase, Env<AttrContext>> attribCase) { 1716 Type seltype = attribExpr(selector, env); 1717 1718 Env<AttrContext> switchEnv = 1719 env.dup(switchTree, env.info.dup(env.info.scope.dup())); 1720 1721 try { 1722 boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0; 1723 boolean stringSwitch = types.isSameType(seltype, syms.stringType); 1724 boolean booleanSwitch = types.isSameType(types.unboxedTypeOrType(seltype), syms.booleanType); 1725 boolean errorEnumSwitch = TreeInfo.isErrorEnumSwitch(selector, cases); 1726 boolean intSwitch = types.isAssignable(seltype, syms.intType); 1727 boolean patternSwitch; 1728 if (seltype.isPrimitive() && !intSwitch) { 1729 preview.checkSourceLevel(selector.pos(), Feature.PRIMITIVE_PATTERNS); 1730 patternSwitch = true; 1731 } 1732 if (!enumSwitch && !stringSwitch && !errorEnumSwitch && 1733 !intSwitch) { 1734 preview.checkSourceLevel(selector.pos(), Feature.PATTERN_SWITCH); 1735 patternSwitch = true; 1736 } else { 1737 patternSwitch = cases.stream() 1738 .flatMap(c -> c.labels.stream()) 1739 .anyMatch(l -> l.hasTag(PATTERNCASELABEL) || 1740 TreeInfo.isNullCaseLabel(l)); 1741 } 1742 1743 // Attribute all cases and 1744 // check that there are no duplicate case labels or default clauses. 1745 Set<Object> constants = new HashSet<>(); // The set of case constants. 1746 boolean hasDefault = false; // Is there a default label? 1747 boolean hasUnconditionalPattern = false; // Is there a unconditional pattern? 1748 boolean lastPatternErroneous = false; // Has the last pattern erroneous type? 1749 boolean hasNullPattern = false; // Is there a null pattern? 1750 CaseTree.CaseKind caseKind = null; 1751 boolean wasError = false; 1752 JCCaseLabel unconditionalCaseLabel = null; 1753 for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) { 1754 JCCase c = l.head; 1755 if (caseKind == null) { 1756 caseKind = c.caseKind; 1757 } else if (caseKind != c.caseKind && !wasError) { 1758 log.error(c.pos(), 1759 Errors.SwitchMixingCaseTypes); 1760 wasError = true; 1761 } 1762 MatchBindings currentBindings = null; 1763 MatchBindings guardBindings = null; 1764 for (List<JCCaseLabel> labels = c.labels; labels.nonEmpty(); labels = labels.tail) { 1765 JCCaseLabel label = labels.head; 1766 if (label instanceof JCConstantCaseLabel constLabel) { 1767 JCExpression expr = constLabel.expr; 1768 if (TreeInfo.isNull(expr)) { 1769 preview.checkSourceLevel(expr.pos(), Feature.CASE_NULL); 1770 if (hasNullPattern) { 1771 log.error(label.pos(), Errors.DuplicateCaseLabel); 1772 } 1773 hasNullPattern = true; 1774 attribExpr(expr, switchEnv, seltype); 1775 matchBindings = new MatchBindings(matchBindings.bindingsWhenTrue, matchBindings.bindingsWhenFalse, true); 1776 } else if (enumSwitch) { 1777 Symbol sym = enumConstant(expr, seltype); 1778 if (sym == null) { 1779 if (allowPatternSwitch) { 1780 attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 1781 Symbol enumSym = TreeInfo.symbol(expr); 1782 if (enumSym == null || !enumSym.isEnum() || enumSym.kind != VAR) { 1783 log.error(expr.pos(), Errors.EnumLabelMustBeEnumConstant); 1784 } else if (!constants.add(enumSym)) { 1785 log.error(label.pos(), Errors.DuplicateCaseLabel); 1786 } 1787 } else { 1788 log.error(expr.pos(), Errors.EnumLabelMustBeUnqualifiedEnum); 1789 } 1790 } else if (!constants.add(sym)) { 1791 log.error(label.pos(), Errors.DuplicateCaseLabel); 1792 } 1793 } else if (errorEnumSwitch) { 1794 //error recovery: the selector is erroneous, and all the case labels 1795 //are identifiers. This could be an enum switch - don't report resolve 1796 //error for the case label: 1797 var prevResolveHelper = rs.basicLogResolveHelper; 1798 try { 1799 rs.basicLogResolveHelper = rs.silentLogResolveHelper; 1800 attribExpr(expr, switchEnv, seltype); 1801 } finally { 1802 rs.basicLogResolveHelper = prevResolveHelper; 1803 } 1804 } else { 1805 Type pattype = attribTree(expr, switchEnv, caseLabelResultInfo(seltype)); 1806 if (!pattype.hasTag(ERROR)) { 1807 if (pattype.constValue() == null) { 1808 Symbol s = TreeInfo.symbol(expr); 1809 if (s != null && s.kind == TYP) { 1810 log.error(expr.pos(), 1811 Errors.PatternExpected); 1812 } else if (s == null || !s.isEnum()) { 1813 log.error(expr.pos(), 1814 (stringSwitch ? Errors.StringConstReq 1815 : intSwitch ? Errors.ConstExprReq 1816 : Errors.PatternOrEnumReq)); 1817 } else if (!constants.add(s)) { 1818 log.error(label.pos(), Errors.DuplicateCaseLabel); 1819 } 1820 } 1821 else { 1822 if (!stringSwitch && !intSwitch && 1823 !((pattype.getTag().isInSuperClassesOf(LONG) || pattype.getTag().equals(BOOLEAN)) && 1824 types.isSameType(types.unboxedTypeOrType(seltype), pattype))) { 1825 log.error(label.pos(), Errors.ConstantLabelNotCompatible(pattype, seltype)); 1826 } else if (!constants.add(pattype.constValue())) { 1827 log.error(c.pos(), Errors.DuplicateCaseLabel); 1828 } 1829 } 1830 } 1831 } 1832 } else if (label instanceof JCDefaultCaseLabel def) { 1833 if (hasDefault) { 1834 log.error(label.pos(), Errors.DuplicateDefaultLabel); 1835 } else if (hasUnconditionalPattern) { 1836 log.error(label.pos(), Errors.UnconditionalPatternAndDefault); 1837 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) { 1838 log.error(label.pos(), Errors.DefaultAndBothBooleanValues); 1839 } 1840 hasDefault = true; 1841 matchBindings = MatchBindingsComputer.EMPTY; 1842 } else if (label instanceof JCPatternCaseLabel patternlabel) { 1843 //pattern 1844 JCPattern pat = patternlabel.pat; 1845 attribExpr(pat, switchEnv, seltype); 1846 Type primaryType = TreeInfo.primaryPatternType(pat); 1847 1848 if (primaryType.isPrimitive()) { 1849 preview.checkSourceLevel(pat.pos(), Feature.PRIMITIVE_PATTERNS); 1850 } else if (!primaryType.hasTag(TYPEVAR)) { 1851 primaryType = chk.checkClassOrArrayType(pat.pos(), primaryType); 1852 } 1853 checkCastablePattern(pat.pos(), seltype, primaryType); 1854 Type patternType = types.erasure(primaryType); 1855 JCExpression guard = c.guard; 1856 if (guardBindings == null && guard != null) { 1857 MatchBindings afterPattern = matchBindings; 1858 Env<AttrContext> bodyEnv = bindingEnv(switchEnv, matchBindings.bindingsWhenTrue); 1859 try { 1860 attribExpr(guard, bodyEnv, syms.booleanType); 1861 } finally { 1862 bodyEnv.info.scope.leave(); 1863 } 1864 1865 guardBindings = matchBindings; 1866 matchBindings = afterPattern; 1867 1868 if (TreeInfo.isBooleanWithValue(guard, 0)) { 1869 log.error(guard.pos(), Errors.GuardHasConstantExpressionFalse); 1870 } 1871 } 1872 boolean unguarded = TreeInfo.unguardedCase(c) && !pat.hasTag(RECORDPATTERN); 1873 boolean unconditional = 1874 unguarded && 1875 !patternType.isErroneous() && 1876 types.isUnconditionallyExact(seltype, patternType); 1877 if (unconditional) { 1878 if (hasUnconditionalPattern) { 1879 log.error(pat.pos(), Errors.DuplicateUnconditionalPattern); 1880 } else if (hasDefault) { 1881 log.error(pat.pos(), Errors.UnconditionalPatternAndDefault); 1882 } else if (booleanSwitch && constants.containsAll(Set.of(0, 1))) { 1883 log.error(pat.pos(), Errors.UnconditionalPatternAndBothBooleanValues); 1884 } 1885 hasUnconditionalPattern = true; 1886 unconditionalCaseLabel = label; 1887 } 1888 lastPatternErroneous = patternType.isErroneous(); 1889 } else { 1890 Assert.error(); 1891 } 1892 currentBindings = matchBindingsComputer.switchCase(label, currentBindings, matchBindings); 1893 } 1894 1895 if (guardBindings != null) { 1896 currentBindings = matchBindingsComputer.caseGuard(c, currentBindings, guardBindings); 1897 } 1898 1899 Env<AttrContext> caseEnv = 1900 bindingEnv(switchEnv, c, currentBindings.bindingsWhenTrue); 1901 try { 1902 attribCase.accept(c, caseEnv); 1903 } finally { 1904 caseEnv.info.scope.leave(); 1905 } 1906 addVars(c.stats, switchEnv.info.scope); 1907 1908 preFlow(c); 1909 c.completesNormally = flow.aliveAfter(caseEnv, c, make); 1910 } 1911 if (patternSwitch) { 1912 chk.checkSwitchCaseStructure(cases); 1913 chk.checkSwitchCaseLabelDominated(unconditionalCaseLabel, cases); 1914 } 1915 if (switchTree.hasTag(SWITCH)) { 1916 ((JCSwitch) switchTree).hasUnconditionalPattern = 1917 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 1918 ((JCSwitch) switchTree).patternSwitch = patternSwitch; 1919 } else if (switchTree.hasTag(SWITCH_EXPRESSION)) { 1920 ((JCSwitchExpression) switchTree).hasUnconditionalPattern = 1921 hasDefault || hasUnconditionalPattern || lastPatternErroneous; 1922 ((JCSwitchExpression) switchTree).patternSwitch = patternSwitch; 1923 } else { 1924 Assert.error(switchTree.getTag().name()); 1925 } 1926 } finally { 1927 switchEnv.info.scope.leave(); 1928 } 1929 } 1930 // where 1931 private ResultInfo caseLabelResultInfo(Type seltype) { 1932 return new ResultInfo(KindSelector.VAL_TYP, 1933 !seltype.hasTag(ERROR) ? seltype 1934 : Type.noType); 1935 } 1936 /** Add any variables defined in stats to the switch scope. */ 1937 private static void addVars(List<JCStatement> stats, WriteableScope switchScope) { 1938 for (;stats.nonEmpty(); stats = stats.tail) { 1939 JCTree stat = stats.head; 1940 if (stat.hasTag(VARDEF)) 1941 switchScope.enter(((JCVariableDecl) stat).sym); 1942 } 1943 } 1944 // where 1945 /** Return the selected enumeration constant symbol, or null. */ 1946 private Symbol enumConstant(JCTree tree, Type enumType) { 1947 if (tree.hasTag(IDENT)) { 1948 JCIdent ident = (JCIdent)tree; 1949 Name name = ident.name; 1950 for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) { 1951 if (sym.kind == VAR) { 1952 Symbol s = ident.sym = sym; 1953 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated 1954 ident.type = s.type; 1955 return ((s.flags_field & Flags.ENUM) == 0) 1956 ? null : s; 1957 } 1958 } 1959 } 1960 return null; 1961 } 1962 1963 public void visitSynchronized(JCSynchronized tree) { 1964 boolean identityType = chk.checkIdentityType(tree.pos(), attribExpr(tree.lock, env)); 1965 if (identityType && isValueBased(tree.lock.type)) { 1966 env.info.lint.logIfEnabled(tree.pos(), LintWarnings.AttemptToSynchronizeOnInstanceOfValueBasedClass); 1967 } 1968 attribStat(tree.body, env); 1969 result = null; 1970 } 1971 // where 1972 private boolean isValueBased(Type t) { 1973 return t != null && t.tsym != null && (t.tsym.flags() & VALUE_BASED) != 0; 1974 } 1975 1976 public void visitTry(JCTry tree) { 1977 // Create a new local environment with a local 1978 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 1979 try { 1980 boolean isTryWithResource = tree.resources.nonEmpty(); 1981 // Create a nested environment for attributing the try block if needed 1982 Env<AttrContext> tryEnv = isTryWithResource ? 1983 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) : 1984 localEnv; 1985 try { 1986 // Attribute resource declarations 1987 for (JCTree resource : tree.resources) { 1988 CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) { 1989 @Override 1990 public void report(DiagnosticPosition pos, JCDiagnostic details) { 1991 chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details))); 1992 } 1993 }; 1994 ResultInfo twrResult = 1995 new ResultInfo(KindSelector.VAR, 1996 syms.autoCloseableType, 1997 twrContext); 1998 if (resource.hasTag(VARDEF)) { 1999 attribStat(resource, tryEnv); 2000 twrResult.check(resource, resource.type); 2001 2002 //check that resource type cannot throw InterruptedException 2003 checkAutoCloseable(resource.pos(), localEnv, resource.type); 2004 2005 VarSymbol var = ((JCVariableDecl) resource).sym; 2006 2007 var.flags_field |= Flags.FINAL; 2008 var.setData(ElementKind.RESOURCE_VARIABLE); 2009 } else { 2010 attribTree(resource, tryEnv, twrResult); 2011 } 2012 } 2013 // Attribute body 2014 attribStat(tree.body, tryEnv); 2015 } finally { 2016 if (isTryWithResource) 2017 tryEnv.info.scope.leave(); 2018 } 2019 2020 // Attribute catch clauses 2021 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) { 2022 JCCatch c = l.head; 2023 Env<AttrContext> catchEnv = 2024 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup())); 2025 try { 2026 Type ctype = attribStat(c.param, catchEnv); 2027 if (TreeInfo.isMultiCatch(c)) { 2028 //multi-catch parameter is implicitly marked as final 2029 c.param.sym.flags_field |= FINAL | UNION; 2030 } 2031 if (c.param.sym.kind == VAR) { 2032 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER); 2033 } 2034 chk.checkType(c.param.vartype.pos(), 2035 chk.checkClassType(c.param.vartype.pos(), ctype), 2036 syms.throwableType); 2037 attribStat(c.body, catchEnv); 2038 } finally { 2039 catchEnv.info.scope.leave(); 2040 } 2041 } 2042 2043 // Attribute finalizer 2044 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv); 2045 result = null; 2046 } 2047 finally { 2048 localEnv.info.scope.leave(); 2049 } 2050 } 2051 2052 void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) { 2053 if (!resource.isErroneous() && 2054 types.asSuper(resource, syms.autoCloseableType.tsym) != null && 2055 !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself 2056 Symbol close = syms.noSymbol; 2057 Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log); 2058 try { 2059 close = rs.resolveQualifiedMethod(pos, 2060 env, 2061 types.skipTypeVars(resource, false), 2062 names.close, 2063 List.nil(), 2064 List.nil()); 2065 } 2066 finally { 2067 log.popDiagnosticHandler(discardHandler); 2068 } 2069 if (close.kind == MTH && 2070 close.overrides(syms.autoCloseableClose, resource.tsym, types, true) && 2071 chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes())) { 2072 env.info.lint.logIfEnabled(pos, LintWarnings.TryResourceThrowsInterruptedExc(resource)); 2073 } 2074 } 2075 } 2076 2077 public void visitConditional(JCConditional tree) { 2078 Type condtype = attribExpr(tree.cond, env, syms.booleanType); 2079 MatchBindings condBindings = matchBindings; 2080 2081 tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly || 2082 isBooleanOrNumeric(env, tree)) ? 2083 PolyKind.STANDALONE : PolyKind.POLY; 2084 2085 if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) { 2086 //this means we are returning a poly conditional from void-compatible lambda expression 2087 resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid)); 2088 result = tree.type = types.createErrorType(resultInfo.pt); 2089 return; 2090 } 2091 2092 ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ? 2093 unknownExprInfo : 2094 resultInfo.dup(conditionalContext(resultInfo.checkContext)); 2095 2096 2097 // x ? y : z 2098 // include x's bindings when true in y 2099 // include x's bindings when false in z 2100 2101 Type truetype; 2102 Env<AttrContext> trueEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2103 try { 2104 truetype = attribTree(tree.truepart, trueEnv, condInfo); 2105 } finally { 2106 trueEnv.info.scope.leave(); 2107 } 2108 2109 MatchBindings trueBindings = matchBindings; 2110 2111 Type falsetype; 2112 Env<AttrContext> falseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2113 try { 2114 falsetype = attribTree(tree.falsepart, falseEnv, condInfo); 2115 } finally { 2116 falseEnv.info.scope.leave(); 2117 } 2118 2119 MatchBindings falseBindings = matchBindings; 2120 2121 Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? 2122 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()), 2123 List.of(truetype, falsetype)) : pt(); 2124 if (condtype.constValue() != null && 2125 truetype.constValue() != null && 2126 falsetype.constValue() != null && 2127 !owntype.hasTag(NONE)) { 2128 //constant folding 2129 owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype); 2130 } 2131 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2132 matchBindings = matchBindingsComputer.conditional(tree, condBindings, trueBindings, falseBindings); 2133 } 2134 //where 2135 private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) { 2136 switch (tree.getTag()) { 2137 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) || 2138 ((JCLiteral)tree).typetag == BOOLEAN || 2139 ((JCLiteral)tree).typetag == BOT; 2140 case LAMBDA: case REFERENCE: return false; 2141 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr); 2142 case CONDEXPR: 2143 JCConditional condTree = (JCConditional)tree; 2144 return isBooleanOrNumeric(env, condTree.truepart) && 2145 isBooleanOrNumeric(env, condTree.falsepart); 2146 case APPLY: 2147 JCMethodInvocation speculativeMethodTree = 2148 (JCMethodInvocation)deferredAttr.attribSpeculative( 2149 tree, env, unknownExprInfo, 2150 argumentAttr.withLocalCacheContext()); 2151 Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth); 2152 Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ? 2153 env.enclClass.type : 2154 ((JCFieldAccess)speculativeMethodTree.meth).selected.type; 2155 Type owntype = types.memberType(receiverType, msym).getReturnType(); 2156 return primitiveOrBoxed(owntype); 2157 case NEWCLASS: 2158 JCExpression className = 2159 removeClassParams.translate(((JCNewClass)tree).clazz); 2160 JCExpression speculativeNewClassTree = 2161 (JCExpression)deferredAttr.attribSpeculative( 2162 className, env, unknownTypeInfo, 2163 argumentAttr.withLocalCacheContext()); 2164 return primitiveOrBoxed(speculativeNewClassTree.type); 2165 default: 2166 Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo, 2167 argumentAttr.withLocalCacheContext()).type; 2168 return primitiveOrBoxed(speculativeType); 2169 } 2170 } 2171 //where 2172 boolean primitiveOrBoxed(Type t) { 2173 return (!t.hasTag(TYPEVAR) && !t.isErroneous() && types.unboxedTypeOrType(t).isPrimitive()); 2174 } 2175 2176 TreeTranslator removeClassParams = new TreeTranslator() { 2177 @Override 2178 public void visitTypeApply(JCTypeApply tree) { 2179 result = translate(tree.clazz); 2180 } 2181 }; 2182 2183 CheckContext conditionalContext(CheckContext checkContext) { 2184 return new Check.NestedCheckContext(checkContext) { 2185 //this will use enclosing check context to check compatibility of 2186 //subexpression against target type; if we are in a method check context, 2187 //depending on whether boxing is allowed, we could have incompatibilities 2188 @Override 2189 public void report(DiagnosticPosition pos, JCDiagnostic details) { 2190 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details))); 2191 } 2192 }; 2193 } 2194 2195 /** Compute the type of a conditional expression, after 2196 * checking that it exists. See JLS 15.25. Does not take into 2197 * account the special case where condition and both arms 2198 * are constants. 2199 * 2200 * @param pos The source position to be used for error 2201 * diagnostics. 2202 * @param thentype The type of the expression's then-part. 2203 * @param elsetype The type of the expression's else-part. 2204 */ 2205 Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) { 2206 if (condTypes.isEmpty()) { 2207 return syms.objectType; //TODO: how to handle? 2208 } 2209 Type first = condTypes.head; 2210 // If same type, that is the result 2211 if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t))) 2212 return first.baseType(); 2213 2214 List<Type> unboxedTypes = condTypes.stream() 2215 .map(t -> t.isPrimitive() ? t : types.unboxedType(t)) 2216 .collect(List.collector()); 2217 2218 // Otherwise, if both arms can be converted to a numeric 2219 // type, return the least numeric type that fits both arms 2220 // (i.e. return larger of the two, or return int if one 2221 // arm is short, the other is char). 2222 if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) { 2223 // If one arm has an integer subrange type (i.e., byte, 2224 // short, or char), and the other is an integer constant 2225 // that fits into the subrange, return the subrange type. 2226 for (Type type : unboxedTypes) { 2227 if (!type.getTag().isStrictSubRangeOf(INT)) { 2228 continue; 2229 } 2230 if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type))) 2231 return type.baseType(); 2232 } 2233 2234 for (TypeTag tag : primitiveTags) { 2235 Type candidate = syms.typeOfTag[tag.ordinal()]; 2236 if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) { 2237 return candidate; 2238 } 2239 } 2240 } 2241 2242 // Those were all the cases that could result in a primitive 2243 condTypes = condTypes.stream() 2244 .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t) 2245 .collect(List.collector()); 2246 2247 for (Type type : condTypes) { 2248 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type))) 2249 return type.baseType(); 2250 } 2251 2252 Iterator<DiagnosticPosition> posIt = positions.iterator(); 2253 2254 condTypes = condTypes.stream() 2255 .map(t -> chk.checkNonVoid(posIt.next(), t)) 2256 .collect(List.collector()); 2257 2258 // both are known to be reference types. The result is 2259 // lub(thentype,elsetype). This cannot fail, as it will 2260 // always be possible to infer "Object" if nothing better. 2261 return types.lub(condTypes.stream() 2262 .map(t -> t.baseType()) 2263 .filter(t -> !t.hasTag(BOT)) 2264 .collect(List.collector())); 2265 } 2266 2267 static final TypeTag[] primitiveTags = new TypeTag[]{ 2268 BYTE, 2269 CHAR, 2270 SHORT, 2271 INT, 2272 LONG, 2273 FLOAT, 2274 DOUBLE, 2275 BOOLEAN, 2276 }; 2277 2278 Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) { 2279 return bindingEnv(env, env.tree, bindings); 2280 } 2281 2282 Env<AttrContext> bindingEnv(Env<AttrContext> env, JCTree newTree, List<BindingSymbol> bindings) { 2283 Env<AttrContext> env1 = env.dup(newTree, env.info.dup(env.info.scope.dup())); 2284 bindings.forEach(env1.info.scope::enter); 2285 return env1; 2286 } 2287 2288 public void visitIf(JCIf tree) { 2289 attribExpr(tree.cond, env, syms.booleanType); 2290 2291 // if (x) { y } [ else z ] 2292 // include x's bindings when true in y 2293 // include x's bindings when false in z 2294 2295 MatchBindings condBindings = matchBindings; 2296 Env<AttrContext> thenEnv = bindingEnv(env, condBindings.bindingsWhenTrue); 2297 2298 try { 2299 attribStat(tree.thenpart, thenEnv); 2300 } finally { 2301 thenEnv.info.scope.leave(); 2302 } 2303 2304 preFlow(tree.thenpart); 2305 boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make); 2306 boolean aliveAfterElse; 2307 2308 if (tree.elsepart != null) { 2309 Env<AttrContext> elseEnv = bindingEnv(env, condBindings.bindingsWhenFalse); 2310 try { 2311 attribStat(tree.elsepart, elseEnv); 2312 } finally { 2313 elseEnv.info.scope.leave(); 2314 } 2315 preFlow(tree.elsepart); 2316 aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make); 2317 } else { 2318 aliveAfterElse = true; 2319 } 2320 2321 chk.checkEmptyIf(tree); 2322 2323 List<BindingSymbol> afterIfBindings = List.nil(); 2324 2325 if (aliveAfterThen && !aliveAfterElse) { 2326 afterIfBindings = condBindings.bindingsWhenTrue; 2327 } else if (aliveAfterElse && !aliveAfterThen) { 2328 afterIfBindings = condBindings.bindingsWhenFalse; 2329 } 2330 2331 addBindings2Scope(tree, afterIfBindings); 2332 2333 result = null; 2334 } 2335 2336 void preFlow(JCTree tree) { 2337 attrRecover.doRecovery(); 2338 new PostAttrAnalyzer() { 2339 @Override 2340 public void scan(JCTree tree) { 2341 if (tree == null || 2342 (tree.type != null && 2343 tree.type == Type.stuckType)) { 2344 //don't touch stuck expressions! 2345 return; 2346 } 2347 super.scan(tree); 2348 } 2349 2350 @Override 2351 public void visitClassDef(JCClassDecl that) { 2352 if (that.sym != null) { 2353 // Method preFlow shouldn't visit class definitions 2354 // that have not been entered and attributed. 2355 // See JDK-8254557 and JDK-8203277 for more details. 2356 super.visitClassDef(that); 2357 } 2358 } 2359 2360 @Override 2361 public void visitLambda(JCLambda that) { 2362 if (that.type != null) { 2363 // Method preFlow shouldn't visit lambda expressions 2364 // that have not been entered and attributed. 2365 // See JDK-8254557 and JDK-8203277 for more details. 2366 super.visitLambda(that); 2367 } 2368 } 2369 }.scan(tree); 2370 } 2371 2372 public void visitExec(JCExpressionStatement tree) { 2373 //a fresh environment is required for 292 inference to work properly --- 2374 //see Infer.instantiatePolymorphicSignatureInstance() 2375 Env<AttrContext> localEnv = env.dup(tree); 2376 attribExpr(tree.expr, localEnv); 2377 result = null; 2378 } 2379 2380 public void visitBreak(JCBreak tree) { 2381 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2382 result = null; 2383 } 2384 2385 public void visitYield(JCYield tree) { 2386 if (env.info.yieldResult != null) { 2387 attribTree(tree.value, env, env.info.yieldResult); 2388 tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env); 2389 } else { 2390 log.error(tree.pos(), tree.value.hasTag(PARENS) 2391 ? Errors.NoSwitchExpressionQualify 2392 : Errors.NoSwitchExpression); 2393 attribTree(tree.value, env, unknownExprInfo); 2394 } 2395 result = null; 2396 } 2397 2398 public void visitContinue(JCContinue tree) { 2399 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env); 2400 result = null; 2401 } 2402 //where 2403 /** Return the target of a break, continue or yield statement, 2404 * if it exists, report an error if not. 2405 * Note: The target of a labelled break or continue is the 2406 * (non-labelled) statement tree referred to by the label, 2407 * not the tree representing the labelled statement itself. 2408 * 2409 * @param pos The position to be used for error diagnostics 2410 * @param tag The tag of the jump statement. This is either 2411 * Tree.BREAK or Tree.CONTINUE. 2412 * @param label The label of the jump statement, or null if no 2413 * label is given. 2414 * @param env The environment current at the jump statement. 2415 */ 2416 private JCTree findJumpTarget(DiagnosticPosition pos, 2417 JCTree.Tag tag, 2418 Name label, 2419 Env<AttrContext> env) { 2420 Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env); 2421 2422 if (jumpTarget.snd != null) { 2423 log.error(pos, jumpTarget.snd); 2424 } 2425 2426 return jumpTarget.fst; 2427 } 2428 /** Return the target of a break or continue statement, if it exists, 2429 * report an error if not. 2430 * Note: The target of a labelled break or continue is the 2431 * (non-labelled) statement tree referred to by the label, 2432 * not the tree representing the labelled statement itself. 2433 * 2434 * @param tag The tag of the jump statement. This is either 2435 * Tree.BREAK or Tree.CONTINUE. 2436 * @param label The label of the jump statement, or null if no 2437 * label is given. 2438 * @param env The environment current at the jump statement. 2439 */ 2440 private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag, 2441 Name label, 2442 Env<AttrContext> env) { 2443 // Search environments outwards from the point of jump. 2444 Env<AttrContext> env1 = env; 2445 JCDiagnostic.Error pendingError = null; 2446 LOOP: 2447 while (env1 != null) { 2448 switch (env1.tree.getTag()) { 2449 case LABELLED: 2450 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree; 2451 if (label == labelled.label) { 2452 // If jump is a continue, check that target is a loop. 2453 if (tag == CONTINUE) { 2454 if (!labelled.body.hasTag(DOLOOP) && 2455 !labelled.body.hasTag(WHILELOOP) && 2456 !labelled.body.hasTag(FORLOOP) && 2457 !labelled.body.hasTag(FOREACHLOOP)) { 2458 pendingError = Errors.NotLoopLabel(label); 2459 } 2460 // Found labelled statement target, now go inwards 2461 // to next non-labelled tree. 2462 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError); 2463 } else { 2464 return Pair.of(labelled, pendingError); 2465 } 2466 } 2467 break; 2468 case DOLOOP: 2469 case WHILELOOP: 2470 case FORLOOP: 2471 case FOREACHLOOP: 2472 if (label == null) return Pair.of(env1.tree, pendingError); 2473 break; 2474 case SWITCH: 2475 if (label == null && tag == BREAK) return Pair.of(env1.tree, null); 2476 break; 2477 case SWITCH_EXPRESSION: 2478 if (tag == YIELD) { 2479 return Pair.of(env1.tree, null); 2480 } else if (tag == BREAK) { 2481 pendingError = Errors.BreakOutsideSwitchExpression; 2482 } else { 2483 pendingError = Errors.ContinueOutsideSwitchExpression; 2484 } 2485 break; 2486 case LAMBDA: 2487 case METHODDEF: 2488 case CLASSDEF: 2489 break LOOP; 2490 default: 2491 } 2492 env1 = env1.next; 2493 } 2494 if (label != null) 2495 return Pair.of(null, Errors.UndefLabel(label)); 2496 else if (pendingError != null) 2497 return Pair.of(null, pendingError); 2498 else if (tag == CONTINUE) 2499 return Pair.of(null, Errors.ContOutsideLoop); 2500 else 2501 return Pair.of(null, Errors.BreakOutsideSwitchLoop); 2502 } 2503 2504 public void visitReturn(JCReturn tree) { 2505 // Check that there is an enclosing method which is 2506 // nested within than the enclosing class. 2507 if (env.info.returnResult == null) { 2508 log.error(tree.pos(), Errors.RetOutsideMeth); 2509 } else if (env.info.yieldResult != null) { 2510 log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression); 2511 if (tree.expr != null) { 2512 attribExpr(tree.expr, env, env.info.yieldResult.pt); 2513 } 2514 } else if (!env.info.isLambda && 2515 !env.info.isNewClass && 2516 env.enclMethod != null && 2517 TreeInfo.isCompactConstructor(env.enclMethod)) { 2518 log.error(env.enclMethod, 2519 Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym.name, Fragments.CanonicalCantHaveReturnStatement)); 2520 } else { 2521 // Attribute return expression, if it exists, and check that 2522 // it conforms to result type of enclosing method. 2523 if (tree.expr != null) { 2524 if (env.info.returnResult.pt.hasTag(VOID)) { 2525 env.info.returnResult.checkContext.report(tree.expr.pos(), 2526 diags.fragment(Fragments.UnexpectedRetVal)); 2527 } 2528 attribTree(tree.expr, env, env.info.returnResult); 2529 } else if (!env.info.returnResult.pt.hasTag(VOID) && 2530 !env.info.returnResult.pt.hasTag(NONE)) { 2531 env.info.returnResult.checkContext.report(tree.pos(), 2532 diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt))); 2533 } 2534 } 2535 result = null; 2536 } 2537 2538 public void visitThrow(JCThrow tree) { 2539 Type owntype = attribExpr(tree.expr, env, Type.noType); 2540 chk.checkType(tree, owntype, syms.throwableType); 2541 result = null; 2542 } 2543 2544 public void visitAssert(JCAssert tree) { 2545 attribExpr(tree.cond, env, syms.booleanType); 2546 if (tree.detail != null) { 2547 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env)); 2548 } 2549 result = null; 2550 } 2551 2552 /** Visitor method for method invocations. 2553 * NOTE: The method part of an application will have in its type field 2554 * the return type of the method, not the method's type itself! 2555 */ 2556 public void visitApply(JCMethodInvocation tree) { 2557 // The local environment of a method application is 2558 // a new environment nested in the current one. 2559 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2560 2561 // The types of the actual method arguments. 2562 List<Type> argtypes; 2563 2564 // The types of the actual method type arguments. 2565 List<Type> typeargtypes = null; 2566 2567 Name methName = TreeInfo.name(tree.meth); 2568 2569 boolean isConstructorCall = 2570 methName == names._this || methName == names._super; 2571 2572 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2573 if (isConstructorCall) { 2574 2575 // Attribute arguments, yielding list of argument types. 2576 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf); 2577 argtypes = argtypesBuf.toList(); 2578 typeargtypes = attribTypes(tree.typeargs, localEnv); 2579 2580 // Done with this()/super() parameters. End of constructor prologue. 2581 env.info.ctorPrologue = false; 2582 2583 // Variable `site' points to the class in which the called 2584 // constructor is defined. 2585 Type site = env.enclClass.sym.type; 2586 if (methName == names._super) { 2587 if (site == syms.objectType) { 2588 log.error(tree.meth.pos(), Errors.NoSuperclass(site)); 2589 site = types.createErrorType(syms.objectType); 2590 } else { 2591 site = types.supertype(site); 2592 } 2593 } 2594 2595 if (site.hasTag(CLASS)) { 2596 Type encl = site.getEnclosingType(); 2597 while (encl != null && encl.hasTag(TYPEVAR)) 2598 encl = encl.getUpperBound(); 2599 if (encl.hasTag(CLASS)) { 2600 // we are calling a nested class 2601 2602 if (tree.meth.hasTag(SELECT)) { 2603 JCTree qualifier = ((JCFieldAccess) tree.meth).selected; 2604 2605 // We are seeing a prefixed call, of the form 2606 // <expr>.super(...). 2607 // Check that the prefix expression conforms 2608 // to the outer instance type of the class. 2609 chk.checkRefType(qualifier.pos(), 2610 attribExpr(qualifier, localEnv, 2611 encl)); 2612 } 2613 } else if (tree.meth.hasTag(SELECT)) { 2614 log.error(tree.meth.pos(), 2615 Errors.IllegalQualNotIcls(site.tsym)); 2616 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2617 } 2618 2619 if (tree.meth.hasTag(IDENT)) { 2620 // non-qualified super(...) call; check whether explicit constructor 2621 // invocation is well-formed. If the super class is an inner class, 2622 // make sure that an appropriate implicit qualifier exists. If the super 2623 // class is a local class, make sure that the current class is defined 2624 // in the same context as the local class. 2625 checkNewInnerClass(tree.meth.pos(), localEnv, site, true); 2626 } 2627 2628 // if we're calling a java.lang.Enum constructor, 2629 // prefix the implicit String and int parameters 2630 if (site.tsym == syms.enumSym) 2631 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType); 2632 2633 // Resolve the called constructor under the assumption 2634 // that we are referring to a superclass instance of the 2635 // current instance (JLS ???). 2636 boolean selectSuperPrev = localEnv.info.selectSuper; 2637 localEnv.info.selectSuper = true; 2638 localEnv.info.pendingResolutionPhase = null; 2639 Symbol sym = rs.resolveConstructor( 2640 tree.meth.pos(), localEnv, site, argtypes, typeargtypes); 2641 localEnv.info.selectSuper = selectSuperPrev; 2642 2643 // Set method symbol to resolved constructor... 2644 TreeInfo.setSymbol(tree.meth, sym); 2645 2646 // ...and check that it is legal in the current context. 2647 // (this will also set the tree's type) 2648 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2649 checkId(tree.meth, site, sym, localEnv, 2650 new ResultInfo(kind, mpt)); 2651 } else if (site.hasTag(ERROR) && tree.meth.hasTag(SELECT)) { 2652 attribExpr(((JCFieldAccess) tree.meth).selected, localEnv, site); 2653 } 2654 // Otherwise, `site' is an error type and we do nothing 2655 result = tree.type = syms.voidType; 2656 } else { 2657 // Otherwise, we are seeing a regular method call. 2658 // Attribute the arguments, yielding list of argument types, ... 2659 KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2660 argtypes = argtypesBuf.toList(); 2661 typeargtypes = attribAnyTypes(tree.typeargs, localEnv); 2662 2663 // ... and attribute the method using as a prototype a methodtype 2664 // whose formal argument types is exactly the list of actual 2665 // arguments (this will also set the method symbol). 2666 Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes); 2667 localEnv.info.pendingResolutionPhase = null; 2668 Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext)); 2669 2670 // Compute the result type. 2671 Type restype = mtype.getReturnType(); 2672 if (restype.hasTag(WILDCARD)) 2673 throw new AssertionError(mtype); 2674 2675 Type qualifier = (tree.meth.hasTag(SELECT)) 2676 ? ((JCFieldAccess) tree.meth).selected.type 2677 : env.enclClass.sym.type; 2678 Symbol msym = TreeInfo.symbol(tree.meth); 2679 restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype); 2680 2681 chk.checkRefTypes(tree.typeargs, typeargtypes); 2682 2683 // Check that value of resulting type is admissible in the 2684 // current context. Also, capture the return type 2685 Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true); 2686 result = check(tree, capturedRes, KindSelector.VAL, resultInfo); 2687 } 2688 chk.validate(tree.typeargs, localEnv); 2689 } 2690 //where 2691 Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) { 2692 if (msym != null && 2693 (msym.owner == syms.objectType.tsym || msym.owner.isInterface()) && 2694 methodName == names.getClass && 2695 argtypes.isEmpty()) { 2696 // as a special case, x.getClass() has type Class<? extends |X|> 2697 return new ClassType(restype.getEnclosingType(), 2698 List.of(new WildcardType(types.erasure(qualifierType.baseType()), 2699 BoundKind.EXTENDS, 2700 syms.boundClass)), 2701 restype.tsym, 2702 restype.getMetadata()); 2703 } else if (msym != null && 2704 msym.owner == syms.arrayClass && 2705 methodName == names.clone && 2706 types.isArray(qualifierType)) { 2707 // as a special case, array.clone() has a result that is 2708 // the same as static type of the array being cloned 2709 return qualifierType; 2710 } else { 2711 return restype; 2712 } 2713 } 2714 2715 /** Obtain a method type with given argument types. 2716 */ 2717 Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) { 2718 MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass); 2719 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt); 2720 } 2721 2722 public void visitNewClass(final JCNewClass tree) { 2723 Type owntype = types.createErrorType(tree.type); 2724 2725 // The local environment of a class creation is 2726 // a new environment nested in the current one. 2727 Env<AttrContext> localEnv = env.dup(tree, env.info.dup()); 2728 2729 // The anonymous inner class definition of the new expression, 2730 // if one is defined by it. 2731 JCClassDecl cdef = tree.def; 2732 2733 // If enclosing class is given, attribute it, and 2734 // complete class name to be fully qualified 2735 JCExpression clazz = tree.clazz; // Class field following new 2736 JCExpression clazzid; // Identifier in class field 2737 JCAnnotatedType annoclazzid; // Annotated type enclosing clazzid 2738 annoclazzid = null; 2739 2740 if (clazz.hasTag(TYPEAPPLY)) { 2741 clazzid = ((JCTypeApply) clazz).clazz; 2742 if (clazzid.hasTag(ANNOTATED_TYPE)) { 2743 annoclazzid = (JCAnnotatedType) clazzid; 2744 clazzid = annoclazzid.underlyingType; 2745 } 2746 } else { 2747 if (clazz.hasTag(ANNOTATED_TYPE)) { 2748 annoclazzid = (JCAnnotatedType) clazz; 2749 clazzid = annoclazzid.underlyingType; 2750 } else { 2751 clazzid = clazz; 2752 } 2753 } 2754 2755 JCExpression clazzid1 = clazzid; // The same in fully qualified form 2756 2757 if (tree.encl != null) { 2758 // We are seeing a qualified new, of the form 2759 // <expr>.new C <...> (...) ... 2760 // In this case, we let clazz stand for the name of the 2761 // allocated class C prefixed with the type of the qualifier 2762 // expression, so that we can 2763 // resolve it with standard techniques later. I.e., if 2764 // <expr> has type T, then <expr>.new C <...> (...) 2765 // yields a clazz T.C. 2766 Type encltype = chk.checkRefType(tree.encl.pos(), 2767 attribExpr(tree.encl, env)); 2768 // TODO 308: in <expr>.new C, do we also want to add the type annotations 2769 // from expr to the combined type, or not? Yes, do this. 2770 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype), 2771 ((JCIdent) clazzid).name); 2772 2773 EndPosTable endPosTable = this.env.toplevel.endPositions; 2774 endPosTable.storeEnd(clazzid1, clazzid.getEndPosition(endPosTable)); 2775 if (clazz.hasTag(ANNOTATED_TYPE)) { 2776 JCAnnotatedType annoType = (JCAnnotatedType) clazz; 2777 List<JCAnnotation> annos = annoType.annotations; 2778 2779 if (annoType.underlyingType.hasTag(TYPEAPPLY)) { 2780 clazzid1 = make.at(tree.pos). 2781 TypeApply(clazzid1, 2782 ((JCTypeApply) clazz).arguments); 2783 } 2784 2785 clazzid1 = make.at(tree.pos). 2786 AnnotatedType(annos, clazzid1); 2787 } else if (clazz.hasTag(TYPEAPPLY)) { 2788 clazzid1 = make.at(tree.pos). 2789 TypeApply(clazzid1, 2790 ((JCTypeApply) clazz).arguments); 2791 } 2792 2793 clazz = clazzid1; 2794 } 2795 2796 // Attribute clazz expression and store 2797 // symbol + type back into the attributed tree. 2798 Type clazztype; 2799 2800 try { 2801 env.info.isNewClass = true; 2802 clazztype = TreeInfo.isEnumInit(env.tree) ? 2803 attribIdentAsEnumType(env, (JCIdent)clazz) : 2804 attribType(clazz, env); 2805 } finally { 2806 env.info.isNewClass = false; 2807 } 2808 2809 clazztype = chk.checkDiamond(tree, clazztype); 2810 chk.validate(clazz, localEnv); 2811 if (tree.encl != null) { 2812 // We have to work in this case to store 2813 // symbol + type back into the attributed tree. 2814 tree.clazz.type = clazztype; 2815 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1)); 2816 clazzid.type = ((JCIdent) clazzid).sym.type; 2817 if (annoclazzid != null) { 2818 annoclazzid.type = clazzid.type; 2819 } 2820 if (!clazztype.isErroneous()) { 2821 if (cdef != null && clazztype.tsym.isInterface()) { 2822 log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew); 2823 } else if (clazztype.tsym.isStatic()) { 2824 log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym)); 2825 } 2826 } 2827 } else { 2828 // Check for the existence of an apropos outer instance 2829 checkNewInnerClass(tree.pos(), env, clazztype, false); 2830 } 2831 2832 // Attribute constructor arguments. 2833 ListBuffer<Type> argtypesBuf = new ListBuffer<>(); 2834 final KindSelector pkind = 2835 attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf); 2836 List<Type> argtypes = argtypesBuf.toList(); 2837 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv); 2838 2839 if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) { 2840 // Enums may not be instantiated except implicitly 2841 if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 && 2842 (!env.tree.hasTag(VARDEF) || 2843 (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 || 2844 ((JCVariableDecl) env.tree).init != tree)) 2845 log.error(tree.pos(), Errors.EnumCantBeInstantiated); 2846 2847 boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) && 2848 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 2849 boolean skipNonDiamondPath = false; 2850 // Check that class is not abstract 2851 if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy 2852 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) { 2853 log.error(tree.pos(), 2854 Errors.AbstractCantBeInstantiated(clazztype.tsym)); 2855 skipNonDiamondPath = true; 2856 } else if (cdef != null && clazztype.tsym.isInterface()) { 2857 // Check that no constructor arguments are given to 2858 // anonymous classes implementing an interface 2859 if (!argtypes.isEmpty()) 2860 log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs); 2861 2862 if (!typeargtypes.isEmpty()) 2863 log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs); 2864 2865 // Error recovery: pretend no arguments were supplied. 2866 argtypes = List.nil(); 2867 typeargtypes = List.nil(); 2868 skipNonDiamondPath = true; 2869 } 2870 if (TreeInfo.isDiamond(tree)) { 2871 ClassType site = new ClassType(clazztype.getEnclosingType(), 2872 clazztype.tsym.type.getTypeArguments(), 2873 clazztype.tsym, 2874 clazztype.getMetadata()); 2875 2876 Env<AttrContext> diamondEnv = localEnv.dup(tree); 2877 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved(); 2878 diamondEnv.info.pendingResolutionPhase = null; 2879 2880 //if the type of the instance creation expression is a class type 2881 //apply method resolution inference (JLS 15.12.2.7). The return type 2882 //of the resolved constructor will be a partially instantiated type 2883 Symbol constructor = rs.resolveDiamond(tree.pos(), 2884 diamondEnv, 2885 site, 2886 argtypes, 2887 typeargtypes); 2888 tree.constructor = constructor.baseSymbol(); 2889 2890 final TypeSymbol csym = clazztype.tsym; 2891 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), 2892 diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 2893 Type constructorType = tree.constructorType = types.createErrorType(clazztype); 2894 constructorType = checkId(tree, site, 2895 constructor, 2896 diamondEnv, 2897 diamondResult); 2898 2899 tree.clazz.type = types.createErrorType(clazztype); 2900 if (!constructorType.isErroneous()) { 2901 tree.clazz.type = clazz.type = constructorType.getReturnType(); 2902 tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType); 2903 } 2904 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true); 2905 } 2906 2907 // Resolve the called constructor under the assumption 2908 // that we are referring to a superclass instance of the 2909 // current instance (JLS ???). 2910 else if (!skipNonDiamondPath) { 2911 //the following code alters some of the fields in the current 2912 //AttrContext - hence, the current context must be dup'ed in 2913 //order to avoid downstream failures 2914 Env<AttrContext> rsEnv = localEnv.dup(tree); 2915 rsEnv.info.selectSuper = cdef != null; 2916 rsEnv.info.pendingResolutionPhase = null; 2917 tree.constructor = rs.resolveConstructor( 2918 tree.pos(), rsEnv, clazztype, argtypes, typeargtypes); 2919 if (cdef == null) { //do not check twice! 2920 tree.constructorType = checkId(tree, 2921 clazztype, 2922 tree.constructor, 2923 rsEnv, 2924 new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 2925 if (rsEnv.info.lastResolveVarargs()) 2926 Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null); 2927 } 2928 } 2929 2930 if (cdef != null) { 2931 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind); 2932 return; 2933 } 2934 2935 if (tree.constructor != null && tree.constructor.kind == MTH) 2936 owntype = clazztype; 2937 } 2938 result = check(tree, owntype, KindSelector.VAL, resultInfo); 2939 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 2940 if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) { 2941 //we need to wait for inference to finish and then replace inference vars in the constructor type 2942 inferenceContext.addFreeTypeListener(List.of(tree.constructorType), 2943 instantiatedContext -> { 2944 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 2945 }); 2946 } 2947 chk.validate(tree.typeargs, localEnv); 2948 } 2949 2950 // where 2951 private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype, 2952 JCClassDecl cdef, Env<AttrContext> localEnv, 2953 List<Type> argtypes, List<Type> typeargtypes, 2954 KindSelector pkind) { 2955 // We are seeing an anonymous class instance creation. 2956 // In this case, the class instance creation 2957 // expression 2958 // 2959 // E.new <typeargs1>C<typargs2>(args) { ... } 2960 // 2961 // is represented internally as 2962 // 2963 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) . 2964 // 2965 // This expression is then *transformed* as follows: 2966 // 2967 // (1) add an extends or implements clause 2968 // (2) add a constructor. 2969 // 2970 // For instance, if C is a class, and ET is the type of E, 2971 // the expression 2972 // 2973 // E.new <typeargs1>C<typargs2>(args) { ... } 2974 // 2975 // is translated to (where X is a fresh name and typarams is the 2976 // parameter list of the super constructor): 2977 // 2978 // new <typeargs1>X(<*nullchk*>E, args) where 2979 // X extends C<typargs2> { 2980 // <typarams> X(ET e, args) { 2981 // e.<typeargs1>super(args) 2982 // } 2983 // ... 2984 // } 2985 InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext(); 2986 Type enclType = clazztype.getEnclosingType(); 2987 if (enclType != null && 2988 enclType.hasTag(CLASS) && 2989 !chk.checkDenotable((ClassType)enclType)) { 2990 log.error(tree.encl, Errors.EnclosingClassTypeNonDenotable(enclType)); 2991 } 2992 final boolean isDiamond = TreeInfo.isDiamond(tree); 2993 if (isDiamond 2994 && ((tree.constructorType != null && inferenceContext.free(tree.constructorType)) 2995 || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) { 2996 final ResultInfo resultInfoForClassDefinition = this.resultInfo; 2997 Env<AttrContext> dupLocalEnv = copyEnv(localEnv); 2998 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type), 2999 instantiatedContext -> { 3000 tree.constructorType = instantiatedContext.asInstType(tree.constructorType); 3001 tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type); 3002 ResultInfo prevResult = this.resultInfo; 3003 try { 3004 this.resultInfo = resultInfoForClassDefinition; 3005 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef, 3006 dupLocalEnv, argtypes, typeargtypes, pkind); 3007 } finally { 3008 this.resultInfo = prevResult; 3009 } 3010 }); 3011 } else { 3012 if (isDiamond && clazztype.hasTag(CLASS)) { 3013 List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype); 3014 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) { 3015 // One or more types inferred in the previous steps is non-denotable. 3016 Fragment fragment = Diamond(clazztype.tsym); 3017 log.error(tree.clazz.pos(), 3018 Errors.CantApplyDiamond1( 3019 fragment, 3020 invalidDiamondArgs.size() > 1 ? 3021 DiamondInvalidArgs(invalidDiamondArgs, fragment) : 3022 DiamondInvalidArg(invalidDiamondArgs, fragment))); 3023 } 3024 // For <>(){}, inferred types must also be accessible. 3025 for (Type t : clazztype.getTypeArguments()) { 3026 rs.checkAccessibleType(env, t); 3027 } 3028 } 3029 3030 // If we already errored, be careful to avoid a further avalanche. ErrorType answers 3031 // false for isInterface call even when the original type is an interface. 3032 boolean implementing = clazztype.tsym.isInterface() || 3033 clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) && 3034 clazztype.getOriginalType().tsym.isInterface(); 3035 3036 if (implementing) { 3037 cdef.implementing = List.of(clazz); 3038 } else { 3039 cdef.extending = clazz; 3040 } 3041 3042 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3043 rs.isSerializable(clazztype)) { 3044 localEnv.info.isSerializable = true; 3045 } 3046 3047 attribStat(cdef, localEnv); 3048 3049 List<Type> finalargtypes; 3050 // If an outer instance is given, 3051 // prefix it to the constructor arguments 3052 // and delete it from the new expression 3053 if (tree.encl != null && !clazztype.tsym.isInterface()) { 3054 finalargtypes = argtypes.prepend(tree.encl.type); 3055 } else { 3056 finalargtypes = argtypes; 3057 } 3058 3059 // Reassign clazztype and recompute constructor. As this necessarily involves 3060 // another attribution pass for deferred types in the case of <>, replicate 3061 // them. Original arguments have right decorations already. 3062 if (isDiamond && pkind.contains(KindSelector.POLY)) { 3063 finalargtypes = finalargtypes.map(deferredAttr.deferredCopier); 3064 } 3065 3066 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type) 3067 : cdef.sym.type; 3068 Symbol sym = tree.constructor = rs.resolveConstructor( 3069 tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes); 3070 Assert.check(!sym.kind.isResolutionError()); 3071 tree.constructor = sym; 3072 tree.constructorType = checkId(tree, 3073 clazztype, 3074 tree.constructor, 3075 localEnv, 3076 new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE)); 3077 } 3078 Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ? 3079 clazztype : types.createErrorType(tree.type); 3080 result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK)); 3081 chk.validate(tree.typeargs, localEnv); 3082 } 3083 3084 CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) { 3085 return new Check.NestedCheckContext(checkContext) { 3086 @Override 3087 public void report(DiagnosticPosition _unused, JCDiagnostic details) { 3088 enclosingContext.report(clazz.clazz, 3089 diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details))); 3090 } 3091 }; 3092 } 3093 3094 void checkNewInnerClass(DiagnosticPosition pos, Env<AttrContext> env, Type type, boolean isSuper) { 3095 boolean isLocal = type.tsym.owner.kind == VAR || type.tsym.owner.kind == MTH; 3096 if ((type.tsym.flags() & (INTERFACE | ENUM | RECORD)) != 0 || 3097 (!isLocal && !type.tsym.isInner()) || 3098 (isSuper && env.enclClass.sym.isAnonymous())) { 3099 // nothing to check 3100 return; 3101 } 3102 Symbol res = isLocal ? 3103 rs.findLocalClassOwner(env, type.tsym) : 3104 rs.findSelfContaining(pos, env, type.getEnclosingType().tsym, isSuper); 3105 if (res.exists()) { 3106 rs.accessBase(res, pos, env.enclClass.sym.type, names._this, true); 3107 } else { 3108 log.error(pos, Errors.EnclClassRequired(type.tsym)); 3109 } 3110 } 3111 3112 /** Make an attributed null check tree. 3113 */ 3114 public JCExpression makeNullCheck(JCExpression arg) { 3115 // optimization: new Outer() can never be null; skip null check 3116 if (arg.getTag() == NEWCLASS) 3117 return arg; 3118 // optimization: X.this is never null; skip null check 3119 Name name = TreeInfo.name(arg); 3120 if (name == names._this || name == names._super) return arg; 3121 3122 JCTree.Tag optag = NULLCHK; 3123 JCUnary tree = make.at(arg.pos).Unary(optag, arg); 3124 tree.operator = operators.resolveUnary(arg, optag, arg.type); 3125 tree.type = arg.type; 3126 return tree; 3127 } 3128 3129 public void visitNewArray(JCNewArray tree) { 3130 Type owntype = types.createErrorType(tree.type); 3131 Env<AttrContext> localEnv = env.dup(tree); 3132 Type elemtype; 3133 if (tree.elemtype != null) { 3134 elemtype = attribType(tree.elemtype, localEnv); 3135 chk.validate(tree.elemtype, localEnv); 3136 owntype = elemtype; 3137 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) { 3138 attribExpr(l.head, localEnv, syms.intType); 3139 owntype = new ArrayType(owntype, syms.arrayClass); 3140 } 3141 } else { 3142 // we are seeing an untyped aggregate { ... } 3143 // this is allowed only if the prototype is an array 3144 if (pt().hasTag(ARRAY)) { 3145 elemtype = types.elemtype(pt()); 3146 } else { 3147 if (!pt().hasTag(ERROR) && 3148 (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3149 log.error(tree.pos(), 3150 Errors.IllegalInitializerForType(pt())); 3151 } 3152 elemtype = types.createErrorType(pt()); 3153 } 3154 } 3155 if (tree.elems != null) { 3156 attribExprs(tree.elems, localEnv, elemtype); 3157 owntype = new ArrayType(elemtype, syms.arrayClass); 3158 } 3159 if (!types.isReifiable(elemtype)) 3160 log.error(tree.pos(), Errors.GenericArrayCreation); 3161 result = check(tree, owntype, KindSelector.VAL, resultInfo); 3162 } 3163 3164 /* 3165 * A lambda expression can only be attributed when a target-type is available. 3166 * In addition, if the target-type is that of a functional interface whose 3167 * descriptor contains inference variables in argument position the lambda expression 3168 * is 'stuck' (see DeferredAttr). 3169 */ 3170 @Override 3171 public void visitLambda(final JCLambda that) { 3172 boolean wrongContext = false; 3173 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3174 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3175 //lambda only allowed in assignment or method invocation/cast context 3176 log.error(that.pos(), Errors.UnexpectedLambda); 3177 } 3178 resultInfo = recoveryInfo; 3179 wrongContext = true; 3180 } 3181 //create an environment for attribution of the lambda expression 3182 final Env<AttrContext> localEnv = lambdaEnv(that, env); 3183 boolean needsRecovery = 3184 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK; 3185 try { 3186 if (needsRecovery && rs.isSerializable(pt())) { 3187 localEnv.info.isSerializable = true; 3188 localEnv.info.isSerializableLambda = true; 3189 } 3190 List<Type> explicitParamTypes = null; 3191 if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) { 3192 //attribute lambda parameters 3193 attribStats(that.params, localEnv); 3194 explicitParamTypes = TreeInfo.types(that.params); 3195 } 3196 3197 TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes); 3198 Type currentTarget = targetInfo.target; 3199 Type lambdaType = targetInfo.descriptor; 3200 3201 if (currentTarget.isErroneous()) { 3202 result = that.type = currentTarget; 3203 return; 3204 } 3205 3206 setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext); 3207 3208 if (lambdaType.hasTag(FORALL)) { 3209 //lambda expression target desc cannot be a generic method 3210 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3211 kindName(currentTarget.tsym), 3212 currentTarget.tsym); 3213 resultInfo.checkContext.report(that, diags.fragment(msg)); 3214 result = that.type = types.createErrorType(pt()); 3215 return; 3216 } 3217 3218 if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) { 3219 //add param type info in the AST 3220 List<Type> actuals = lambdaType.getParameterTypes(); 3221 List<JCVariableDecl> params = that.params; 3222 3223 boolean arityMismatch = false; 3224 3225 while (params.nonEmpty()) { 3226 if (actuals.isEmpty()) { 3227 //not enough actuals to perform lambda parameter inference 3228 arityMismatch = true; 3229 } 3230 //reset previously set info 3231 Type argType = arityMismatch ? 3232 syms.errType : 3233 actuals.head; 3234 if (params.head.isImplicitlyTyped()) { 3235 setSyntheticVariableType(params.head, argType); 3236 } 3237 params.head.sym = null; 3238 actuals = actuals.isEmpty() ? 3239 actuals : 3240 actuals.tail; 3241 params = params.tail; 3242 } 3243 3244 //attribute lambda parameters 3245 attribStats(that.params, localEnv); 3246 3247 if (arityMismatch) { 3248 resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3249 result = that.type = types.createErrorType(currentTarget); 3250 return; 3251 } 3252 } 3253 3254 //from this point on, no recovery is needed; if we are in assignment context 3255 //we will be able to attribute the whole lambda body, regardless of errors; 3256 //if we are in a 'check' method context, and the lambda is not compatible 3257 //with the target-type, it will be recovered anyway in Attr.checkId 3258 needsRecovery = false; 3259 3260 ResultInfo bodyResultInfo = localEnv.info.returnResult = 3261 lambdaBodyResult(that, lambdaType, resultInfo); 3262 3263 if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) { 3264 attribTree(that.getBody(), localEnv, bodyResultInfo); 3265 } else { 3266 JCBlock body = (JCBlock)that.body; 3267 if (body == breakTree && 3268 resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3269 breakTreeFound(copyEnv(localEnv)); 3270 } 3271 attribStats(body.stats, localEnv); 3272 } 3273 3274 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3275 3276 boolean isSpeculativeRound = 3277 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3278 3279 preFlow(that); 3280 flow.analyzeLambda(env, that, make, isSpeculativeRound); 3281 3282 that.type = currentTarget; //avoids recovery at this stage 3283 checkLambdaCompatible(that, lambdaType, resultInfo.checkContext); 3284 3285 if (!isSpeculativeRound) { 3286 //add thrown types as bounds to the thrown types free variables if needed: 3287 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) { 3288 List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make); 3289 if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) { 3290 log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes())); 3291 } 3292 } 3293 3294 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget); 3295 } 3296 result = wrongContext ? that.type = types.createErrorType(pt()) 3297 : check(that, currentTarget, KindSelector.VAL, resultInfo); 3298 } catch (Types.FunctionDescriptorLookupError ex) { 3299 JCDiagnostic cause = ex.getDiagnostic(); 3300 resultInfo.checkContext.report(that, cause); 3301 result = that.type = types.createErrorType(pt()); 3302 return; 3303 } catch (CompletionFailure cf) { 3304 chk.completionError(that.pos(), cf); 3305 } catch (Throwable t) { 3306 //when an unexpected exception happens, avoid attempts to attribute the same tree again 3307 //as that would likely cause the same exception again. 3308 needsRecovery = false; 3309 throw t; 3310 } finally { 3311 localEnv.info.scope.leave(); 3312 if (needsRecovery) { 3313 Type prevResult = result; 3314 try { 3315 attribTree(that, env, recoveryInfo); 3316 } finally { 3317 if (result == Type.recoveryType) { 3318 result = prevResult; 3319 } 3320 } 3321 } 3322 } 3323 } 3324 //where 3325 class TargetInfo { 3326 Type target; 3327 Type descriptor; 3328 3329 public TargetInfo(Type target, Type descriptor) { 3330 this.target = target; 3331 this.descriptor = descriptor; 3332 } 3333 } 3334 3335 TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) { 3336 Type lambdaType; 3337 Type currentTarget = resultInfo.pt; 3338 if (resultInfo.pt != Type.recoveryType) { 3339 /* We need to adjust the target. If the target is an 3340 * intersection type, for example: SAM & I1 & I2 ... 3341 * the target will be updated to SAM 3342 */ 3343 currentTarget = targetChecker.visit(currentTarget, that); 3344 if (!currentTarget.isIntersection()) { 3345 if (explicitParamTypes != null) { 3346 currentTarget = infer.instantiateFunctionalInterface(that, 3347 currentTarget, explicitParamTypes, resultInfo.checkContext); 3348 } 3349 currentTarget = types.removeWildcards(currentTarget); 3350 lambdaType = types.findDescriptorType(currentTarget); 3351 } else { 3352 IntersectionClassType ict = (IntersectionClassType)currentTarget; 3353 ListBuffer<Type> components = new ListBuffer<>(); 3354 for (Type bound : ict.getExplicitComponents()) { 3355 if (explicitParamTypes != null) { 3356 try { 3357 bound = infer.instantiateFunctionalInterface(that, 3358 bound, explicitParamTypes, resultInfo.checkContext); 3359 } catch (FunctionDescriptorLookupError t) { 3360 // do nothing 3361 } 3362 } 3363 bound = types.removeWildcards(bound); 3364 components.add(bound); 3365 } 3366 currentTarget = types.makeIntersectionType(components.toList()); 3367 currentTarget.tsym.flags_field |= INTERFACE; 3368 lambdaType = types.findDescriptorType(currentTarget); 3369 } 3370 3371 } else { 3372 currentTarget = Type.recoveryType; 3373 lambdaType = fallbackDescriptorType(that); 3374 } 3375 if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) { 3376 //lambda expression target desc cannot be a generic method 3377 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType, 3378 kindName(currentTarget.tsym), 3379 currentTarget.tsym); 3380 resultInfo.checkContext.report(that, diags.fragment(msg)); 3381 currentTarget = types.createErrorType(pt()); 3382 } 3383 return new TargetInfo(currentTarget, lambdaType); 3384 } 3385 3386 void preFlow(JCLambda tree) { 3387 attrRecover.doRecovery(); 3388 new PostAttrAnalyzer() { 3389 @Override 3390 public void scan(JCTree tree) { 3391 if (tree == null || 3392 (tree.type != null && 3393 tree.type == Type.stuckType)) { 3394 //don't touch stuck expressions! 3395 return; 3396 } 3397 super.scan(tree); 3398 } 3399 3400 @Override 3401 public void visitClassDef(JCClassDecl that) { 3402 // or class declaration trees! 3403 } 3404 3405 public void visitLambda(JCLambda that) { 3406 // or lambda expressions! 3407 } 3408 }.scan(tree.body); 3409 } 3410 3411 Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() { 3412 3413 @Override 3414 public Type visitClassType(ClassType t, DiagnosticPosition pos) { 3415 return t.isIntersection() ? 3416 visitIntersectionClassType((IntersectionClassType)t, pos) : t; 3417 } 3418 3419 public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) { 3420 types.findDescriptorSymbol(makeNotionalInterface(ict, pos)); 3421 return ict; 3422 } 3423 3424 private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) { 3425 ListBuffer<Type> targs = new ListBuffer<>(); 3426 ListBuffer<Type> supertypes = new ListBuffer<>(); 3427 for (Type i : ict.interfaces_field) { 3428 if (i.isParameterized()) { 3429 targs.appendList(i.tsym.type.allparams()); 3430 } 3431 supertypes.append(i.tsym.type); 3432 } 3433 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList()); 3434 notionalIntf.allparams_field = targs.toList(); 3435 notionalIntf.tsym.flags_field |= INTERFACE; 3436 return notionalIntf.tsym; 3437 } 3438 }; 3439 3440 private Type fallbackDescriptorType(JCExpression tree) { 3441 switch (tree.getTag()) { 3442 case LAMBDA: 3443 JCLambda lambda = (JCLambda)tree; 3444 List<Type> argtypes = List.nil(); 3445 for (JCVariableDecl param : lambda.params) { 3446 argtypes = param.vartype != null && param.vartype.type != null ? 3447 argtypes.append(param.vartype.type) : 3448 argtypes.append(syms.errType); 3449 } 3450 return new MethodType(argtypes, Type.recoveryType, 3451 List.of(syms.throwableType), syms.methodClass); 3452 case REFERENCE: 3453 return new MethodType(List.nil(), Type.recoveryType, 3454 List.of(syms.throwableType), syms.methodClass); 3455 default: 3456 Assert.error("Cannot get here!"); 3457 } 3458 return null; 3459 } 3460 3461 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3462 final InferenceContext inferenceContext, final Type... ts) { 3463 checkAccessibleTypes(pos, env, inferenceContext, List.from(ts)); 3464 } 3465 3466 private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env, 3467 final InferenceContext inferenceContext, final List<Type> ts) { 3468 if (inferenceContext.free(ts)) { 3469 inferenceContext.addFreeTypeListener(ts, 3470 solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts))); 3471 } else { 3472 for (Type t : ts) { 3473 rs.checkAccessibleType(env, t); 3474 } 3475 } 3476 } 3477 3478 /** 3479 * Lambda/method reference have a special check context that ensures 3480 * that i.e. a lambda return type is compatible with the expected 3481 * type according to both the inherited context and the assignment 3482 * context. 3483 */ 3484 class FunctionalReturnContext extends Check.NestedCheckContext { 3485 3486 FunctionalReturnContext(CheckContext enclosingContext) { 3487 super(enclosingContext); 3488 } 3489 3490 @Override 3491 public boolean compatible(Type found, Type req, Warner warn) { 3492 //return type must be compatible in both current context and assignment context 3493 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn); 3494 } 3495 3496 @Override 3497 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3498 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details))); 3499 } 3500 } 3501 3502 class ExpressionLambdaReturnContext extends FunctionalReturnContext { 3503 3504 JCExpression expr; 3505 boolean expStmtExpected; 3506 3507 ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) { 3508 super(enclosingContext); 3509 this.expr = expr; 3510 } 3511 3512 @Override 3513 public void report(DiagnosticPosition pos, JCDiagnostic details) { 3514 if (expStmtExpected) { 3515 enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected)); 3516 } else { 3517 super.report(pos, details); 3518 } 3519 } 3520 3521 @Override 3522 public boolean compatible(Type found, Type req, Warner warn) { 3523 //a void return is compatible with an expression statement lambda 3524 if (req.hasTag(VOID)) { 3525 expStmtExpected = true; 3526 return TreeInfo.isExpressionStatement(expr); 3527 } else { 3528 return super.compatible(found, req, warn); 3529 } 3530 } 3531 } 3532 3533 ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) { 3534 FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ? 3535 new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) : 3536 new FunctionalReturnContext(resultInfo.checkContext); 3537 3538 return descriptor.getReturnType() == Type.recoveryType ? 3539 recoveryInfo : 3540 new ResultInfo(KindSelector.VAL, 3541 descriptor.getReturnType(), funcContext); 3542 } 3543 3544 /** 3545 * Lambda compatibility. Check that given return types, thrown types, parameter types 3546 * are compatible with the expected functional interface descriptor. This means that: 3547 * (i) parameter types must be identical to those of the target descriptor; (ii) return 3548 * types must be compatible with the return type of the expected descriptor. 3549 */ 3550 void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) { 3551 Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType()); 3552 3553 //return values have already been checked - but if lambda has no return 3554 //values, we must ensure that void/value compatibility is correct; 3555 //this amounts at checking that, if a lambda body can complete normally, 3556 //the descriptor's return type must be void 3557 if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally && 3558 !returnType.hasTag(VOID) && returnType != Type.recoveryType) { 3559 Fragment msg = 3560 Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType)); 3561 checkContext.report(tree, 3562 diags.fragment(msg)); 3563 } 3564 3565 List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes()); 3566 if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) { 3567 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda)); 3568 } 3569 } 3570 3571 /* This method returns an environment to be used to attribute a lambda 3572 * expression. 3573 * 3574 * The owner of this environment is a method symbol. If the current owner 3575 * is not a method (e.g. if the lambda occurs in a field initializer), then 3576 * a synthetic method symbol owner is created. 3577 */ 3578 public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) { 3579 Env<AttrContext> lambdaEnv; 3580 Symbol owner = env.info.scope.owner; 3581 if (owner.kind == VAR && owner.owner.kind == TYP) { 3582 // If the lambda is nested in a field initializer, we need to create a fake init method. 3583 // Uniqueness of this symbol is not important (as e.g. annotations will be added on the 3584 // init symbol's owner). 3585 ClassSymbol enclClass = owner.enclClass(); 3586 Name initName = owner.isStatic() ? names.clinit : names.init; 3587 MethodSymbol initSym = new MethodSymbol(BLOCK | (owner.isStatic() ? STATIC : 0) | SYNTHETIC | PRIVATE, 3588 initName, initBlockType, enclClass); 3589 initSym.params = List.nil(); 3590 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(initSym))); 3591 } else { 3592 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup())); 3593 } 3594 lambdaEnv.info.yieldResult = null; 3595 lambdaEnv.info.isLambda = true; 3596 return lambdaEnv; 3597 } 3598 3599 @Override 3600 public void visitReference(final JCMemberReference that) { 3601 if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) { 3602 if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) { 3603 //method reference only allowed in assignment or method invocation/cast context 3604 log.error(that.pos(), Errors.UnexpectedMref); 3605 } 3606 result = that.type = types.createErrorType(pt()); 3607 return; 3608 } 3609 final Env<AttrContext> localEnv = env.dup(that); 3610 try { 3611 //attribute member reference qualifier - if this is a constructor 3612 //reference, the expected kind must be a type 3613 Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that)); 3614 3615 if (that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3616 exprType = chk.checkConstructorRefType(that.expr, exprType); 3617 if (!exprType.isErroneous() && 3618 exprType.isRaw() && 3619 that.typeargs != null) { 3620 log.error(that.expr.pos(), 3621 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3622 Fragments.MrefInferAndExplicitParams)); 3623 exprType = types.createErrorType(exprType); 3624 } 3625 } 3626 3627 if (exprType.isErroneous()) { 3628 //if the qualifier expression contains problems, 3629 //give up attribution of method reference 3630 result = that.type = exprType; 3631 return; 3632 } 3633 3634 if (TreeInfo.isStaticSelector(that.expr, names)) { 3635 //if the qualifier is a type, validate it; raw warning check is 3636 //omitted as we don't know at this stage as to whether this is a 3637 //raw selector (because of inference) 3638 chk.validate(that.expr, env, false); 3639 } else { 3640 Symbol lhsSym = TreeInfo.symbol(that.expr); 3641 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super; 3642 } 3643 //attrib type-arguments 3644 List<Type> typeargtypes = List.nil(); 3645 if (that.typeargs != null) { 3646 typeargtypes = attribTypes(that.typeargs, localEnv); 3647 } 3648 3649 boolean isTargetSerializable = 3650 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3651 rs.isSerializable(pt()); 3652 TargetInfo targetInfo = getTargetInfo(that, resultInfo, null); 3653 Type currentTarget = targetInfo.target; 3654 Type desc = targetInfo.descriptor; 3655 3656 setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext); 3657 List<Type> argtypes = desc.getParameterTypes(); 3658 Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck; 3659 3660 if (resultInfo.checkContext.inferenceContext().free(argtypes)) { 3661 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext()); 3662 } 3663 3664 Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null; 3665 List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save(); 3666 try { 3667 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type, 3668 that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck, 3669 resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser); 3670 } finally { 3671 resultInfo.checkContext.inferenceContext().rollback(saved_undet); 3672 } 3673 3674 Symbol refSym = refResult.fst; 3675 Resolve.ReferenceLookupHelper lookupHelper = refResult.snd; 3676 3677 /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing 3678 * JDK-8075541 3679 */ 3680 if (refSym.kind != MTH) { 3681 boolean targetError; 3682 switch (refSym.kind) { 3683 case ABSENT_MTH: 3684 targetError = false; 3685 break; 3686 case WRONG_MTH: 3687 case WRONG_MTHS: 3688 case AMBIGUOUS: 3689 case HIDDEN: 3690 case STATICERR: 3691 targetError = true; 3692 break; 3693 default: 3694 Assert.error("unexpected result kind " + refSym.kind); 3695 targetError = false; 3696 } 3697 3698 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol()) 3699 .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT, 3700 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes); 3701 3702 JCDiagnostic diag = diags.create(log.currentSource(), that, 3703 targetError ? 3704 Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) : 3705 Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag)); 3706 3707 if (targetError && currentTarget == Type.recoveryType) { 3708 //a target error doesn't make sense during recovery stage 3709 //as we don't know what actual parameter types are 3710 result = that.type = currentTarget; 3711 return; 3712 } else { 3713 if (targetError) { 3714 resultInfo.checkContext.report(that, diag); 3715 } else { 3716 log.report(diag); 3717 } 3718 result = that.type = types.createErrorType(currentTarget); 3719 return; 3720 } 3721 } 3722 3723 that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym; 3724 that.kind = lookupHelper.referenceKind(that.sym); 3725 that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass()); 3726 3727 if (desc.getReturnType() == Type.recoveryType) { 3728 // stop here 3729 result = that.type = currentTarget; 3730 return; 3731 } 3732 3733 if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) { 3734 checkNewInnerClass(that.pos(), env, exprType, false); 3735 } 3736 3737 if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) { 3738 3739 if (that.getMode() == ReferenceMode.INVOKE && 3740 TreeInfo.isStaticSelector(that.expr, names) && 3741 that.kind.isUnbound() && 3742 lookupHelper.site.isRaw()) { 3743 chk.checkRaw(that.expr, localEnv); 3744 } 3745 3746 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) && 3747 exprType.getTypeArguments().nonEmpty()) { 3748 //static ref with class type-args 3749 log.error(that.expr.pos(), 3750 Errors.InvalidMref(Kinds.kindName(that.getMode()), 3751 Fragments.StaticMrefWithTargs)); 3752 result = that.type = types.createErrorType(currentTarget); 3753 return; 3754 } 3755 3756 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) { 3757 // Check that super-qualified symbols are not abstract (JLS) 3758 rs.checkNonAbstract(that.pos(), that.sym); 3759 } 3760 3761 if (isTargetSerializable) { 3762 chk.checkAccessFromSerializableElement(that, true); 3763 } 3764 } 3765 3766 ResultInfo checkInfo = 3767 resultInfo.dup(newMethodTemplate( 3768 desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(), 3769 that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes), 3770 new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE); 3771 3772 Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo); 3773 3774 if (that.kind.isUnbound() && 3775 resultInfo.checkContext.inferenceContext().free(argtypes.head)) { 3776 //re-generate inference constraints for unbound receiver 3777 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) { 3778 //cannot happen as this has already been checked - we just need 3779 //to regenerate the inference constraints, as that has been lost 3780 //as a result of the call to inferenceContext.save() 3781 Assert.error("Can't get here"); 3782 } 3783 } 3784 3785 if (!refType.isErroneous()) { 3786 refType = types.createMethodTypeWithReturn(refType, 3787 adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType())); 3788 } 3789 3790 //go ahead with standard method reference compatibility check - note that param check 3791 //is a no-op (as this has been taken care during method applicability) 3792 boolean isSpeculativeRound = 3793 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE; 3794 3795 that.type = currentTarget; //avoids recovery at this stage 3796 checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound); 3797 if (!isSpeculativeRound) { 3798 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget); 3799 } 3800 result = check(that, currentTarget, KindSelector.VAL, resultInfo); 3801 } catch (Types.FunctionDescriptorLookupError ex) { 3802 JCDiagnostic cause = ex.getDiagnostic(); 3803 resultInfo.checkContext.report(that, cause); 3804 result = that.type = types.createErrorType(pt()); 3805 return; 3806 } 3807 } 3808 //where 3809 ResultInfo memberReferenceQualifierResult(JCMemberReference tree) { 3810 //if this is a constructor reference, the expected kind must be a type 3811 return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? 3812 KindSelector.VAL_TYP : KindSelector.TYP, 3813 Type.noType); 3814 } 3815 3816 3817 @SuppressWarnings("fallthrough") 3818 void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) { 3819 InferenceContext inferenceContext = checkContext.inferenceContext(); 3820 Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType()); 3821 3822 Type resType; 3823 switch (tree.getMode()) { 3824 case NEW: 3825 if (!tree.expr.type.isRaw()) { 3826 resType = tree.expr.type; 3827 break; 3828 } 3829 default: 3830 resType = refType.getReturnType(); 3831 } 3832 3833 Type incompatibleReturnType = resType; 3834 3835 if (returnType.hasTag(VOID)) { 3836 incompatibleReturnType = null; 3837 } 3838 3839 if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) { 3840 if (resType.isErroneous() || 3841 new FunctionalReturnContext(checkContext).compatible(resType, returnType, 3842 checkContext.checkWarner(tree, resType, returnType))) { 3843 incompatibleReturnType = null; 3844 } 3845 } 3846 3847 if (incompatibleReturnType != null) { 3848 Fragment msg = 3849 Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType())); 3850 checkContext.report(tree, diags.fragment(msg)); 3851 } else { 3852 if (inferenceContext.free(refType)) { 3853 // we need to wait for inference to finish and then replace inference vars in the referent type 3854 inferenceContext.addFreeTypeListener(List.of(refType), 3855 instantiatedContext -> { 3856 tree.referentType = instantiatedContext.asInstType(refType); 3857 }); 3858 } else { 3859 tree.referentType = refType; 3860 } 3861 } 3862 3863 if (!speculativeAttr) { 3864 if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) { 3865 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes())); 3866 } 3867 } 3868 } 3869 3870 boolean checkExConstraints( 3871 List<Type> thrownByFuncExpr, 3872 List<Type> thrownAtFuncType, 3873 InferenceContext inferenceContext) { 3874 /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that 3875 * are not proper types 3876 */ 3877 List<Type> nonProperList = thrownAtFuncType.stream() 3878 .filter(e -> inferenceContext.free(e)).collect(List.collector()); 3879 List<Type> properList = thrownAtFuncType.diff(nonProperList); 3880 3881 /** Let X1,...,Xm be the checked exception types that the lambda body can throw or 3882 * in the throws clause of the invocation type of the method reference's compile-time 3883 * declaration 3884 */ 3885 List<Type> checkedList = thrownByFuncExpr.stream() 3886 .filter(e -> chk.isChecked(e)).collect(List.collector()); 3887 3888 /** If n = 0 (the function type's throws clause consists only of proper types), then 3889 * if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type 3890 * in the throws clause, the constraint reduces to false; otherwise, the constraint 3891 * reduces to true 3892 */ 3893 ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>(); 3894 for (Type checked : checkedList) { 3895 boolean isSubtype = false; 3896 for (Type proper : properList) { 3897 if (types.isSubtype(checked, proper)) { 3898 isSubtype = true; 3899 break; 3900 } 3901 } 3902 if (!isSubtype) { 3903 uncaughtByProperTypes.add(checked); 3904 } 3905 } 3906 3907 if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) { 3908 return false; 3909 } 3910 3911 /** If n > 0, the constraint reduces to a set of subtyping constraints: 3912 * for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the 3913 * throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej> 3914 */ 3915 List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList); 3916 uncaughtByProperTypes.forEach(checkedEx -> { 3917 nonProperAsUndet.forEach(nonProper -> { 3918 types.isSubtype(checkedEx, nonProper); 3919 }); 3920 }); 3921 3922 /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej 3923 */ 3924 nonProperAsUndet.stream() 3925 .filter(t -> t.hasTag(UNDETVAR)) 3926 .forEach(t -> ((UndetVar)t).setThrow()); 3927 return true; 3928 } 3929 3930 /** 3931 * Set functional type info on the underlying AST. Note: as the target descriptor 3932 * might contain inference variables, we might need to register an hook in the 3933 * current inference context. 3934 */ 3935 private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr, 3936 final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) { 3937 if (checkContext.inferenceContext().free(descriptorType)) { 3938 checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), 3939 inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType), 3940 inferenceContext.asInstType(primaryTarget), checkContext)); 3941 } else { 3942 fExpr.owner = env.info.scope.owner; 3943 if (pt.hasTag(CLASS)) { 3944 fExpr.target = primaryTarget; 3945 } 3946 if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK && 3947 pt != Type.recoveryType) { 3948 //check that functional interface class is well-formed 3949 try { 3950 /* Types.makeFunctionalInterfaceClass() may throw an exception 3951 * when it's executed post-inference. See the listener code 3952 * above. 3953 */ 3954 ClassSymbol csym = types.makeFunctionalInterfaceClass(env, 3955 names.empty, fExpr.target, ABSTRACT); 3956 if (csym != null) { 3957 chk.checkImplementations(env.tree, csym, csym); 3958 try { 3959 //perform an additional functional interface check on the synthetic class, 3960 //as there may be spurious errors for raw targets - because of existing issues 3961 //with membership and inheritance (see JDK-8074570). 3962 csym.flags_field |= INTERFACE; 3963 types.findDescriptorType(csym.type); 3964 } catch (FunctionDescriptorLookupError err) { 3965 resultInfo.checkContext.report(fExpr, 3966 diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target))); 3967 } 3968 } 3969 } catch (Types.FunctionDescriptorLookupError ex) { 3970 JCDiagnostic cause = ex.getDiagnostic(); 3971 resultInfo.checkContext.report(env.tree, cause); 3972 } 3973 } 3974 } 3975 } 3976 3977 public void visitParens(JCParens tree) { 3978 Type owntype = attribTree(tree.expr, env, resultInfo); 3979 result = check(tree, owntype, pkind(), resultInfo); 3980 Symbol sym = TreeInfo.symbol(tree); 3981 if (sym != null && sym.kind.matches(KindSelector.TYP_PCK) && sym.kind != Kind.ERR) 3982 log.error(tree.pos(), Errors.IllegalParenthesizedExpression); 3983 } 3984 3985 public void visitAssign(JCAssign tree) { 3986 Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo); 3987 Type capturedType = capture(owntype); 3988 attribExpr(tree.rhs, env, owntype); 3989 result = check(tree, capturedType, KindSelector.VAL, resultInfo); 3990 } 3991 3992 public void visitAssignop(JCAssignOp tree) { 3993 // Attribute arguments. 3994 Type owntype = attribTree(tree.lhs, env, varAssignmentInfo); 3995 Type operand = attribExpr(tree.rhs, env); 3996 // Find operator. 3997 Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand); 3998 if (operator != operators.noOpSymbol && 3999 !owntype.isErroneous() && 4000 !operand.isErroneous()) { 4001 chk.checkDivZero(tree.rhs.pos(), operator, operand); 4002 chk.checkCastable(tree.rhs.pos(), 4003 operator.type.getReturnType(), 4004 owntype); 4005 chk.checkLossOfPrecision(tree.rhs.pos(), operand, owntype); 4006 } 4007 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4008 } 4009 4010 public void visitUnary(JCUnary tree) { 4011 // Attribute arguments. 4012 Type argtype = (tree.getTag().isIncOrDecUnaryOp()) 4013 ? attribTree(tree.arg, env, varAssignmentInfo) 4014 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env)); 4015 4016 // Find operator. 4017 OperatorSymbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype); 4018 Type owntype = types.createErrorType(tree.type); 4019 if (operator != operators.noOpSymbol && 4020 !argtype.isErroneous()) { 4021 owntype = (tree.getTag().isIncOrDecUnaryOp()) 4022 ? tree.arg.type 4023 : operator.type.getReturnType(); 4024 int opc = operator.opcode; 4025 4026 // If the argument is constant, fold it. 4027 if (argtype.constValue() != null) { 4028 Type ctype = cfolder.fold1(opc, argtype); 4029 if (ctype != null) { 4030 owntype = cfolder.coerce(ctype, owntype); 4031 } 4032 } 4033 } 4034 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4035 matchBindings = matchBindingsComputer.unary(tree, matchBindings); 4036 } 4037 4038 public void visitBinary(JCBinary tree) { 4039 // Attribute arguments. 4040 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env)); 4041 // x && y 4042 // include x's bindings when true in y 4043 4044 // x || y 4045 // include x's bindings when false in y 4046 4047 MatchBindings lhsBindings = matchBindings; 4048 List<BindingSymbol> propagatedBindings; 4049 switch (tree.getTag()) { 4050 case AND: 4051 propagatedBindings = lhsBindings.bindingsWhenTrue; 4052 break; 4053 case OR: 4054 propagatedBindings = lhsBindings.bindingsWhenFalse; 4055 break; 4056 default: 4057 propagatedBindings = List.nil(); 4058 break; 4059 } 4060 Env<AttrContext> rhsEnv = bindingEnv(env, propagatedBindings); 4061 Type right; 4062 try { 4063 right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv)); 4064 } finally { 4065 rhsEnv.info.scope.leave(); 4066 } 4067 4068 matchBindings = matchBindingsComputer.binary(tree, lhsBindings, matchBindings); 4069 4070 // Find operator. 4071 OperatorSymbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right); 4072 Type owntype = types.createErrorType(tree.type); 4073 if (operator != operators.noOpSymbol && 4074 !left.isErroneous() && 4075 !right.isErroneous()) { 4076 owntype = operator.type.getReturnType(); 4077 int opc = operator.opcode; 4078 // If both arguments are constants, fold them. 4079 if (left.constValue() != null && right.constValue() != null) { 4080 Type ctype = cfolder.fold2(opc, left, right); 4081 if (ctype != null) { 4082 owntype = cfolder.coerce(ctype, owntype); 4083 } 4084 } 4085 4086 // Check that argument types of a reference ==, != are 4087 // castable to each other, (JLS 15.21). Note: unboxing 4088 // comparisons will not have an acmp* opc at this point. 4089 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) { 4090 if (!types.isCastable(left, right, new Warner(tree.pos()))) { 4091 log.error(tree.pos(), Errors.IncomparableTypes(left, right)); 4092 } 4093 } 4094 4095 chk.checkDivZero(tree.rhs.pos(), operator, right); 4096 } 4097 result = check(tree, owntype, KindSelector.VAL, resultInfo); 4098 } 4099 4100 public void visitTypeCast(final JCTypeCast tree) { 4101 Type clazztype = attribType(tree.clazz, env); 4102 chk.validate(tree.clazz, env, false); 4103 //a fresh environment is required for 292 inference to work properly --- 4104 //see Infer.instantiatePolymorphicSignatureInstance() 4105 Env<AttrContext> localEnv = env.dup(tree); 4106 //should we propagate the target type? 4107 final ResultInfo castInfo; 4108 JCExpression expr = TreeInfo.skipParens(tree.expr); 4109 boolean isPoly = (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE)); 4110 if (isPoly) { 4111 //expression is a poly - we need to propagate target type info 4112 castInfo = new ResultInfo(KindSelector.VAL, clazztype, 4113 new Check.NestedCheckContext(resultInfo.checkContext) { 4114 @Override 4115 public boolean compatible(Type found, Type req, Warner warn) { 4116 return types.isCastable(found, req, warn); 4117 } 4118 }); 4119 } else { 4120 //standalone cast - target-type info is not propagated 4121 castInfo = unknownExprInfo; 4122 } 4123 Type exprtype = attribTree(tree.expr, localEnv, castInfo); 4124 Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4125 if (exprtype.constValue() != null) 4126 owntype = cfolder.coerce(exprtype, owntype); 4127 result = check(tree, capture(owntype), KindSelector.VAL, resultInfo); 4128 if (!isPoly) 4129 chk.checkRedundantCast(localEnv, tree); 4130 } 4131 4132 public void visitTypeTest(JCInstanceOf tree) { 4133 Type exprtype = attribExpr(tree.expr, env); 4134 if (exprtype.isPrimitive()) { 4135 preview.checkSourceLevel(tree.expr.pos(), Feature.PRIMITIVE_PATTERNS); 4136 } else { 4137 exprtype = chk.checkNullOrRefType( 4138 tree.expr.pos(), exprtype); 4139 } 4140 Type clazztype; 4141 JCTree typeTree; 4142 if (tree.pattern.getTag() == BINDINGPATTERN || 4143 tree.pattern.getTag() == RECORDPATTERN) { 4144 attribExpr(tree.pattern, env, exprtype); 4145 clazztype = tree.pattern.type; 4146 if (types.isSubtype(exprtype, clazztype) && 4147 !exprtype.isErroneous() && !clazztype.isErroneous() && 4148 tree.pattern.getTag() != RECORDPATTERN) { 4149 if (!allowUnconditionalPatternsInstanceOf) { 4150 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4151 Feature.UNCONDITIONAL_PATTERN_IN_INSTANCEOF.error(this.sourceName)); 4152 } 4153 } 4154 typeTree = TreeInfo.primaryPatternTypeTree((JCPattern) tree.pattern); 4155 } else { 4156 clazztype = attribType(tree.pattern, env); 4157 typeTree = tree.pattern; 4158 chk.validate(typeTree, env, false); 4159 } 4160 if (clazztype.isPrimitive()) { 4161 preview.checkSourceLevel(tree.pattern.pos(), Feature.PRIMITIVE_PATTERNS); 4162 } else { 4163 if (!clazztype.hasTag(TYPEVAR)) { 4164 clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype); 4165 } 4166 if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) { 4167 boolean valid = false; 4168 if (allowReifiableTypesInInstanceof) { 4169 valid = checkCastablePattern(tree.expr.pos(), exprtype, clazztype); 4170 } else { 4171 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), 4172 Feature.REIFIABLE_TYPES_INSTANCEOF.error(this.sourceName)); 4173 allowReifiableTypesInInstanceof = true; 4174 } 4175 if (!valid) { 4176 clazztype = types.createErrorType(clazztype); 4177 } 4178 } 4179 } 4180 chk.checkCastable(tree.expr.pos(), exprtype, clazztype); 4181 result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo); 4182 } 4183 4184 private boolean checkCastablePattern(DiagnosticPosition pos, 4185 Type exprType, 4186 Type pattType) { 4187 Warner warner = new Warner(); 4188 // if any type is erroneous, the problem is reported elsewhere 4189 if (exprType.isErroneous() || pattType.isErroneous()) { 4190 return false; 4191 } 4192 if (!types.isCastable(exprType, pattType, warner)) { 4193 chk.basicHandler.report(pos, 4194 diags.fragment(Fragments.InconvertibleTypes(exprType, pattType))); 4195 return false; 4196 } else if ((exprType.isPrimitive() || pattType.isPrimitive()) && 4197 (!exprType.isPrimitive() || !pattType.isPrimitive() || !types.isSameType(exprType, pattType))) { 4198 preview.checkSourceLevel(pos, Feature.PRIMITIVE_PATTERNS); 4199 return true; 4200 } else if (warner.hasLint(LintCategory.UNCHECKED)) { 4201 log.error(pos, 4202 Errors.InstanceofReifiableNotSafe(exprType, pattType)); 4203 return false; 4204 } else { 4205 return true; 4206 } 4207 } 4208 4209 @Override 4210 public void visitAnyPattern(JCAnyPattern tree) { 4211 result = tree.type = resultInfo.pt; 4212 } 4213 4214 public void visitBindingPattern(JCBindingPattern tree) { 4215 Type type; 4216 if (tree.var.vartype != null) { 4217 type = attribType(tree.var.vartype, env); 4218 } else { 4219 type = resultInfo.pt; 4220 } 4221 tree.type = tree.var.type = type; 4222 BindingSymbol v = new BindingSymbol(tree.var.mods.flags, tree.var.name, type, env.info.scope.owner); 4223 v.pos = tree.pos; 4224 tree.var.sym = v; 4225 if (chk.checkUnique(tree.var.pos(), v, env.info.scope)) { 4226 chk.checkTransparentVar(tree.var.pos(), v, env.info.scope); 4227 } 4228 chk.validate(tree.var.vartype, env, true); 4229 if (tree.var.isImplicitlyTyped()) { 4230 setSyntheticVariableType(tree.var, type == Type.noType ? syms.errType 4231 : type); 4232 } 4233 annotate.annotateLater(tree.var.mods.annotations, env, v, tree.var); 4234 if (!tree.var.isImplicitlyTyped()) { 4235 annotate.queueScanTreeAndTypeAnnotate(tree.var.vartype, env, v, tree.var); 4236 } 4237 annotate.flush(); 4238 result = tree.type; 4239 if (v.isUnnamedVariable()) { 4240 matchBindings = MatchBindingsComputer.EMPTY; 4241 } else { 4242 matchBindings = new MatchBindings(List.of(v), List.nil()); 4243 } 4244 } 4245 4246 @Override 4247 public void visitRecordPattern(JCRecordPattern tree) { 4248 Type site; 4249 4250 if (tree.deconstructor == null) { 4251 log.error(tree.pos(), Errors.DeconstructionPatternVarNotAllowed); 4252 tree.record = syms.errSymbol; 4253 site = tree.type = types.createErrorType(tree.record.type); 4254 } else { 4255 Type type = attribType(tree.deconstructor, env); 4256 if (type.isRaw() && type.tsym.getTypeParameters().nonEmpty()) { 4257 Type inferred = infer.instantiatePatternType(resultInfo.pt, type.tsym); 4258 if (inferred == null) { 4259 log.error(tree.pos(), Errors.PatternTypeCannotInfer); 4260 } else { 4261 type = inferred; 4262 } 4263 } 4264 tree.type = tree.deconstructor.type = type; 4265 site = types.capture(tree.type); 4266 } 4267 4268 List<Type> expectedRecordTypes; 4269 if (site.tsym.kind == Kind.TYP && ((ClassSymbol) site.tsym).isRecord()) { 4270 ClassSymbol record = (ClassSymbol) site.tsym; 4271 expectedRecordTypes = record.getRecordComponents() 4272 .stream() 4273 .map(rc -> types.memberType(site, rc)) 4274 .map(t -> types.upward(t, types.captures(t)).baseType()) 4275 .collect(List.collector()); 4276 tree.record = record; 4277 } else { 4278 log.error(tree.pos(), Errors.DeconstructionPatternOnlyRecords(site.tsym)); 4279 expectedRecordTypes = Stream.generate(() -> types.createErrorType(tree.type)) 4280 .limit(tree.nested.size()) 4281 .collect(List.collector()); 4282 tree.record = syms.errSymbol; 4283 } 4284 ListBuffer<BindingSymbol> outBindings = new ListBuffer<>(); 4285 List<Type> recordTypes = expectedRecordTypes; 4286 List<JCPattern> nestedPatterns = tree.nested; 4287 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup())); 4288 try { 4289 while (recordTypes.nonEmpty() && nestedPatterns.nonEmpty()) { 4290 attribExpr(nestedPatterns.head, localEnv, recordTypes.head); 4291 checkCastablePattern(nestedPatterns.head.pos(), recordTypes.head, nestedPatterns.head.type); 4292 outBindings.addAll(matchBindings.bindingsWhenTrue); 4293 matchBindings.bindingsWhenTrue.forEach(localEnv.info.scope::enter); 4294 nestedPatterns = nestedPatterns.tail; 4295 recordTypes = recordTypes.tail; 4296 } 4297 if (recordTypes.nonEmpty() || nestedPatterns.nonEmpty()) { 4298 while (nestedPatterns.nonEmpty()) { 4299 attribExpr(nestedPatterns.head, localEnv, Type.noType); 4300 nestedPatterns = nestedPatterns.tail; 4301 } 4302 List<Type> nestedTypes = 4303 tree.nested.stream().map(p -> p.type).collect(List.collector()); 4304 log.error(tree.pos(), 4305 Errors.IncorrectNumberOfNestedPatterns(expectedRecordTypes, 4306 nestedTypes)); 4307 } 4308 } finally { 4309 localEnv.info.scope.leave(); 4310 } 4311 chk.validate(tree.deconstructor, env, true); 4312 result = tree.type; 4313 matchBindings = new MatchBindings(outBindings.toList(), List.nil()); 4314 } 4315 4316 public void visitIndexed(JCArrayAccess tree) { 4317 Type owntype = types.createErrorType(tree.type); 4318 Type atype = attribExpr(tree.indexed, env); 4319 attribExpr(tree.index, env, syms.intType); 4320 if (types.isArray(atype)) 4321 owntype = types.elemtype(atype); 4322 else if (!atype.hasTag(ERROR)) 4323 log.error(tree.pos(), Errors.ArrayReqButFound(atype)); 4324 if (!pkind().contains(KindSelector.VAL)) 4325 owntype = capture(owntype); 4326 result = check(tree, owntype, KindSelector.VAR, resultInfo); 4327 } 4328 4329 public void visitIdent(JCIdent tree) { 4330 Symbol sym; 4331 4332 // Find symbol 4333 if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) { 4334 // If we are looking for a method, the prototype `pt' will be a 4335 // method type with the type of the call's arguments as parameters. 4336 env.info.pendingResolutionPhase = null; 4337 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments()); 4338 } else if (tree.sym != null && tree.sym.kind != VAR) { 4339 sym = tree.sym; 4340 } else { 4341 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind()); 4342 } 4343 tree.sym = sym; 4344 4345 // Also find the environment current for the class where 4346 // sym is defined (`symEnv'). 4347 Env<AttrContext> symEnv = env; 4348 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class 4349 sym.kind.matches(KindSelector.VAL_MTH) && 4350 sym.owner.kind == TYP && 4351 tree.name != names._this && tree.name != names._super) { 4352 4353 // Find environment in which identifier is defined. 4354 while (symEnv.outer != null && 4355 !sym.isMemberOf(symEnv.enclClass.sym, types)) { 4356 symEnv = symEnv.outer; 4357 } 4358 } 4359 4360 // If symbol is a variable, ... 4361 if (sym.kind == VAR) { 4362 VarSymbol v = (VarSymbol)sym; 4363 4364 // ..., evaluate its initializer, if it has one, and check for 4365 // illegal forward reference. 4366 checkInit(tree, env, v, false); 4367 4368 // If we are expecting a variable (as opposed to a value), check 4369 // that the variable is assignable in the current environment. 4370 if (KindSelector.ASG.subset(pkind())) 4371 checkAssignable(tree.pos(), v, null, env); 4372 } 4373 4374 Env<AttrContext> env1 = env; 4375 if (sym.kind != ERR && sym.kind != TYP && 4376 sym.owner != null && sym.owner != env1.enclClass.sym) { 4377 // If the found symbol is inaccessible, then it is 4378 // accessed through an enclosing instance. Locate this 4379 // enclosing instance: 4380 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym)) 4381 env1 = env1.outer; 4382 } 4383 4384 if (env.info.isSerializable) { 4385 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4386 } 4387 4388 result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo); 4389 } 4390 4391 public void visitSelect(JCFieldAccess tree) { 4392 // Determine the expected kind of the qualifier expression. 4393 KindSelector skind = KindSelector.NIL; 4394 if (tree.name == names._this || tree.name == names._super || 4395 tree.name == names._class) 4396 { 4397 skind = KindSelector.TYP; 4398 } else { 4399 if (pkind().contains(KindSelector.PCK)) 4400 skind = KindSelector.of(skind, KindSelector.PCK); 4401 if (pkind().contains(KindSelector.TYP)) 4402 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK); 4403 if (pkind().contains(KindSelector.VAL_MTH)) 4404 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP); 4405 } 4406 4407 // Attribute the qualifier expression, and determine its symbol (if any). 4408 Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType)); 4409 Assert.check(site == tree.selected.type); 4410 if (!pkind().contains(KindSelector.TYP_PCK)) 4411 site = capture(site); // Capture field access 4412 4413 // don't allow T.class T[].class, etc 4414 if (skind == KindSelector.TYP) { 4415 Type elt = site; 4416 while (elt.hasTag(ARRAY)) 4417 elt = ((ArrayType)elt).elemtype; 4418 if (elt.hasTag(TYPEVAR)) { 4419 log.error(tree.pos(), Errors.TypeVarCantBeDeref); 4420 result = tree.type = types.createErrorType(tree.name, site.tsym, site); 4421 tree.sym = tree.type.tsym; 4422 return ; 4423 } 4424 } 4425 4426 // If qualifier symbol is a type or `super', assert `selectSuper' 4427 // for the selection. This is relevant for determining whether 4428 // protected symbols are accessible. 4429 Symbol sitesym = TreeInfo.symbol(tree.selected); 4430 boolean selectSuperPrev = env.info.selectSuper; 4431 env.info.selectSuper = 4432 sitesym != null && 4433 sitesym.name == names._super; 4434 4435 // Determine the symbol represented by the selection. 4436 env.info.pendingResolutionPhase = null; 4437 Symbol sym = selectSym(tree, sitesym, site, env, resultInfo); 4438 if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) { 4439 log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym)); 4440 sym = syms.errSymbol; 4441 } 4442 if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) { 4443 site = capture(site); 4444 sym = selectSym(tree, sitesym, site, env, resultInfo); 4445 } 4446 boolean varArgs = env.info.lastResolveVarargs(); 4447 tree.sym = sym; 4448 4449 if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) { 4450 site = types.skipTypeVars(site, true); 4451 } 4452 4453 // If that symbol is a variable, ... 4454 if (sym.kind == VAR) { 4455 VarSymbol v = (VarSymbol)sym; 4456 4457 // ..., evaluate its initializer, if it has one, and check for 4458 // illegal forward reference. 4459 checkInit(tree, env, v, true); 4460 4461 // If we are expecting a variable (as opposed to a value), check 4462 // that the variable is assignable in the current environment. 4463 if (KindSelector.ASG.subset(pkind())) 4464 checkAssignable(tree.pos(), v, tree.selected, env); 4465 } 4466 4467 if (sitesym != null && 4468 sitesym.kind == VAR && 4469 ((VarSymbol)sitesym).isResourceVariable() && 4470 sym.kind == MTH && 4471 sym.name.equals(names.close) && 4472 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true)) { 4473 env.info.lint.logIfEnabled(tree, LintWarnings.TryExplicitCloseCall); 4474 } 4475 4476 // Disallow selecting a type from an expression 4477 if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) { 4478 tree.type = check(tree.selected, pt(), 4479 sitesym == null ? 4480 KindSelector.VAL : sitesym.kind.toSelector(), 4481 new ResultInfo(KindSelector.TYP_PCK, pt())); 4482 } 4483 4484 if (isType(sitesym)) { 4485 if (sym.name != names._this && sym.name != names._super) { 4486 // Check if type-qualified fields or methods are static (JLS) 4487 if ((sym.flags() & STATIC) == 0 && 4488 sym.name != names._super && 4489 (sym.kind == VAR || sym.kind == MTH)) { 4490 rs.accessBase(rs.new StaticError(sym), 4491 tree.pos(), site, sym.name, true); 4492 } 4493 } 4494 } else if (sym.kind != ERR && 4495 (sym.flags() & STATIC) != 0 && 4496 sym.name != names._class) { 4497 // If the qualified item is not a type and the selected item is static, report 4498 // a warning. Make allowance for the class of an array type e.g. Object[].class) 4499 if (!sym.owner.isAnonymous()) { 4500 chk.lint.logIfEnabled(tree, LintWarnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner)); 4501 } else { 4502 chk.lint.logIfEnabled(tree, LintWarnings.StaticNotQualifiedByType2(sym.kind.kindName())); 4503 } 4504 } 4505 4506 // If we are selecting an instance member via a `super', ... 4507 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) { 4508 4509 // Check that super-qualified symbols are not abstract (JLS) 4510 rs.checkNonAbstract(tree.pos(), sym); 4511 4512 if (site.isRaw()) { 4513 // Determine argument types for site. 4514 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym); 4515 if (site1 != null) site = site1; 4516 } 4517 } 4518 4519 if (env.info.isSerializable) { 4520 chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda); 4521 } 4522 4523 env.info.selectSuper = selectSuperPrev; 4524 result = checkId(tree, site, sym, env, resultInfo); 4525 } 4526 //where 4527 /** Determine symbol referenced by a Select expression, 4528 * 4529 * @param tree The select tree. 4530 * @param site The type of the selected expression, 4531 * @param env The current environment. 4532 * @param resultInfo The current result. 4533 */ 4534 private Symbol selectSym(JCFieldAccess tree, 4535 Symbol location, 4536 Type site, 4537 Env<AttrContext> env, 4538 ResultInfo resultInfo) { 4539 DiagnosticPosition pos = tree.pos(); 4540 Name name = tree.name; 4541 switch (site.getTag()) { 4542 case PACKAGE: 4543 return rs.accessBase( 4544 rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind), 4545 pos, location, site, name, true); 4546 case ARRAY: 4547 case CLASS: 4548 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) { 4549 return rs.resolveQualifiedMethod( 4550 pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments()); 4551 } else if (name == names._this || name == names._super) { 4552 return rs.resolveSelf(pos, env, site.tsym, name); 4553 } else if (name == names._class) { 4554 // In this case, we have already made sure in 4555 // visitSelect that qualifier expression is a type. 4556 return syms.getClassField(site, types); 4557 } else { 4558 // We are seeing a plain identifier as selector. 4559 Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind); 4560 sym = rs.accessBase(sym, pos, location, site, name, true); 4561 return sym; 4562 } 4563 case WILDCARD: 4564 throw new AssertionError(tree); 4565 case TYPEVAR: 4566 // Normally, site.getUpperBound() shouldn't be null. 4567 // It should only happen during memberEnter/attribBase 4568 // when determining the supertype which *must* be 4569 // done before attributing the type variables. In 4570 // other words, we are seeing this illegal program: 4571 // class B<T> extends A<T.foo> {} 4572 Symbol sym = (site.getUpperBound() != null) 4573 ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo) 4574 : null; 4575 if (sym == null) { 4576 log.error(pos, Errors.TypeVarCantBeDeref); 4577 return syms.errSymbol; 4578 } else { 4579 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ? 4580 rs.new AccessError(env, site, sym) : 4581 sym; 4582 rs.accessBase(sym2, pos, location, site, name, true); 4583 return sym; 4584 } 4585 case ERROR: 4586 // preserve identifier names through errors 4587 return types.createErrorType(name, site.tsym, site).tsym; 4588 default: 4589 // The qualifier expression is of a primitive type -- only 4590 // .class is allowed for these. 4591 if (name == names._class) { 4592 // In this case, we have already made sure in Select that 4593 // qualifier expression is a type. 4594 return syms.getClassField(site, types); 4595 } else { 4596 log.error(pos, Errors.CantDeref(site)); 4597 return syms.errSymbol; 4598 } 4599 } 4600 } 4601 4602 /** Determine type of identifier or select expression and check that 4603 * (1) the referenced symbol is not deprecated 4604 * (2) the symbol's type is safe (@see checkSafe) 4605 * (3) if symbol is a variable, check that its type and kind are 4606 * compatible with the prototype and protokind. 4607 * (4) if symbol is an instance field of a raw type, 4608 * which is being assigned to, issue an unchecked warning if its 4609 * type changes under erasure. 4610 * (5) if symbol is an instance method of a raw type, issue an 4611 * unchecked warning if its argument types change under erasure. 4612 * If checks succeed: 4613 * If symbol is a constant, return its constant type 4614 * else if symbol is a method, return its result type 4615 * otherwise return its type. 4616 * Otherwise return errType. 4617 * 4618 * @param tree The syntax tree representing the identifier 4619 * @param site If this is a select, the type of the selected 4620 * expression, otherwise the type of the current class. 4621 * @param sym The symbol representing the identifier. 4622 * @param env The current environment. 4623 * @param resultInfo The expected result 4624 */ 4625 Type checkId(JCTree tree, 4626 Type site, 4627 Symbol sym, 4628 Env<AttrContext> env, 4629 ResultInfo resultInfo) { 4630 return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ? 4631 checkMethodIdInternal(tree, site, sym, env, resultInfo) : 4632 checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4633 } 4634 4635 Type checkMethodIdInternal(JCTree tree, 4636 Type site, 4637 Symbol sym, 4638 Env<AttrContext> env, 4639 ResultInfo resultInfo) { 4640 if (resultInfo.pkind.contains(KindSelector.POLY)) { 4641 return attrRecover.recoverMethodInvocation(tree, site, sym, env, resultInfo); 4642 } else { 4643 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo); 4644 } 4645 } 4646 4647 Type checkIdInternal(JCTree tree, 4648 Type site, 4649 Symbol sym, 4650 Type pt, 4651 Env<AttrContext> env, 4652 ResultInfo resultInfo) { 4653 Type owntype; // The computed type of this identifier occurrence. 4654 switch (sym.kind) { 4655 case TYP: 4656 // For types, the computed type equals the symbol's type, 4657 // except for two situations: 4658 owntype = sym.type; 4659 if (owntype.hasTag(CLASS)) { 4660 chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym); 4661 Type ownOuter = owntype.getEnclosingType(); 4662 4663 // (a) If the symbol's type is parameterized, erase it 4664 // because no type parameters were given. 4665 // We recover generic outer type later in visitTypeApply. 4666 if (owntype.tsym.type.getTypeArguments().nonEmpty()) { 4667 owntype = types.erasure(owntype); 4668 } 4669 4670 // (b) If the symbol's type is an inner class, then 4671 // we have to interpret its outer type as a superclass 4672 // of the site type. Example: 4673 // 4674 // class Tree<A> { class Visitor { ... } } 4675 // class PointTree extends Tree<Point> { ... } 4676 // ...PointTree.Visitor... 4677 // 4678 // Then the type of the last expression above is 4679 // Tree<Point>.Visitor. 4680 else if (ownOuter.hasTag(CLASS) && site != ownOuter) { 4681 Type normOuter = site; 4682 if (normOuter.hasTag(CLASS)) { 4683 normOuter = types.asEnclosingSuper(site, ownOuter.tsym); 4684 } 4685 if (normOuter == null) // perhaps from an import 4686 normOuter = types.erasure(ownOuter); 4687 if (normOuter != ownOuter) 4688 owntype = new ClassType( 4689 normOuter, List.nil(), owntype.tsym, 4690 owntype.getMetadata()); 4691 } 4692 } 4693 break; 4694 case VAR: 4695 VarSymbol v = (VarSymbol)sym; 4696 4697 if (env.info.enclVar != null 4698 && v.type.hasTag(NONE)) { 4699 //self reference to implicitly typed variable declaration 4700 log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef)); 4701 return tree.type = v.type = types.createErrorType(v.type); 4702 } 4703 4704 // Test (4): if symbol is an instance field of a raw type, 4705 // which is being assigned to, issue an unchecked warning if 4706 // its type changes under erasure. 4707 if (KindSelector.ASG.subset(pkind()) && 4708 v.owner.kind == TYP && 4709 (v.flags() & STATIC) == 0 && 4710 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 4711 Type s = types.asOuterSuper(site, v.owner); 4712 if (s != null && 4713 s.isRaw() && 4714 !types.isSameType(v.type, v.erasure(types))) { 4715 chk.warnUnchecked(tree.pos(), LintWarnings.UncheckedAssignToVar(v, s)); 4716 } 4717 } 4718 // The computed type of a variable is the type of the 4719 // variable symbol, taken as a member of the site type. 4720 owntype = (sym.owner.kind == TYP && 4721 sym.name != names._this && sym.name != names._super) 4722 ? types.memberType(site, sym) 4723 : sym.type; 4724 4725 // If the variable is a constant, record constant value in 4726 // computed type. 4727 if (v.getConstValue() != null && isStaticReference(tree)) 4728 owntype = owntype.constType(v.getConstValue()); 4729 4730 if (resultInfo.pkind == KindSelector.VAL) { 4731 owntype = capture(owntype); // capture "names as expressions" 4732 } 4733 break; 4734 case MTH: { 4735 owntype = checkMethod(site, sym, 4736 new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode), 4737 env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(), 4738 resultInfo.pt.getTypeArguments()); 4739 chk.checkRestricted(tree.pos(), sym); 4740 break; 4741 } 4742 case PCK: case ERR: 4743 owntype = sym.type; 4744 break; 4745 default: 4746 throw new AssertionError("unexpected kind: " + sym.kind + 4747 " in tree " + tree); 4748 } 4749 4750 // Emit a `deprecation' warning if symbol is deprecated. 4751 // (for constructors (but not for constructor references), the error 4752 // was given when the constructor was resolved) 4753 4754 if (sym.name != names.init || tree.hasTag(REFERENCE)) { 4755 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym); 4756 chk.checkSunAPI(tree.pos(), sym); 4757 chk.checkProfile(tree.pos(), sym); 4758 chk.checkPreview(tree.pos(), env.info.scope.owner, site, sym); 4759 } 4760 4761 if (pt.isErroneous()) { 4762 owntype = types.createErrorType(owntype); 4763 } 4764 4765 // If symbol is a variable, check that its type and 4766 // kind are compatible with the prototype and protokind. 4767 return check(tree, owntype, sym.kind.toSelector(), resultInfo); 4768 } 4769 4770 /** Check that variable is initialized and evaluate the variable's 4771 * initializer, if not yet done. Also check that variable is not 4772 * referenced before it is defined. 4773 * @param tree The tree making up the variable reference. 4774 * @param env The current environment. 4775 * @param v The variable's symbol. 4776 */ 4777 private void checkInit(JCTree tree, 4778 Env<AttrContext> env, 4779 VarSymbol v, 4780 boolean onlyWarning) { 4781 // A forward reference is diagnosed if the declaration position 4782 // of the variable is greater than the current tree position 4783 // and the tree and variable definition occur in the same class 4784 // definition. Note that writes don't count as references. 4785 // This check applies only to class and instance 4786 // variables. Local variables follow different scope rules, 4787 // and are subject to definite assignment checking. 4788 Env<AttrContext> initEnv = enclosingInitEnv(env); 4789 if (initEnv != null && 4790 (initEnv.info.enclVar == v || v.pos > tree.pos) && 4791 v.owner.kind == TYP && 4792 v.owner == env.info.scope.owner.enclClass() && 4793 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) && 4794 (!env.tree.hasTag(ASSIGN) || 4795 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) { 4796 if (!onlyWarning || isStaticEnumField(v)) { 4797 Error errkey = (initEnv.info.enclVar == v) ? 4798 Errors.IllegalSelfRef : Errors.IllegalForwardRef; 4799 log.error(tree.pos(), errkey); 4800 } else if (useBeforeDeclarationWarning) { 4801 Warning warnkey = (initEnv.info.enclVar == v) ? 4802 Warnings.SelfRef(v) : Warnings.ForwardRef(v); 4803 log.warning(tree.pos(), warnkey); 4804 } 4805 } 4806 4807 v.getConstValue(); // ensure initializer is evaluated 4808 4809 checkEnumInitializer(tree, env, v); 4810 } 4811 4812 /** 4813 * Returns the enclosing init environment associated with this env (if any). An init env 4814 * can be either a field declaration env or a static/instance initializer env. 4815 */ 4816 Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) { 4817 while (true) { 4818 switch (env.tree.getTag()) { 4819 case VARDEF: 4820 JCVariableDecl vdecl = (JCVariableDecl)env.tree; 4821 if (vdecl.sym.owner.kind == TYP) { 4822 //field 4823 return env; 4824 } 4825 break; 4826 case BLOCK: 4827 if (env.next.tree.hasTag(CLASSDEF)) { 4828 //instance/static initializer 4829 return env; 4830 } 4831 break; 4832 case METHODDEF: 4833 case CLASSDEF: 4834 case TOPLEVEL: 4835 return null; 4836 } 4837 Assert.checkNonNull(env.next); 4838 env = env.next; 4839 } 4840 } 4841 4842 /** 4843 * Check for illegal references to static members of enum. In 4844 * an enum type, constructors and initializers may not 4845 * reference its static members unless they are constant. 4846 * 4847 * @param tree The tree making up the variable reference. 4848 * @param env The current environment. 4849 * @param v The variable's symbol. 4850 * @jls 8.9 Enum Types 4851 */ 4852 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) { 4853 // JLS: 4854 // 4855 // "It is a compile-time error to reference a static field 4856 // of an enum type that is not a compile-time constant 4857 // (15.28) from constructors, instance initializer blocks, 4858 // or instance variable initializer expressions of that 4859 // type. It is a compile-time error for the constructors, 4860 // instance initializer blocks, or instance variable 4861 // initializer expressions of an enum constant e to refer 4862 // to itself or to an enum constant of the same type that 4863 // is declared to the right of e." 4864 if (isStaticEnumField(v)) { 4865 ClassSymbol enclClass = env.info.scope.owner.enclClass(); 4866 4867 if (enclClass == null || enclClass.owner == null) 4868 return; 4869 4870 // See if the enclosing class is the enum (or a 4871 // subclass thereof) declaring v. If not, this 4872 // reference is OK. 4873 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type)) 4874 return; 4875 4876 // If the reference isn't from an initializer, then 4877 // the reference is OK. 4878 if (!Resolve.isInitializer(env)) 4879 return; 4880 4881 log.error(tree.pos(), Errors.IllegalEnumStaticRef); 4882 } 4883 } 4884 4885 /** Is the given symbol a static, non-constant field of an Enum? 4886 * Note: enum literals should not be regarded as such 4887 */ 4888 private boolean isStaticEnumField(VarSymbol v) { 4889 return Flags.isEnum(v.owner) && 4890 Flags.isStatic(v) && 4891 !Flags.isConstant(v) && 4892 v.name != names._class; 4893 } 4894 4895 /** 4896 * Check that method arguments conform to its instantiation. 4897 **/ 4898 public Type checkMethod(Type site, 4899 final Symbol sym, 4900 ResultInfo resultInfo, 4901 Env<AttrContext> env, 4902 final List<JCExpression> argtrees, 4903 List<Type> argtypes, 4904 List<Type> typeargtypes) { 4905 // Test (5): if symbol is an instance method of a raw type, issue 4906 // an unchecked warning if its argument types change under erasure. 4907 if ((sym.flags() & STATIC) == 0 && 4908 (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) { 4909 Type s = types.asOuterSuper(site, sym.owner); 4910 if (s != null && s.isRaw() && 4911 !types.isSameTypes(sym.type.getParameterTypes(), 4912 sym.erasure(types).getParameterTypes())) { 4913 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedCallMbrOfRawType(sym, s)); 4914 } 4915 } 4916 4917 if (env.info.defaultSuperCallSite != null) { 4918 for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) { 4919 if (!sup.tsym.isSubClass(sym.enclClass(), types) || 4920 types.isSameType(sup, env.info.defaultSuperCallSite)) continue; 4921 List<MethodSymbol> icand_sup = 4922 types.interfaceCandidates(sup, (MethodSymbol)sym); 4923 if (icand_sup.nonEmpty() && 4924 icand_sup.head != sym && 4925 icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) { 4926 log.error(env.tree.pos(), 4927 Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup))); 4928 break; 4929 } 4930 } 4931 env.info.defaultSuperCallSite = null; 4932 } 4933 4934 if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) { 4935 JCMethodInvocation app = (JCMethodInvocation)env.tree; 4936 if (app.meth.hasTag(SELECT) && 4937 !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) { 4938 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site)); 4939 } 4940 } 4941 4942 // Compute the identifier's instantiated type. 4943 // For methods, we need to compute the instance type by 4944 // Resolve.instantiate from the symbol's type as well as 4945 // any type arguments and value arguments. 4946 Warner noteWarner = new Warner(); 4947 try { 4948 Type owntype = rs.checkMethod( 4949 env, 4950 site, 4951 sym, 4952 resultInfo, 4953 argtypes, 4954 typeargtypes, 4955 noteWarner); 4956 4957 DeferredAttr.DeferredTypeMap<Void> checkDeferredMap = 4958 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase); 4959 4960 argtypes = argtypes.map(checkDeferredMap); 4961 4962 if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) { 4963 chk.warnUnchecked(env.tree.pos(), LintWarnings.UncheckedMethInvocationApplied(kindName(sym), 4964 sym.name, 4965 rs.methodArguments(sym.type.getParameterTypes()), 4966 rs.methodArguments(argtypes.map(checkDeferredMap)), 4967 kindName(sym.location()), 4968 sym.location())); 4969 if (resultInfo.pt != Infer.anyPoly || 4970 !owntype.hasTag(METHOD) || 4971 !owntype.isPartial()) { 4972 //if this is not a partially inferred method type, erase return type. Otherwise, 4973 //erasure is carried out in PartiallyInferredMethodType.check(). 4974 owntype = new MethodType(owntype.getParameterTypes(), 4975 types.erasure(owntype.getReturnType()), 4976 types.erasure(owntype.getThrownTypes()), 4977 syms.methodClass); 4978 } 4979 } 4980 4981 PolyKind pkind = (sym.type.hasTag(FORALL) && 4982 sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ? 4983 PolyKind.POLY : PolyKind.STANDALONE; 4984 TreeInfo.setPolyKind(env.tree, pkind); 4985 4986 return (resultInfo.pt == Infer.anyPoly) ? 4987 owntype : 4988 chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(), 4989 resultInfo.checkContext.inferenceContext()); 4990 } catch (Infer.InferenceException ex) { 4991 //invalid target type - propagate exception outwards or report error 4992 //depending on the current check context 4993 resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic()); 4994 return types.createErrorType(site); 4995 } catch (Resolve.InapplicableMethodException ex) { 4996 final JCDiagnostic diag = ex.getDiagnostic(); 4997 Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) { 4998 @Override 4999 protected Pair<Symbol, JCDiagnostic> errCandidate() { 5000 return new Pair<>(sym, diag); 5001 } 5002 }; 5003 List<Type> argtypes2 = argtypes.map( 5004 rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase)); 5005 JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR, 5006 env.tree, sym, site, sym.name, argtypes2, typeargtypes); 5007 log.report(errDiag); 5008 return types.createErrorType(site); 5009 } 5010 } 5011 5012 public void visitLiteral(JCLiteral tree) { 5013 result = check(tree, litType(tree.typetag).constType(tree.value), 5014 KindSelector.VAL, resultInfo); 5015 } 5016 //where 5017 /** Return the type of a literal with given type tag. 5018 */ 5019 Type litType(TypeTag tag) { 5020 return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()]; 5021 } 5022 5023 public void visitTypeIdent(JCPrimitiveTypeTree tree) { 5024 result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo); 5025 } 5026 5027 public void visitTypeArray(JCArrayTypeTree tree) { 5028 Type etype = attribType(tree.elemtype, env); 5029 Type type = new ArrayType(etype, syms.arrayClass); 5030 result = check(tree, type, KindSelector.TYP, resultInfo); 5031 } 5032 5033 /** Visitor method for parameterized types. 5034 * Bound checking is left until later, since types are attributed 5035 * before supertype structure is completely known 5036 */ 5037 public void visitTypeApply(JCTypeApply tree) { 5038 Type owntype = types.createErrorType(tree.type); 5039 5040 // Attribute functor part of application and make sure it's a class. 5041 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env)); 5042 5043 // Attribute type parameters 5044 List<Type> actuals = attribTypes(tree.arguments, env); 5045 5046 if (clazztype.hasTag(CLASS)) { 5047 List<Type> formals = clazztype.tsym.type.getTypeArguments(); 5048 if (actuals.isEmpty()) //diamond 5049 actuals = formals; 5050 5051 if (actuals.length() == formals.length()) { 5052 List<Type> a = actuals; 5053 List<Type> f = formals; 5054 while (a.nonEmpty()) { 5055 a.head = a.head.withTypeVar(f.head); 5056 a = a.tail; 5057 f = f.tail; 5058 } 5059 // Compute the proper generic outer 5060 Type clazzOuter = clazztype.getEnclosingType(); 5061 if (clazzOuter.hasTag(CLASS)) { 5062 Type site; 5063 JCExpression clazz = TreeInfo.typeIn(tree.clazz); 5064 if (clazz.hasTag(IDENT)) { 5065 site = env.enclClass.sym.type; 5066 } else if (clazz.hasTag(SELECT)) { 5067 site = ((JCFieldAccess) clazz).selected.type; 5068 } else throw new AssertionError(""+tree); 5069 if (clazzOuter.hasTag(CLASS) && site != clazzOuter) { 5070 if (site.hasTag(CLASS)) 5071 site = types.asOuterSuper(site, clazzOuter.tsym); 5072 if (site == null) 5073 site = types.erasure(clazzOuter); 5074 clazzOuter = site; 5075 } 5076 } 5077 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym, 5078 clazztype.getMetadata()); 5079 } else { 5080 if (formals.length() != 0) { 5081 log.error(tree.pos(), 5082 Errors.WrongNumberTypeArgs(Integer.toString(formals.length()))); 5083 } else { 5084 log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym)); 5085 } 5086 owntype = types.createErrorType(tree.type); 5087 } 5088 } else if (clazztype.hasTag(ERROR)) { 5089 ErrorType parameterizedErroneous = 5090 new ErrorType(clazztype.getOriginalType(), 5091 clazztype.tsym, 5092 clazztype.getMetadata()); 5093 5094 parameterizedErroneous.typarams_field = actuals; 5095 owntype = parameterizedErroneous; 5096 } 5097 result = check(tree, owntype, KindSelector.TYP, resultInfo); 5098 } 5099 5100 public void visitTypeUnion(JCTypeUnion tree) { 5101 ListBuffer<Type> multicatchTypes = new ListBuffer<>(); 5102 ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed 5103 for (JCExpression typeTree : tree.alternatives) { 5104 Type ctype = attribType(typeTree, env); 5105 ctype = chk.checkType(typeTree.pos(), 5106 chk.checkClassType(typeTree.pos(), ctype), 5107 syms.throwableType); 5108 if (!ctype.isErroneous()) { 5109 //check that alternatives of a union type are pairwise 5110 //unrelated w.r.t. subtyping 5111 if (chk.intersects(ctype, multicatchTypes.toList())) { 5112 for (Type t : multicatchTypes) { 5113 boolean sub = types.isSubtype(ctype, t); 5114 boolean sup = types.isSubtype(t, ctype); 5115 if (sub || sup) { 5116 //assume 'a' <: 'b' 5117 Type a = sub ? ctype : t; 5118 Type b = sub ? t : ctype; 5119 log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b)); 5120 } 5121 } 5122 } 5123 multicatchTypes.append(ctype); 5124 if (all_multicatchTypes != null) 5125 all_multicatchTypes.append(ctype); 5126 } else { 5127 if (all_multicatchTypes == null) { 5128 all_multicatchTypes = new ListBuffer<>(); 5129 all_multicatchTypes.appendList(multicatchTypes); 5130 } 5131 all_multicatchTypes.append(ctype); 5132 } 5133 } 5134 Type t = check(tree, types.lub(multicatchTypes.toList()), 5135 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE)); 5136 if (t.hasTag(CLASS)) { 5137 List<Type> alternatives = 5138 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList(); 5139 t = new UnionClassType((ClassType) t, alternatives); 5140 } 5141 tree.type = result = t; 5142 } 5143 5144 public void visitTypeIntersection(JCTypeIntersection tree) { 5145 attribTypes(tree.bounds, env); 5146 tree.type = result = checkIntersection(tree, tree.bounds); 5147 } 5148 5149 public void visitTypeParameter(JCTypeParameter tree) { 5150 TypeVar typeVar = (TypeVar) tree.type; 5151 5152 if (tree.annotations != null && tree.annotations.nonEmpty()) { 5153 annotate.annotateTypeParameterSecondStage(tree, tree.annotations); 5154 } 5155 5156 if (!typeVar.getUpperBound().isErroneous()) { 5157 //fixup type-parameter bound computed in 'attribTypeVariables' 5158 typeVar.setUpperBound(checkIntersection(tree, tree.bounds)); 5159 } 5160 } 5161 5162 Type checkIntersection(JCTree tree, List<JCExpression> bounds) { 5163 Set<Symbol> boundSet = new HashSet<>(); 5164 if (bounds.nonEmpty()) { 5165 // accept class or interface or typevar as first bound. 5166 bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false); 5167 boundSet.add(types.erasure(bounds.head.type).tsym); 5168 if (bounds.head.type.isErroneous()) { 5169 return bounds.head.type; 5170 } 5171 else if (bounds.head.type.hasTag(TYPEVAR)) { 5172 // if first bound was a typevar, do not accept further bounds. 5173 if (bounds.tail.nonEmpty()) { 5174 log.error(bounds.tail.head.pos(), 5175 Errors.TypeVarMayNotBeFollowedByOtherBounds); 5176 return bounds.head.type; 5177 } 5178 } else { 5179 // if first bound was a class or interface, accept only interfaces 5180 // as further bounds. 5181 for (JCExpression bound : bounds.tail) { 5182 bound.type = checkBase(bound.type, bound, env, false, true, false); 5183 if (bound.type.isErroneous()) { 5184 bounds = List.of(bound); 5185 } 5186 else if (bound.type.hasTag(CLASS)) { 5187 chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet); 5188 } 5189 } 5190 } 5191 } 5192 5193 if (bounds.length() == 0) { 5194 return syms.objectType; 5195 } else if (bounds.length() == 1) { 5196 return bounds.head.type; 5197 } else { 5198 Type owntype = types.makeIntersectionType(TreeInfo.types(bounds)); 5199 // ... the variable's bound is a class type flagged COMPOUND 5200 // (see comment for TypeVar.bound). 5201 // In this case, generate a class tree that represents the 5202 // bound class, ... 5203 JCExpression extending; 5204 List<JCExpression> implementing; 5205 if (!bounds.head.type.isInterface()) { 5206 extending = bounds.head; 5207 implementing = bounds.tail; 5208 } else { 5209 extending = null; 5210 implementing = bounds; 5211 } 5212 JCClassDecl cd = make.at(tree).ClassDef( 5213 make.Modifiers(PUBLIC | ABSTRACT), 5214 names.empty, List.nil(), 5215 extending, implementing, List.nil()); 5216 5217 ClassSymbol c = (ClassSymbol)owntype.tsym; 5218 Assert.check((c.flags() & COMPOUND) != 0); 5219 cd.sym = c; 5220 c.sourcefile = env.toplevel.sourcefile; 5221 5222 // ... and attribute the bound class 5223 c.flags_field |= UNATTRIBUTED; 5224 Env<AttrContext> cenv = enter.classEnv(cd, env); 5225 typeEnvs.put(c, cenv); 5226 attribClass(c); 5227 return owntype; 5228 } 5229 } 5230 5231 public void visitWildcard(JCWildcard tree) { 5232 //- System.err.println("visitWildcard("+tree+");");//DEBUG 5233 Type type = (tree.kind.kind == BoundKind.UNBOUND) 5234 ? syms.objectType 5235 : attribType(tree.inner, env); 5236 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type), 5237 tree.kind.kind, 5238 syms.boundClass), 5239 KindSelector.TYP, resultInfo); 5240 } 5241 5242 public void visitAnnotation(JCAnnotation tree) { 5243 Assert.error("should be handled in annotate"); 5244 } 5245 5246 @Override 5247 public void visitModifiers(JCModifiers tree) { 5248 //error recovery only: 5249 Assert.check(resultInfo.pkind == KindSelector.ERR); 5250 5251 attribAnnotationTypes(tree.annotations, env); 5252 } 5253 5254 public void visitAnnotatedType(JCAnnotatedType tree) { 5255 attribAnnotationTypes(tree.annotations, env); 5256 Type underlyingType = attribType(tree.underlyingType, env); 5257 Type annotatedType = underlyingType.preannotatedType(); 5258 5259 if (!env.info.isNewClass) 5260 annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType); 5261 result = tree.type = annotatedType; 5262 } 5263 5264 public void visitErroneous(JCErroneous tree) { 5265 if (tree.errs != null) { 5266 WriteableScope newScope = env.info.scope; 5267 5268 if (env.tree instanceof JCClassDecl) { 5269 Symbol fakeOwner = 5270 new MethodSymbol(BLOCK, names.empty, null, 5271 env.info.scope.owner); 5272 newScope = newScope.dupUnshared(fakeOwner); 5273 } 5274 5275 Env<AttrContext> errEnv = 5276 env.dup(env.tree, 5277 env.info.dup(newScope)); 5278 errEnv.info.returnResult = unknownExprInfo; 5279 for (JCTree err : tree.errs) 5280 attribTree(err, errEnv, new ResultInfo(KindSelector.ERR, pt())); 5281 } 5282 result = tree.type = syms.errType; 5283 } 5284 5285 /** Default visitor method for all other trees. 5286 */ 5287 public void visitTree(JCTree tree) { 5288 throw new AssertionError(); 5289 } 5290 5291 /** 5292 * Attribute an env for either a top level tree or class or module declaration. 5293 */ 5294 public void attrib(Env<AttrContext> env) { 5295 switch (env.tree.getTag()) { 5296 case MODULEDEF: 5297 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym); 5298 break; 5299 case PACKAGEDEF: 5300 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge); 5301 break; 5302 default: 5303 attribClass(env.tree.pos(), env.enclClass.sym); 5304 } 5305 5306 annotate.flush(); 5307 } 5308 5309 public void attribPackage(DiagnosticPosition pos, PackageSymbol p) { 5310 try { 5311 annotate.flush(); 5312 attribPackage(p); 5313 } catch (CompletionFailure ex) { 5314 chk.completionError(pos, ex); 5315 } 5316 } 5317 5318 void attribPackage(PackageSymbol p) { 5319 attribWithLint(p, 5320 env -> chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p)); 5321 } 5322 5323 public void attribModule(DiagnosticPosition pos, ModuleSymbol m) { 5324 try { 5325 annotate.flush(); 5326 attribModule(m); 5327 } catch (CompletionFailure ex) { 5328 chk.completionError(pos, ex); 5329 } 5330 } 5331 5332 void attribModule(ModuleSymbol m) { 5333 attribWithLint(m, env -> attribStat(env.tree, env)); 5334 } 5335 5336 private void attribWithLint(TypeSymbol sym, Consumer<Env<AttrContext>> attrib) { 5337 Env<AttrContext> env = typeEnvs.get(sym); 5338 5339 Env<AttrContext> lintEnv = env; 5340 while (lintEnv.info.lint == null) 5341 lintEnv = lintEnv.next; 5342 5343 Lint lint = lintEnv.info.lint.augment(sym); 5344 5345 Lint prevLint = chk.setLint(lint); 5346 JavaFileObject prev = log.useSource(env.toplevel.sourcefile); 5347 5348 try { 5349 deferredLintHandler.flush(env.tree, lint); 5350 attrib.accept(env); 5351 } finally { 5352 log.useSource(prev); 5353 chk.setLint(prevLint); 5354 } 5355 } 5356 5357 /** Main method: attribute class definition associated with given class symbol. 5358 * reporting completion failures at the given position. 5359 * @param pos The source position at which completion errors are to be 5360 * reported. 5361 * @param c The class symbol whose definition will be attributed. 5362 */ 5363 public void attribClass(DiagnosticPosition pos, ClassSymbol c) { 5364 try { 5365 annotate.flush(); 5366 attribClass(c); 5367 } catch (CompletionFailure ex) { 5368 chk.completionError(pos, ex); 5369 } 5370 } 5371 5372 /** Attribute class definition associated with given class symbol. 5373 * @param c The class symbol whose definition will be attributed. 5374 */ 5375 void attribClass(ClassSymbol c) throws CompletionFailure { 5376 if (c.type.hasTag(ERROR)) return; 5377 5378 // Check for cycles in the inheritance graph, which can arise from 5379 // ill-formed class files. 5380 chk.checkNonCyclic(null, c.type); 5381 5382 Type st = types.supertype(c.type); 5383 if ((c.flags_field & Flags.COMPOUND) == 0 && 5384 (c.flags_field & Flags.SUPER_OWNER_ATTRIBUTED) == 0) { 5385 // First, attribute superclass. 5386 if (st.hasTag(CLASS)) 5387 attribClass((ClassSymbol)st.tsym); 5388 5389 // Next attribute owner, if it is a class. 5390 if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS)) 5391 attribClass((ClassSymbol)c.owner); 5392 5393 c.flags_field |= Flags.SUPER_OWNER_ATTRIBUTED; 5394 } 5395 5396 // The previous operations might have attributed the current class 5397 // if there was a cycle. So we test first whether the class is still 5398 // UNATTRIBUTED. 5399 if ((c.flags_field & UNATTRIBUTED) != 0) { 5400 c.flags_field &= ~UNATTRIBUTED; 5401 5402 // Get environment current at the point of class definition. 5403 Env<AttrContext> env = typeEnvs.get(c); 5404 5405 // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized, 5406 // because the annotations were not available at the time the env was created. Therefore, 5407 // we look up the environment chain for the first enclosing environment for which the 5408 // lint value is set. Typically, this is the parent env, but might be further if there 5409 // are any envs created as a result of TypeParameter nodes. 5410 Env<AttrContext> lintEnv = env; 5411 while (lintEnv.info.lint == null) 5412 lintEnv = lintEnv.next; 5413 5414 // Having found the enclosing lint value, we can initialize the lint value for this class 5415 env.info.lint = lintEnv.info.lint.augment(c); 5416 5417 Lint prevLint = chk.setLint(env.info.lint); 5418 JavaFileObject prev = log.useSource(c.sourcefile); 5419 ResultInfo prevReturnRes = env.info.returnResult; 5420 5421 try { 5422 if (c.isSealed() && 5423 !c.isEnum() && 5424 !c.isPermittedExplicit && 5425 c.getPermittedSubclasses().isEmpty()) { 5426 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.SealedClassMustHaveSubclasses); 5427 } 5428 5429 if (c.isSealed()) { 5430 Set<Symbol> permittedTypes = new HashSet<>(); 5431 boolean sealedInUnnamed = c.packge().modle == syms.unnamedModule || c.packge().modle == syms.noModule; 5432 for (Type subType : c.getPermittedSubclasses()) { 5433 if (subType.isErroneous()) { 5434 // the type already caused errors, don't produce more potentially misleading errors 5435 continue; 5436 } 5437 boolean isTypeVar = false; 5438 if (subType.getTag() == TYPEVAR) { 5439 isTypeVar = true; //error recovery 5440 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5441 Errors.InvalidPermitsClause(Fragments.IsATypeVariable(subType))); 5442 } 5443 if (subType.tsym.isAnonymous() && !c.isEnum()) { 5444 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), Errors.LocalClassesCantExtendSealed(Fragments.Anonymous)); 5445 } 5446 if (permittedTypes.contains(subType.tsym)) { 5447 DiagnosticPosition pos = 5448 env.enclClass.permitting.stream() 5449 .filter(permittedExpr -> TreeInfo.diagnosticPositionFor(subType.tsym, permittedExpr, true) != null) 5450 .limit(2).collect(List.collector()).get(1); 5451 log.error(pos, Errors.InvalidPermitsClause(Fragments.IsDuplicated(subType))); 5452 } else { 5453 permittedTypes.add(subType.tsym); 5454 } 5455 if (sealedInUnnamed) { 5456 if (subType.tsym.packge() != c.packge()) { 5457 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5458 Errors.ClassInUnnamedModuleCantExtendSealedInDiffPackage(c) 5459 ); 5460 } 5461 } else if (subType.tsym.packge().modle != c.packge().modle) { 5462 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5463 Errors.ClassInModuleCantExtendSealedInDiffModule(c, c.packge().modle) 5464 ); 5465 } 5466 if (subType.tsym == c.type.tsym || types.isSuperType(subType, c.type)) { 5467 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, ((JCClassDecl)env.tree).permitting), 5468 Errors.InvalidPermitsClause( 5469 subType.tsym == c.type.tsym ? 5470 Fragments.MustNotBeSameClass : 5471 Fragments.MustNotBeSupertype(subType) 5472 ) 5473 ); 5474 } else if (!isTypeVar) { 5475 boolean thisIsASuper = types.directSupertypes(subType) 5476 .stream() 5477 .anyMatch(d -> d.tsym == c); 5478 if (!thisIsASuper) { 5479 log.error(TreeInfo.diagnosticPositionFor(subType.tsym, env.tree), 5480 Errors.InvalidPermitsClause(Fragments.DoesntExtendSealed(subType))); 5481 } 5482 } 5483 } 5484 } 5485 5486 List<ClassSymbol> sealedSupers = types.directSupertypes(c.type) 5487 .stream() 5488 .filter(s -> s.tsym.isSealed()) 5489 .map(s -> (ClassSymbol) s.tsym) 5490 .collect(List.collector()); 5491 5492 if (sealedSupers.isEmpty()) { 5493 if ((c.flags_field & Flags.NON_SEALED) != 0) { 5494 boolean hasErrorSuper = false; 5495 5496 hasErrorSuper |= types.directSupertypes(c.type) 5497 .stream() 5498 .anyMatch(s -> s.tsym.kind == Kind.ERR); 5499 5500 ClassType ct = (ClassType) c.type; 5501 5502 hasErrorSuper |= !ct.isCompound() && ct.interfaces_field != ct.all_interfaces_field; 5503 5504 if (!hasErrorSuper) { 5505 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.NonSealedWithNoSealedSupertype(c)); 5506 } 5507 } 5508 } else if ((c.flags_field & Flags.COMPOUND) == 0) { 5509 if (c.isDirectlyOrIndirectlyLocal() && !c.isEnum()) { 5510 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), Errors.LocalClassesCantExtendSealed(c.isAnonymous() ? Fragments.Anonymous : Fragments.Local)); 5511 } 5512 5513 if (!c.type.isCompound()) { 5514 for (ClassSymbol supertypeSym : sealedSupers) { 5515 if (!supertypeSym.isPermittedSubclass(c.type.tsym)) { 5516 log.error(TreeInfo.diagnosticPositionFor(c.type.tsym, env.tree), Errors.CantInheritFromSealed(supertypeSym)); 5517 } 5518 } 5519 if (!c.isNonSealed() && !c.isFinal() && !c.isSealed()) { 5520 log.error(TreeInfo.diagnosticPositionFor(c, env.tree), 5521 c.isInterface() ? 5522 Errors.NonSealedOrSealedExpected : 5523 Errors.NonSealedSealedOrFinalExpected); 5524 } 5525 } 5526 } 5527 5528 deferredLintHandler.flush(env.tree, env.info.lint); 5529 env.info.returnResult = null; 5530 // java.lang.Enum may not be subclassed by a non-enum 5531 if (st.tsym == syms.enumSym && 5532 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0)) 5533 log.error(env.tree.pos(), Errors.EnumNoSubclassing); 5534 5535 // Enums may not be extended by source-level classes 5536 if (st.tsym != null && 5537 ((st.tsym.flags_field & Flags.ENUM) != 0) && 5538 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) { 5539 log.error(env.tree.pos(), Errors.EnumTypesNotExtensible); 5540 } 5541 5542 if (rs.isSerializable(c.type)) { 5543 env.info.isSerializable = true; 5544 } 5545 5546 if (c.isValueClass()) { 5547 Assert.check(env.tree.hasTag(CLASSDEF)); 5548 chk.checkConstraintsOfValueClass((JCClassDecl) env.tree, c); 5549 } 5550 5551 attribClassBody(env, c); 5552 5553 chk.checkDeprecatedAnnotation(env.tree.pos(), c); 5554 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c); 5555 chk.checkFunctionalInterface((JCClassDecl) env.tree, c); 5556 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree); 5557 5558 if (c.isImplicit()) { 5559 chk.checkHasMain(env.tree.pos(), c); 5560 } 5561 } finally { 5562 env.info.returnResult = prevReturnRes; 5563 log.useSource(prev); 5564 chk.setLint(prevLint); 5565 } 5566 5567 } 5568 } 5569 5570 public void visitImport(JCImport tree) { 5571 // nothing to do 5572 } 5573 5574 public void visitModuleDef(JCModuleDecl tree) { 5575 tree.sym.completeUsesProvides(); 5576 ModuleSymbol msym = tree.sym; 5577 Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym); 5578 Lint prevLint = chk.setLint(lint); 5579 chk.checkModuleName(tree); 5580 chk.checkDeprecatedAnnotation(tree, msym); 5581 5582 try { 5583 deferredLintHandler.flush(tree, lint); 5584 } finally { 5585 chk.setLint(prevLint); 5586 } 5587 } 5588 5589 /** Finish the attribution of a class. */ 5590 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) { 5591 JCClassDecl tree = (JCClassDecl)env.tree; 5592 Assert.check(c == tree.sym); 5593 5594 // Validate type parameters, supertype and interfaces. 5595 attribStats(tree.typarams, env); 5596 if (!c.isAnonymous()) { 5597 //already checked if anonymous 5598 chk.validate(tree.typarams, env); 5599 chk.validate(tree.extending, env); 5600 chk.validate(tree.implementing, env); 5601 } 5602 5603 c.markAbstractIfNeeded(types); 5604 5605 // If this is a non-abstract class, check that it has no abstract 5606 // methods or unimplemented methods of an implemented interface. 5607 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) { 5608 chk.checkAllDefined(tree.pos(), c); 5609 } 5610 5611 if ((c.flags() & ANNOTATION) != 0) { 5612 if (tree.implementing.nonEmpty()) 5613 log.error(tree.implementing.head.pos(), 5614 Errors.CantExtendIntfAnnotation); 5615 if (tree.typarams.nonEmpty()) { 5616 log.error(tree.typarams.head.pos(), 5617 Errors.IntfAnnotationCantHaveTypeParams(c)); 5618 } 5619 5620 // If this annotation type has a @Repeatable, validate 5621 Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable(); 5622 // If this annotation type has a @Repeatable, validate 5623 if (repeatable != null) { 5624 // get diagnostic position for error reporting 5625 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type); 5626 Assert.checkNonNull(cbPos); 5627 5628 chk.validateRepeatable(c, repeatable, cbPos); 5629 } 5630 } else { 5631 // Check that all extended classes and interfaces 5632 // are compatible (i.e. no two define methods with same arguments 5633 // yet different return types). (JLS 8.4.8.3) 5634 chk.checkCompatibleSupertypes(tree.pos(), c.type); 5635 chk.checkDefaultMethodClashes(tree.pos(), c.type); 5636 chk.checkPotentiallyAmbiguousOverloads(tree, c.type); 5637 } 5638 5639 // Check that class does not import the same parameterized interface 5640 // with two different argument lists. 5641 chk.checkClassBounds(tree.pos(), c.type); 5642 5643 tree.type = c.type; 5644 5645 for (List<JCTypeParameter> l = tree.typarams; 5646 l.nonEmpty(); l = l.tail) { 5647 Assert.checkNonNull(env.info.scope.findFirst(l.head.name)); 5648 } 5649 5650 // Check that a generic class doesn't extend Throwable 5651 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType)) 5652 log.error(tree.extending.pos(), Errors.GenericThrowable); 5653 5654 // Check that all methods which implement some 5655 // method conform to the method they implement. 5656 chk.checkImplementations(tree); 5657 5658 //check that a resource implementing AutoCloseable cannot throw InterruptedException 5659 checkAutoCloseable(tree.pos(), env, c.type); 5660 5661 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) { 5662 // Attribute declaration 5663 attribStat(l.head, env); 5664 // Check that declarations in inner classes are not static (JLS 8.1.2) 5665 // Make an exception for static constants. 5666 if (!allowRecords && 5667 c.owner.kind != PCK && 5668 ((c.flags() & STATIC) == 0 || c.name == names.empty) && 5669 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) { 5670 VarSymbol sym = null; 5671 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym; 5672 if (sym == null || 5673 sym.kind != VAR || 5674 sym.getConstValue() == null) 5675 log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c)); 5676 } 5677 } 5678 5679 // Check for proper placement of super()/this() calls. 5680 chk.checkSuperInitCalls(tree); 5681 5682 // Check for cycles among non-initial constructors. 5683 chk.checkCyclicConstructors(tree); 5684 5685 // Check for cycles among annotation elements. 5686 chk.checkNonCyclicElements(tree); 5687 5688 // Check for proper use of serialVersionUID and other 5689 // serialization-related fields and methods 5690 if (env.info.lint.isEnabled(LintCategory.SERIAL) 5691 && rs.isSerializable(c.type) 5692 && !c.isAnonymous()) { 5693 chk.checkSerialStructure(env, tree, c); 5694 } 5695 // Correctly organize the positions of the type annotations 5696 typeAnnotations.organizeTypeAnnotationsBodies(tree); 5697 5698 // Check type annotations applicability rules 5699 validateTypeAnnotations(tree, false); 5700 } 5701 // where 5702 /** get a diagnostic position for an attribute of Type t, or null if attribute missing */ 5703 private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) { 5704 for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) { 5705 if (types.isSameType(al.head.annotationType.type, t)) 5706 return al.head.pos(); 5707 } 5708 5709 return null; 5710 } 5711 5712 private Type capture(Type type) { 5713 return types.capture(type); 5714 } 5715 5716 private void setSyntheticVariableType(JCVariableDecl tree, Type type) { 5717 if (type.isErroneous()) { 5718 tree.vartype = make.at(Position.NOPOS).Erroneous(); 5719 } else { 5720 tree.vartype = make.at(Position.NOPOS).Type(type); 5721 } 5722 } 5723 5724 public void validateTypeAnnotations(JCTree tree, boolean sigOnly) { 5725 tree.accept(new TypeAnnotationsValidator(sigOnly)); 5726 } 5727 //where 5728 private final class TypeAnnotationsValidator extends TreeScanner { 5729 5730 private final boolean sigOnly; 5731 public TypeAnnotationsValidator(boolean sigOnly) { 5732 this.sigOnly = sigOnly; 5733 } 5734 5735 public void visitAnnotation(JCAnnotation tree) { 5736 chk.validateTypeAnnotation(tree, null, false); 5737 super.visitAnnotation(tree); 5738 } 5739 public void visitAnnotatedType(JCAnnotatedType tree) { 5740 if (!tree.underlyingType.type.isErroneous()) { 5741 super.visitAnnotatedType(tree); 5742 } 5743 } 5744 public void visitTypeParameter(JCTypeParameter tree) { 5745 chk.validateTypeAnnotations(tree.annotations, tree.type.tsym, true); 5746 scan(tree.bounds); 5747 // Don't call super. 5748 // This is needed because above we call validateTypeAnnotation with 5749 // false, which would forbid annotations on type parameters. 5750 // super.visitTypeParameter(tree); 5751 } 5752 public void visitMethodDef(JCMethodDecl tree) { 5753 if (tree.recvparam != null && 5754 !tree.recvparam.vartype.type.isErroneous()) { 5755 checkForDeclarationAnnotations(tree.recvparam.mods.annotations, tree.recvparam.sym); 5756 } 5757 if (tree.restype != null && tree.restype.type != null) { 5758 validateAnnotatedType(tree.restype, tree.restype.type); 5759 } 5760 if (sigOnly) { 5761 scan(tree.mods); 5762 scan(tree.restype); 5763 scan(tree.typarams); 5764 scan(tree.recvparam); 5765 scan(tree.params); 5766 scan(tree.thrown); 5767 } else { 5768 scan(tree.defaultValue); 5769 scan(tree.body); 5770 } 5771 } 5772 public void visitVarDef(final JCVariableDecl tree) { 5773 //System.err.println("validateTypeAnnotations.visitVarDef " + tree); 5774 if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped()) 5775 validateAnnotatedType(tree.vartype, tree.sym.type); 5776 scan(tree.mods); 5777 scan(tree.vartype); 5778 if (!sigOnly) { 5779 scan(tree.init); 5780 } 5781 } 5782 public void visitTypeCast(JCTypeCast tree) { 5783 if (tree.clazz != null && tree.clazz.type != null) 5784 validateAnnotatedType(tree.clazz, tree.clazz.type); 5785 super.visitTypeCast(tree); 5786 } 5787 public void visitTypeTest(JCInstanceOf tree) { 5788 if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null) 5789 validateAnnotatedType(tree.pattern, tree.pattern.type); 5790 super.visitTypeTest(tree); 5791 } 5792 public void visitNewClass(JCNewClass tree) { 5793 if (tree.clazz != null && tree.clazz.type != null) { 5794 if (tree.clazz.hasTag(ANNOTATED_TYPE)) { 5795 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations, 5796 tree.clazz.type.tsym); 5797 } 5798 if (tree.def != null) { 5799 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym); 5800 } 5801 5802 validateAnnotatedType(tree.clazz, tree.clazz.type); 5803 } 5804 super.visitNewClass(tree); 5805 } 5806 public void visitNewArray(JCNewArray tree) { 5807 if (tree.elemtype != null && tree.elemtype.type != null) { 5808 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) { 5809 checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations, 5810 tree.elemtype.type.tsym); 5811 } 5812 validateAnnotatedType(tree.elemtype, tree.elemtype.type); 5813 } 5814 super.visitNewArray(tree); 5815 } 5816 public void visitClassDef(JCClassDecl tree) { 5817 //System.err.println("validateTypeAnnotations.visitClassDef " + tree); 5818 if (sigOnly) { 5819 scan(tree.mods); 5820 scan(tree.typarams); 5821 scan(tree.extending); 5822 scan(tree.implementing); 5823 } 5824 for (JCTree member : tree.defs) { 5825 if (member.hasTag(Tag.CLASSDEF)) { 5826 continue; 5827 } 5828 scan(member); 5829 } 5830 } 5831 public void visitBlock(JCBlock tree) { 5832 if (!sigOnly) { 5833 scan(tree.stats); 5834 } 5835 } 5836 5837 /* I would want to model this after 5838 * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess) 5839 * and override visitSelect and visitTypeApply. 5840 * However, we only set the annotated type in the top-level type 5841 * of the symbol. 5842 * Therefore, we need to override each individual location where a type 5843 * can occur. 5844 */ 5845 private void validateAnnotatedType(final JCTree errtree, final Type type) { 5846 //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type); 5847 5848 if (type.isPrimitiveOrVoid()) { 5849 return; 5850 } 5851 5852 JCTree enclTr = errtree; 5853 Type enclTy = type; 5854 5855 boolean repeat = true; 5856 while (repeat) { 5857 if (enclTr.hasTag(TYPEAPPLY)) { 5858 List<Type> tyargs = enclTy.getTypeArguments(); 5859 List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments(); 5860 if (trargs.length() > 0) { 5861 // Nothing to do for diamonds 5862 if (tyargs.length() == trargs.length()) { 5863 for (int i = 0; i < tyargs.length(); ++i) { 5864 validateAnnotatedType(trargs.get(i), tyargs.get(i)); 5865 } 5866 } 5867 // If the lengths don't match, it's either a diamond 5868 // or some nested type that redundantly provides 5869 // type arguments in the tree. 5870 } 5871 5872 // Look at the clazz part of a generic type 5873 enclTr = ((JCTree.JCTypeApply)enclTr).clazz; 5874 } 5875 5876 if (enclTr.hasTag(SELECT)) { 5877 enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression(); 5878 if (enclTy != null && 5879 !enclTy.hasTag(NONE)) { 5880 enclTy = enclTy.getEnclosingType(); 5881 } 5882 } else if (enclTr.hasTag(ANNOTATED_TYPE)) { 5883 JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr; 5884 if (enclTy == null || enclTy.hasTag(NONE)) { 5885 ListBuffer<Attribute.TypeCompound> onlyTypeAnnotationsBuf = new ListBuffer<>(); 5886 for (JCAnnotation an : at.getAnnotations()) { 5887 if (chk.isTypeAnnotation(an, false)) { 5888 onlyTypeAnnotationsBuf.add((Attribute.TypeCompound) an.attribute); 5889 } 5890 } 5891 List<Attribute.TypeCompound> onlyTypeAnnotations = onlyTypeAnnotationsBuf.toList(); 5892 if (!onlyTypeAnnotations.isEmpty()) { 5893 Fragment annotationFragment = onlyTypeAnnotations.size() == 1 ? 5894 Fragments.TypeAnnotation1(onlyTypeAnnotations.head) : 5895 Fragments.TypeAnnotation(onlyTypeAnnotations); 5896 JCDiagnostic.AnnotatedType annotatedType = new JCDiagnostic.AnnotatedType( 5897 type.stripMetadata().annotatedType(onlyTypeAnnotations)); 5898 log.error(at.underlyingType.pos(), Errors.TypeAnnotationInadmissible(annotationFragment, 5899 type.tsym.owner, annotatedType)); 5900 } 5901 repeat = false; 5902 } 5903 enclTr = at.underlyingType; 5904 // enclTy doesn't need to be changed 5905 } else if (enclTr.hasTag(IDENT)) { 5906 repeat = false; 5907 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) { 5908 JCWildcard wc = (JCWildcard) enclTr; 5909 if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD || 5910 wc.getKind() == JCTree.Kind.SUPER_WILDCARD) { 5911 validateAnnotatedType(wc.getBound(), wc.getBound().type); 5912 } else { 5913 // Nothing to do for UNBOUND 5914 } 5915 repeat = false; 5916 } else if (enclTr.hasTag(TYPEARRAY)) { 5917 JCArrayTypeTree art = (JCArrayTypeTree) enclTr; 5918 validateAnnotatedType(art.getType(), art.elemtype.type); 5919 repeat = false; 5920 } else if (enclTr.hasTag(TYPEUNION)) { 5921 JCTypeUnion ut = (JCTypeUnion) enclTr; 5922 for (JCTree t : ut.getTypeAlternatives()) { 5923 validateAnnotatedType(t, t.type); 5924 } 5925 repeat = false; 5926 } else if (enclTr.hasTag(TYPEINTERSECTION)) { 5927 JCTypeIntersection it = (JCTypeIntersection) enclTr; 5928 for (JCTree t : it.getBounds()) { 5929 validateAnnotatedType(t, t.type); 5930 } 5931 repeat = false; 5932 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE || 5933 enclTr.getKind() == JCTree.Kind.ERRONEOUS) { 5934 repeat = false; 5935 } else { 5936 Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() + 5937 " within: "+ errtree + " with kind: " + errtree.getKind()); 5938 } 5939 } 5940 } 5941 5942 private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations, 5943 Symbol sym) { 5944 // Ensure that no declaration annotations are present. 5945 // Note that a tree type might be an AnnotatedType with 5946 // empty annotations, if only declaration annotations were given. 5947 // This method will raise an error for such a type. 5948 for (JCAnnotation ai : annotations) { 5949 if (!ai.type.isErroneous() && 5950 typeAnnotations.annotationTargetType(ai, ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) { 5951 log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type)); 5952 } 5953 } 5954 } 5955 } 5956 5957 // <editor-fold desc="post-attribution visitor"> 5958 5959 /** 5960 * Handle missing types/symbols in an AST. This routine is useful when 5961 * the compiler has encountered some errors (which might have ended up 5962 * terminating attribution abruptly); if the compiler is used in fail-over 5963 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine 5964 * prevents NPE to be propagated during subsequent compilation steps. 5965 */ 5966 public void postAttr(JCTree tree) { 5967 new PostAttrAnalyzer().scan(tree); 5968 } 5969 5970 class PostAttrAnalyzer extends TreeScanner { 5971 5972 private void initTypeIfNeeded(JCTree that) { 5973 if (that.type == null) { 5974 if (that.hasTag(METHODDEF)) { 5975 that.type = dummyMethodType((JCMethodDecl)that); 5976 } else { 5977 that.type = syms.unknownType; 5978 } 5979 } 5980 } 5981 5982 /* Construct a dummy method type. If we have a method declaration, 5983 * and the declared return type is void, then use that return type 5984 * instead of UNKNOWN to avoid spurious error messages in lambda 5985 * bodies (see:JDK-8041704). 5986 */ 5987 private Type dummyMethodType(JCMethodDecl md) { 5988 Type restype = syms.unknownType; 5989 if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) { 5990 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype; 5991 if (prim.typetag == VOID) 5992 restype = syms.voidType; 5993 } 5994 return new MethodType(List.nil(), restype, 5995 List.nil(), syms.methodClass); 5996 } 5997 private Type dummyMethodType() { 5998 return dummyMethodType(null); 5999 } 6000 6001 @Override 6002 public void scan(JCTree tree) { 6003 if (tree == null) return; 6004 if (tree instanceof JCExpression) { 6005 initTypeIfNeeded(tree); 6006 } 6007 super.scan(tree); 6008 } 6009 6010 @Override 6011 public void visitIdent(JCIdent that) { 6012 if (that.sym == null) { 6013 that.sym = syms.unknownSymbol; 6014 } 6015 } 6016 6017 @Override 6018 public void visitSelect(JCFieldAccess that) { 6019 if (that.sym == null) { 6020 that.sym = syms.unknownSymbol; 6021 } 6022 super.visitSelect(that); 6023 } 6024 6025 @Override 6026 public void visitClassDef(JCClassDecl that) { 6027 initTypeIfNeeded(that); 6028 if (that.sym == null) { 6029 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol); 6030 } 6031 super.visitClassDef(that); 6032 } 6033 6034 @Override 6035 public void visitMethodDef(JCMethodDecl that) { 6036 initTypeIfNeeded(that); 6037 if (that.sym == null) { 6038 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol); 6039 } 6040 super.visitMethodDef(that); 6041 } 6042 6043 @Override 6044 public void visitVarDef(JCVariableDecl that) { 6045 initTypeIfNeeded(that); 6046 if (that.sym == null) { 6047 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol); 6048 that.sym.adr = 0; 6049 } 6050 if (that.vartype == null) { 6051 that.vartype = make.at(Position.NOPOS).Erroneous(); 6052 } 6053 super.visitVarDef(that); 6054 } 6055 6056 @Override 6057 public void visitBindingPattern(JCBindingPattern that) { 6058 initTypeIfNeeded(that); 6059 initTypeIfNeeded(that.var); 6060 if (that.var.sym == null) { 6061 that.var.sym = new BindingSymbol(0, that.var.name, that.var.type, syms.noSymbol); 6062 that.var.sym.adr = 0; 6063 } 6064 super.visitBindingPattern(that); 6065 } 6066 6067 @Override 6068 public void visitRecordPattern(JCRecordPattern that) { 6069 initTypeIfNeeded(that); 6070 if (that.record == null) { 6071 that.record = new ClassSymbol(0, TreeInfo.name(that.deconstructor), 6072 that.type, syms.noSymbol); 6073 } 6074 if (that.fullComponentTypes == null) { 6075 that.fullComponentTypes = List.nil(); 6076 } 6077 super.visitRecordPattern(that); 6078 } 6079 6080 @Override 6081 public void visitNewClass(JCNewClass that) { 6082 if (that.constructor == null) { 6083 that.constructor = new MethodSymbol(0, names.init, 6084 dummyMethodType(), syms.noSymbol); 6085 } 6086 if (that.constructorType == null) { 6087 that.constructorType = syms.unknownType; 6088 } 6089 super.visitNewClass(that); 6090 } 6091 6092 @Override 6093 public void visitAssignop(JCAssignOp that) { 6094 if (that.operator == null) { 6095 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6096 -1, syms.noSymbol); 6097 } 6098 super.visitAssignop(that); 6099 } 6100 6101 @Override 6102 public void visitBinary(JCBinary that) { 6103 if (that.operator == null) { 6104 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6105 -1, syms.noSymbol); 6106 } 6107 super.visitBinary(that); 6108 } 6109 6110 @Override 6111 public void visitUnary(JCUnary that) { 6112 if (that.operator == null) { 6113 that.operator = new OperatorSymbol(names.empty, dummyMethodType(), 6114 -1, syms.noSymbol); 6115 } 6116 super.visitUnary(that); 6117 } 6118 6119 @Override 6120 public void visitReference(JCMemberReference that) { 6121 super.visitReference(that); 6122 if (that.sym == null) { 6123 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(), 6124 syms.noSymbol); 6125 } 6126 } 6127 } 6128 // </editor-fold> 6129 6130 public void setPackageSymbols(JCExpression pid, Symbol pkg) { 6131 new TreeScanner() { 6132 Symbol packge = pkg; 6133 @Override 6134 public void visitIdent(JCIdent that) { 6135 that.sym = packge; 6136 } 6137 6138 @Override 6139 public void visitSelect(JCFieldAccess that) { 6140 that.sym = packge; 6141 packge = packge.owner; 6142 super.visitSelect(that); 6143 } 6144 }.scan(pid); 6145 } 6146 6147 }